Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of CD@AuNPs
2.3. Simulation of Peroxidase Activities by β-CD@AuNPs
2.4. Colorimetric Detection for Ascorbic Acid
2.5. Colorimetric Detection for S. Typhimurium
2.5.1. Culture of Bacteria
2.5.2. Preparation of Nanobodies and Its Conjugation with Adamantane (Ada)
2.5.3. Colorimetric Assays for S. Typhimurium Based on VHH-AuNPs
2.5.4. Cross-Reactivities of the Assay
2.5.5. Sample Preparation
3. Results
3.1. Synthesis, Optimization and Characterization of CD@AuNPs
3.2. Peroxidase-like Catalytic Activities of β-CD@AuNPs
3.3. Colorimetric Determination for Ascorbic Acid in ddH2O
3.4. Development of Colorimetric Detection for S. Typhimurium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsulami, T.; Alzahrani, A. Enhanced nanozymatic activity on rough surfaces for H2O2 and tetracycline detection. Biosensors 2024, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Melikishvili, S.; Piovarci, I.; Hianik, T. Advances in colorimetric assay based on AuNPs modified by proteins and nucleic acid aptamers. Chemosensors 2021, 9, 281. [Google Scholar] [CrossRef]
- Khongwichit, S.; Swangphon, P.; Nanakorn, N.; Nualla-Ong, A.; Choowongkomon, K.; Lieberzeit, P.A.; Chunta, S. A simple aptamer/gold nanoparticle aggregation-based colorimetric assay for oxidized low-density lipoprotein determination. Talanta 2023, 254, 124199. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, L.; Jorge, P.J.; Xu, Q.; Liz-Marzán, L.M. Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J. Mater. Chem. C 2014, 2, 7460–7476. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [PubMed]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Tang, H.; Wang, D.; Gao, Y.; Tang, Z. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, G.; Sun, Y.; Zhang, X.; Huang, J.; Liu, S.; Lin, T.; Ye, F.; Zhao, S. Progress and trend on the regulation methods for nanozyme activity and its application. Catalysts 2019, 9, 1057. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Saranya, P.; Sheeba, M.; Vijilvani, C.; Rejiniemon, T.S.; Al-Mohaimeed, A.M.; AbdelGawwad, M.R.; Elshikh, M.S. Functionalization of gold nanoparticles by β-cyclodextrin as a probe for the detection of heavy metals in water and photocatalytic degradation of textile dye. Environ. Res. 2021, 201, 111628. [Google Scholar] [CrossRef]
- Bose, R.; Jayawant, M.; Raut, R.; Lakkakula, J.; Roy, A.; Alghamdi, S.; Qusty, N.F.; Sharma, R.; Verma, D.; Khandaker, M.U. Cyclodextrin nanoparticles in targeted cancer theranostics. Front. Pharmacol. 2023, 14, 1218867. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; Navarro-Orcajada, S.; Garcia-Carmona, F.; López-Nicolás, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Liu, W.; Herrmann, A.K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmüller, A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small 2016, 12, 2439–2442. [Google Scholar]
- Zhang, N.M.Y.; Qi, M.; Wang, Z.; Wang, Z.; Chen, M.; Li, K.; Shum, P.; Wei, L. One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sens. Actuators B Chem. 2019, 286, 429–436. [Google Scholar] [CrossRef]
- Li, J.; Hu, X.; Zhou, Y.; Zhang, L.; Ge, Z.; Wang, X.; Xu, W. β-Cyclodextrin-stabilized Au nanoparticles for the detection of butyl benzyl phthalate. ACS Appl. Nano Mater. 2019, 2, 2743–2751. [Google Scholar] [CrossRef]
- Wei, S.; Wang, X.; Wang, F.; Hao, X.; Li, H.; Su, Z.; Guo, Y.; Shi, X.; Liu, X.; Li, J.; et al. Colorimetric detection of Salmonella Typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles. Anal. Bioanal. Chem. 2022, 414, 6069–6076. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. Three-in-one: Sensing, self-assembly and cascade catalysis of cyclodextrin modified gold nanoparticles. J. Am. Chem. Soc. 2016, 138, 16645–16654. [Google Scholar] [CrossRef]
- Chen, H.; Xin, P.; Xu, H.; Lv, J.; Qian, R.; Li, D. Self-assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol. ACS Sens. 2023, 8, 388–396. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M.; Ju, H. β-cyclodextrin functionalized gold nanoparticles as an effective nanocatalyst for reducing toxic nitroaromatics. Opt. Mater. 2023, 135, 113294. [Google Scholar] [CrossRef]
