Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis
Abstract
:1. Introduction
2. Pattern Recognition Methods for Differential Sensing
3. Gold Nanoparticle-Based Sensor Arrays
3.1. Fluorescence Sensing Based on AuNPs
3.2. Colorimetric Sensing Based on AuNPs
3.3. Differential Sensing Based on Gold Nanoclusters (AuNCs)
4. Graphene Oxide (GO)-Based Sensor Arrays
5. Quantum Dot (QD)-Based Sensor Arrays
6. Other Metal Nanoparticle-Based Sensor Arrays
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, R.S.; O’Keefe, T.L.; Froehlich, C.; Lewis, R.E.; Sheldon, T.R.; Haynes, C.L. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal. Chem. 2021, 93, 23–40. [Google Scholar] [CrossRef]
- Shruti, A.; Bage, N.; Kar, P. Nanomaterials based sensors for analysis of food safety. Food Chem. 2024, 433, 137284. [Google Scholar] [CrossRef]
- Pan, M.F.; Yin, Z.J.; Liu, K.X.; Du, X.L.; Liu, H.L.; Wang, S. Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef]
- Lv, M.; Liu, Y.; Geng, J.H.; Kou, X.H.; Xin, Z.H.; Yang, D.Y. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef]
- Huang, Y.K.; Mei, L.; Chen, X.G.; Wang, Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef]
- Chu, H.Q.; Lu, Y.F. Application of Functional Nanomaterials in Food Safety. Chin. J. Anal. Chem. 2010, 38, 442–448. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, L.; Xu, L.; Li, L.; Ren, S.; Cao, C.; Jia, N.; Aldalbahi, A.; Song, S.; Shi, J.; et al. Electrochemical detection of PCR amplicons of Escherichia coli genome based on DNA nanostructural probes and polyHRP enzyme. Analyst 2016, 141, 5304–5310. [Google Scholar] [CrossRef]
- Yang, X.; Wen, Y.; Wang, L.; Zhou, C.; Li, Q.; Xu, L.; Li, L.; Shi, J.; Lal, R.; Ren, S.; et al. PCR-Free Colorimetric DNA Hybridization Detection Using a 3D DNA Nanostructured Reporter Probe. ACS Appl. Mater. Interfaces 2017, 9, 38281–38287. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Xu, Q.; Xu, L.; Liang, W.; Li, Y.; Ding, M.; Aldalbahi, A.; Ge, Z.; Wang, L.; et al. Bacterial Analysis Using an Electrochemical DNA Biosensor with Poly-Adenine-Mediated DNA Self-Assembly. ACS Appl. Mater. Interfaces 2018, 10, 6895–6903. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Ozalp, V.C.; Dincbal, U.; Arica, M.Y. Fast and Sensitive Detection of Salmonella in Milk Samples Using Aptamer-Functionalized Magnetic Silica Solid Phase and MCM-41-Aptamer Gate System. ACS Biomater. Sci. Eng. 2018, 4, 1437–1444. [Google Scholar] [CrossRef]
- Wang, L.; Wen, Y.; Yang, X.; Xu, L.; Liang, W.; Zhu, Y.; Wang, L.; Li, Y.; Li, Y.; Ding, M.; et al. Ultrasensitive Electrochemical DNA Biosensor Based on a Label-Free Assembling Strategy Using a Triblock polyA DNA Probe. Anal. Chem. 2019, 91, 16002–16009. [Google Scholar] [CrossRef] [PubMed]
- da Costa, B.M.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Environmental monitoring approaches for the detection of organic contaminants in marine environments: A critical review. Trends Environ. Anal. Chem. 2022, 33, e00154. [Google Scholar] [CrossRef]
- Liang, M.M.; Guo, L.H. Application of Nanomaterials in Environmental Analysis and Monitoring. J. Nanosci. Nanotechnol. 2009, 9, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
- Farzin, L.; Shamsipur, M.; Sheibani, S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017, 174, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Abu, H.; Hossain, M.A.M.; Marlinda, A.; Al Mamun, M.; Simarani, K.; Johan, M.R. Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: A review. Appl. Surf. Sci. Adv. 2021, 4, 100064. [Google Scholar] [CrossRef]
- Wang, L.; Wen, Y.; Li, L.; Yang, X.; Jia, N.; Li, W.; Meng, J.; Duan, M.; Sun, X.; Liu, G. Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens. Bioelectron. 2018, 115, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Lotfi Zadeh Zhad, H.R.; Lai, R.Y. Application of Calcium-Binding Motif of E-Cadherin for Electrochemical Detection of Pb(II). Anal. Chem. 2018, 90, 6519–6525. [Google Scholar] [CrossRef]
