Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instrumentation
2.2. Synthesis of Fluorescent Co-Monomers
2.3. Preparation of Fluorescent MIPs for Pepsin
2.4. Protein Binding Experiments
2.5. Characterisation of the Fluorescent Polymers
2.6. Stability Testing
2.7. Fluorescence Measurements
2.8. Application to Measuring Pepsin in Human Saliva
3. Results and Discussion
3.1. Preparation of FMIPs and RMIPs
3.2. Characterisation of the Fluorescent MIPs
3.2.1. Morphological Characterisation
3.2.2. Chemical Characterisation
3.2.3. Thermal Characterisation
3.2.4. Functional Characterisation
3.3. Stability Testing
3.4. Mechanism of Fluorescence Quenching
3.5. Quantitative Detection of Pepsin
3.6. Development of a Separation-Free Quantitation System for Pepsin in Human Saliva Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T. Molecularly Imprinted Polymers (MIPS) Challenges, Uses and Prospects, 1st ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2016. [Google Scholar]
- Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular Imprinting: Green Perspectives and Strategies. Adv. Mater. 2021, 33, 2100543. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.M.; Barton, S.J.; Wren, S.P.; Barker, J. Review on Molecularly Imprinted Polymers with a Focus on Their Application to the Analysis of Protein Biomarkers. TrAC Trends Anal. Chem. 2021, 144, 116431. [Google Scholar] [CrossRef]
- Parisi, O.I.; Francomano, F.; Dattilo, M.; Patitucci, F.; Prete, S.; Amone, F.; Puoci, F. The Evolution of Molecular Recognition: From Antibodies to Molecularly Imprinted Polymers (MIPs) as Artificial Counterpart. J. Funct. Biomater. 2022, 13, 12. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Fang, M.; Tian, Y.; Bai, G.; Zhuo, K. Silanized Carbon Dot-Based Thermo-Sensitive Molecularly Imprinted Fluorescent Sensor for Bovine Hemoglobin Detection. Anal. Bioanal. Chem. 2020, 412, 5811–5817. [Google Scholar] [CrossRef]
- Fang, M.; Zhuo, K.; Chen, Y.; Zhao, Y.; Bai, G.; Wang, J. Fluorescent Probe Based on Carbon Dots/Silica/Molecularly Imprinted Polymer for Lysozyme Detection and Cell Imaging. Anal. Bioanal. Chem. 2019, 411, 5799–5807. [Google Scholar] [CrossRef]
- Piloto, A.M.L.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, J.L.M.; Ferreira Sales, M.G. Label-Free Quantum Dot Conjugates for Human Protein IL-2 Based on Molecularly Imprinted Polymers. Sens. Actuators B Chem. 2020, 304, 127343. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Sun, L.; Luo, A. Surface-Imprinted Polymer Coating l-Cysteine-Capped ZnS Quantum Dots for Target Protein Specific Recognition. J. Mater. Sci. 2016, 51, 6075–6085. [Google Scholar] [CrossRef]
- Zhou, T.; Halder, A.; Sun, Y. Fluorescent Nanosensor Based on Molecularly Imprinted Polymers Coated on Graphene Quantum Dots for Fast Detection of Antibiotics. Biosensors 2018, 8, 4944. [Google Scholar] [CrossRef]
- Piloto, A.M.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, C.; Santos, J.L.M.; Sales, M.G.F. Plastic Antibodies Tailored on Quantum Dots for an Optical Detection of Myoglobin down to the Femtomolar Range. Sci. Rep. 2018, 8, 4944. [Google Scholar] [CrossRef] [PubMed]
- Pirzada, M.; Sehit, E.; Altintas, Z. Cancer Biomarker Detection in Human Serum Samples Using Nanoparticle Decorated Epitope-Mediated Hybrid MIP. Biosens. Bioelectron. 2020, 166, 112464. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, N.; Yuan, L.; Li, J.; Cai, Q. Surface Molecular Imprinting on Dye-(NH2)-SiO2 NPs for Specific Recognition and Direct Fluorescent Quantification of Perfluorooctane Sulfonate. Sens. Actuators B Chem. 2014, 195, 266–273. [Google Scholar] [CrossRef]