- Song, X.; Zhu, W.; Ge, X.; Li, R.; Li, S.; Chen, X.; Song, J.; Xie, J.; Chen, X.; Yang, H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. 2021, 60, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lei, J.; Ma, R.; Ju, H. Host-guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal. Chem. 2013, 85, 6505–6510. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre, J.P.; Kabashin, A.V.; Sacher, E.; Meunier, M.; Luong, J.H.T. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J. Am. Chem. Soc. 2004, 126, 7176–7177. [Google Scholar] [CrossRef] [PubMed]
- Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Halawa, M.I.; Wu, F.; Fereja, T.H.; Lou, B.; Xu, G. One-pot green synthesis of supramolecular β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine. Sens. Actuators B Chem. 2018, 254, 1017–1024. [Google Scholar] [CrossRef]
- Slavgorodska, M.V.; Kyrychenko, A. Adsorption behavior of β-cyclodextrin onto gold nanoparticles. J. Mol. Graph. Model. 2020, 94, 107483. [Google Scholar] [CrossRef]
- Liu, Y.; Male, M.B.; Bouvrette, P.; Luong, J.H.T. Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins. Chem. Mater. 2003, 15, 4172–4180. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G.F.; et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef]
- Attar, F.; Shahpar, M.G.; Rasti, B.; Sharifi, M.; Saboury, A.A.; Rezayat, S.M.; Falahati, M. Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 2019, 278, 130–144. [Google Scholar] [CrossRef]
- Xu, S.; Dong, X.; Chen, S.; Zhao, Y.; Shan, G.; Sun, Y.; Chen, Y.; Liu, Y. The preparation of high-index facet Au/Cu NRs and their application for colorimetric determination ascorbic acid. Sens. Actuators B Chem. 2019, 281, 375–382. [Google Scholar] [CrossRef]
- Nguyen, T.H.A.; Nguyen, V.T.M.; Doan, V.D.; Chau, T.P.; Nguyen, V.C.; Nguyen, A.T.; Vasseghian, Y. A novel gold nanoparticle-based colorimetric assay for highly sensitive detection of ascorbic acid. Mater. Lett. 2022, 309, 131307. [Google Scholar] [CrossRef]
- Zandieh, M.; Liu, J. Nanozymes: Definition, activity, and mechanisms. Adv. Mater. 2024, 36, 2211041. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kamaly, N.; Shi, J.; Zhao, L.; Xiao, Z.; Hollett, G.; John, R.; Ray, S.; Xu, X.; Zhang, X. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew. Chem. Int. Ed. 2014, 53, 8975–8979. [Google Scholar] [CrossRef] [PubMed]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, A.S.; Avila, D.; Hughes, M.; Hughes, A.; McKinney, E.C.; Flajnik, M.F. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995, 374, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Wang, X.; Liu, B.; Liu, J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 2020, 168, 112537. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol. Bioeng. 2016, 113, 2298–2303. [Google Scholar] [CrossRef]
Spiked Concentration (CFU/mL) | Detected Concentration (Average, CFU/mL) | Recovery (%) |
---|---|---|
3.06 × 108 | (3.16 ± 0.10) × 108 | 103.29 ± 3.26 |
3.06 × 107 | (3.14 ± 0.09) × 107 | 102.69 ± 2.94 |
3.06 × 106 | (2.98 ± 0.14) × 106 | 97.31 ± 4.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Bao, Y.; Chen, Y.; Wang, X.; On, S.L.W.; Wang, J. Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities. Biosensors 2024, 14, 169. https://doi.org/10.3390/bios14040169
Fan X, Bao Y, Chen Y, Wang X, On SLW, Wang J. Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities. Biosensors. 2024; 14(4):169. https://doi.org/10.3390/bios14040169
Chicago/Turabian StyleFan, Xinyi, Yuexin Bao, Yanhong Chen, Xiaohong Wang, Stephen L. W. On, and Jia Wang. 2024. "Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities" Biosensors 14, no. 4: 169. https://doi.org/10.3390/bios14040169
APA StyleFan, X., Bao, Y., Chen, Y., Wang, X., On, S. L. W., & Wang, J. (2024). Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities. Biosensors, 14(4), 169. https://doi.org/10.3390/bios14040169