- Wan, W.; Biyikal, M.; Wagner, R.; Sellergren, B.; Rurack, K. Fluorescent Sensory Microparticles That “Light-up” Consisting of a Silica Core and a Molecularly Imprinted Polymer (MIP) Shell. Angew. Chem. Int. Ed. 2013, 52, 7023–7027. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Deng, P.; Tang, S.; Li, J. Fluorescent Molecularly Imprinted Polymers Based on 1,8-Naphthalimide Derivatives for Efficiently Recognition of Cholic Acid. Mater. Sci. Eng. C 2016, 58, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Sunayama, H.; Ohta, T.; Kuwahara, A.; Takeuchi, T. Fluorescence Signaling Molecularly Imprinted Polymers for Antibiotics Prepared via Site-Directed Post-Imprinting Introduction of Plural Fluorescent Reporters within the Recognition Cavity. J. Mater. Chem. B 2016, 4, 7138–7145. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Wagner, S.; Rurack, K. Fluorescent Monomers: “Bricks” That Make a Molecularly Imprinted Polymer “Bright”. Anal. Bioanal. Chem. 2016, 408, 1753–1771. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Liu, R.; Ko, C.C. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. Biosensors 2023, 13, 295. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Wang, T.; Jin, Y.; Ling, B.; Li, Q.; Li, J. A Simple Approach to Prepare Fluorescent Molecularly Imprinted Nanoparticles. RSC Adv. 2021, 11, 7732–7737. [Google Scholar] [CrossRef]
- Boulton, K.H.A.; Dettmar, P.W. A Narrative Review of the Prevalence of Gastroesophageal Reflux Disease (GERD). Ann. Esophagus 2022, 5, 5–7. [Google Scholar] [CrossRef]
- Samloff, I.M.; Taggart, R.T. Pepsinogens, Pepsins, and Peptic Ulcer. Clin. Investig. Med. 1987, 10, 215–221. [Google Scholar]
- Wang, Y.J.; Lang, X.Q.; Wu, D.; He, Y.Q.; Lan, C.H.; Xiao, X.; Wang, B.; Zou, D.W.; Wu, J.M.; Zhao, Y.B.; et al. Salivary Pepsin as an Intrinsic Marker for Diagnosis of Sub-Types of Gastroesophageal Reflux Disease and Gastroesophageal Reflux Disease-Related Disorders. J. Neurogastroenterol. Motil. 2020, 26, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Zeleník, K.; Hránková, V.; Vrtková, A.; Staníková, L.; Komínek, P.; Formánek, M. Diagnostic Value of the PeptestTM in Detecting Laryngopharyngeal Reflux. J. Clin. Med. 2021, 10, 2996. [Google Scholar] [CrossRef] [PubMed]
- Verheyen, E.; Schillemans, J.P.; Van Wijk, M.; Demeniex, M.; Hennink, W.E.; Van Nostrum, C.F. Challenges for the Effective Molecular Imprinting of Proteins. Biomaterials 2011, 32, 3008–3020. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Masoum, S. Molecularly Imprinted Polymers for Capturing and Sensing Proteins: Current Progress and Future Implications. TrAC Trends Anal. Chem. 2019, 114, 29–47. [Google Scholar] [CrossRef]
- Pluhar, B.; Ziener, U.; Mizaikoff, B. Binding Performance of Pepsin Surface-Imprinted Polymer Particles in Protein Mixtures. J. Mater. Chem. B 2015, 3, 6248–6254. [Google Scholar] [CrossRef]
- Piletska, E.V.; Czulak, J.; Piletsky, S.S.; Guerreiro, A.; Canfarotta, F.; Piletsky, S.A. Novel Assay Format for Proteins Based on Magnetic Molecularly Imprinted Polymer Nanoparticles—Detection of Pepsin. J. Chin. Adv. Mater. Soc. 2018, 6, 341–351. [Google Scholar] [CrossRef]
- García, Y.; Czulak, J.; Pereira, E.D.; Piletsky, S.A.; Piletska, E. A Magnetic Molecularly Imprinted Nanoparticle Assay (MINA) for Detection of Pepsin. React. Funct. Polym. 2022, 170, 105133. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Barton, S.J.; Wren, S.P.; Barker, J. Development of Magnetic Molecularly Imprinted Polymers for the Extraction of Salivary Pepsin Prior to Analysis by a Novel HPLC-SEC Method. Polymer 2022, 261, 125417. [Google Scholar] [CrossRef]
- Wang, S.; Yin, D.; Wang, W.; Shen, X.; Zhu, J.J.; Chen, H.Y.; Liu, Z. Targeting and Imaging of Cancer Cells via Monosaccharide-Imprinted Fluorescent Nanoparticles. Sci. Rep. 2016, 6, 22757. [Google Scholar] [CrossRef]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary pH: A Diagnostic Biomarker. J. Indian Soc. Periodontol. 2013, 17, 461–465. [Google Scholar] [CrossRef]
- Fenger, F.; Andrew, R.H. On the Isoelectric Precipitation of Pepsin. J. Biol. Chem. 1927, 73, 371–377. [Google Scholar] [CrossRef]
- Paterson, K.A.; Arlt, J.; Jones, A.C. Dynamic and Static Quenching of 2-Aminopurine Fluorescence by the Natural DNA Nucleotides in Solution. Methods Appl. Fluoresc. 2020, 8, 25002. [Google Scholar] [CrossRef]
- Gentleman, A.S.; Lawson, T.; Ellis, M.G.; Davis, M.; Turner-Dore, J.; Ryder, A.S.H.; Frosz, M.H.; Ciaccia, M.; Reisner, E.; Cresswell, A.J.; et al. Stern-Volmer Analysis of Photocatalyst Fluorescence Quenching within Hollow-Core Photonic Crystal Fibre Microreactors. Chem. Commun. 2022, 58, 10548–10551. [Google Scholar] [CrossRef]
Polymer | SSB | SSW | SST | F Calculated | F Critical (α = 0.05) |
---|---|---|---|---|---|
FMIPs | 47.195 | 180.125 | 227.321 | 0.611 | 2.847 |
FNIPs | 3.619 | 13.163 | 16.782 | 0.6415 | 2.847 |
RMIPs | 7.272 | 24.678 | 31.950 | 0.687 | 2.847 |
RNIPs | 6.404 | 60.741 | 67.146 | 0.246 | 2.847 |
Pseudo First Order Parameters | |||||
FMIPs | FNIPs | ||||
K1 (min−1) | Qe (mg g−1) | R2 | K1 (min−1) | Qe (mg g−1) | R2 |
0.00077 | 25.432 | 0.0009 | 0.0309 | 81.183 | 0.872 |
RMIPs | RNIPs | ||||
K1 (min−1) | Qe (mg g−1) | R2 | K1 (min−1) | Qe (mg g−1) | R2 |
0.033 | 8.11 | 0.66 | 0.0173 | 10.175 | 0.163 |
Pseudo Second Order Parameters | |||||
FMIPs | FNIPs | ||||
K2 (g mg−1 min−1) | Qe (mg g−1) | R2 | K2 (g mg−1 min−1) | Qe (mg g−1) | R2 |
0.0867 | 196.09 | 0.9989 | 0.02809 | 188.68 | 0.9961 |
RMIPs | RNIPs | ||||
K2 (g mg−1 min−1) | Qe (mg g−1) | R2 | K2 (g mg−1 min−1) | Qe (mg g−1) | R2 |
0.0136 | 156.25 | 0.9866 | 0.022 | 125 | 0.9759 |
Langmuir Isotherm | |||||||
FMIPs | FNIPs | ||||||
KL (L mg−1) | Qmax (mg g−1) | RL | R2 | KL (L mg−1) | Qmax (mg g−1) | RL | R2 |
0.002 | 19.45 | 1.002 | 0.9055 | 0.00158 | 25.22 | 1.001 | 0.9460 |
RMIPs | RNIPs | ||||||
KL (L mg−1) | Qmax (mg g−1) | RL | R2 | KL (L mg−1) | Qmax (mg g−1) | RL | R2 |
1.241 | 830.67 | 0.573 | 0.9887 | 1.226 | 174.093 | 3.782 | 0.9360 |
Freundlich Isotherm | |||||||
FMIPs | FNIPs | ||||||
n | KF | R2 | n | KF | R2 | ||
0.381 | 349.869 | 0.9599 | 0.470 | 156.50 | 0.9428 | ||
RMIPs | RNIPs | ||||||
n | KF | R2 | n | KF | R2 | ||
1.285 | 553.384 | 0.9615 | 0.683 | 658.99 | 0.9117 |
Parameter | Linearity Range (µmol L−1) | Intercept ± SD a | Slope ± SD b | Syx c | R2 d | LOD (µmol L−1) e |
---|---|---|---|---|---|---|
FMIPs | 0.71–35.71 | 551.94 ±1.61 | −0.42 ± 0.050 | 1.769 | 0.9842 | 0.36 ± 0.051 |
RMIPs | 0.28–42.85 | 307.53 ± 0.85 | −0.67 ± 0.055 | 0.9733 | 0.9916 | 0.12 ± 0.048 |
Concentration (µmol mL−1) | Average Total the Amount Found (µmol mL−1) | Average% Recovery ± SD | RSD % | |||
---|---|---|---|---|---|---|
FMIPs | RMIPs | FMIPs | RMIPs | FMIPs | RMIPs | |
2.8 | 2.65 | 2.69 | 94.84 ± 3.39 | 96.07 ± 3.07 | 3.57 | 3.19 |
14.28 | 14.24 | 14.31 | 99.76 ± 1.51 | 100.21 ± 2.08 | 1.52 | 2.08 |
35.71 | 36.14 | 35.50 | 101.22 ± 0.312 | 99.42 ± 0.99 | 0.31 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, A.M.; Barton, S.J.; Wren, S.P.; Barker, J. Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach. Biosensors 2024, 14, 151. https://doi.org/10.3390/bios14030151
Mostafa AM, Barton SJ, Wren SP, Barker J. Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach. Biosensors. 2024; 14(3):151. https://doi.org/10.3390/bios14030151
Chicago/Turabian StyleMostafa, Aya M., Stephen J. Barton, Stephen P. Wren, and James Barker. 2024. "Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach" Biosensors 14, no. 3: 151. https://doi.org/10.3390/bios14030151
APA StyleMostafa, A. M., Barton, S. J., Wren, S. P., & Barker, J. (2024). Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach. Biosensors, 14(3), 151. https://doi.org/10.3390/bios14030151