- Wang, L.Q.; Wang, X.J.; Wu, Y.G.; Guo, M.Q.; Gu, C.J.; Dai, C.H.; Kong, D.R.; Wang, Y.; Zhang, C.; Qu, D.; et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285. [Google Scholar] [CrossRef]
- Song, P.; Shen, J.W.; Ye, D.K.; Dong, B.J.; Wang, F.; Pei, H.; Wang, J.B.; Shi, J.Y.; Wang, L.H.; Xue, W.; et al. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat. Commun. 2022, 13, 1917. [Google Scholar] [CrossRef]
- Zhai, T.T.; Wei, Y.H.; Wang, L.H.; Li, J.; Fan, C.H. Advancing pathogen detection for airborne diseases. Fundam. Res. 2023, 3, 520–524. [Google Scholar] [CrossRef]
- Wang, L.; Dong, L.; Liu, G.; Shen, X.; Wang, J.; Zhu, C.; Ding, M.; Wen, Y. Fluorometric determination of HIV DNA using molybdenum disulfide nanosheets and exonuclease III-assisted amplification. Mikrochim. Acta 2019, 186, 286. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuai, Z.; Zhou, H.; Luo, Z.; Liu, B.; Zhang, Y.; Zhang, L.; Chen, S.; Chao, J.; Weng, L.; et al. Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor. J. Am. Chem. Soc. 2018, 140, 3988–3993. [Google Scholar] [CrossRef]
- Yang, F.; Li, Q.; Wang, L.; Zhang, G.J.; Fan, C. Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sens. 2018, 3, 903–919. [Google Scholar] [CrossRef]
- Zhao, R.; Lv, M.; Li, Y.; Sun, M.; Kong, W.; Wang, L.; Song, S.; Fan, C.; Jia, L.; Qiu, S.; et al. Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. ACS Appl. Mater. Interfaces 2017, 9, 15328–15341. [Google Scholar] [CrossRef]
- Yin, F.; Zhao, H.; Lu, S.; Shen, J.; Li, M.; Mao, X.; Li, F.; Shi, J.; Li, J.; Dong, B.; et al. DNA-framework-based multidimensional molecular classifiers for cancer diagnosis. Nat. Nanotechnol. 2023, 18, 677–686. [Google Scholar] [CrossRef]
- Mao, D.; Dong, Z.; Liu, X.; Li, W.; Li, H.; Gu, C.; Chen, G.; Zhu, X.; Yang, Y. Intelligent DNA nanoreactor for in vivo easy-to-read tumor imaging and precise therapy. Angew. Chem. Int. Ed. Engl. 2023, 63, e202311309. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Y.; Wang, L.; Liang, W.; Xu, L.; Ren, S.; Zou, Z.; Zuo, X.; Fan, C.; Huang, Q.; et al. Analysis of telomerase activity based on a spired DNA tetrahedron TS primer. Biosens. Bioelectron. 2015, 67, 364–369. [Google Scholar] [CrossRef]
- Qian, Y.; Fan, T.; Wang, P.; Zhang, X.; Luo, J.; Zhou, F.; Yao, Y.; Liao, X.; Li, Y.; Gao, F. A novel label-free homogeneous electrochemical immunosensor based on proximity hybridization-triggered isothermal exponential amplification induced G-quadruplex formation. Sens. Actuators B Chem. 2017, 248, 187–194. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Zhang, J.; Liu, Y.; Wu, L.; Shen, J.; Zhang, Y.; Hu, Y.; Fan, Q.; Huang, W.; et al. Individual Au-Nanocube Based Plasmonic Nanoprobe for Cancer Relevant MicroRNA Biomarker Detection. ACS Sens. 2017, 2, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Hu, Y.; Fan, Q.; Yang, W.; Li, A.; Li, S.; Huang, W.; Wang, L. Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs. Chem. Commun. 2015, 51, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, M.; Duan, X.; Guo, B.; Cheng, W.; Ding, S.; Ju, H. Collapse of DNA Tetrahedron Nanostructure for “Off-On” Fluorescence Detection of DNA Methyltransferase Activity. ACS Appl. Mater. Interfaces 2017, 9, 40087–40093. [Google Scholar] [CrossRef] [PubMed]
- Beard, D.J.; Perrine, S.A.; Phillips, E.; Hoque, S.; Conerly, S.; Tichenor, C.; Simmons, M.A.; Young, J.K. Conformational comparisons of a series of tachykinin peptide analogs. J. Med. Chem. 2007, 50, 6501–6506. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhu, X.; Hai, X.; Bi, S.; Zhang, X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens. 2023, 8, 994–1016. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Yang, J.; Wu, C.; Chen, M.; Wang, J.; Yang, T. Chemical Nose Strategy with Metabolic Labeling and “Antibiotic-Responsive Spectrum” Enables Accurate and Rapid Pathogen Identification. Anal. Chem. 2024, 96, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.B.; Li, G.; Yang, X.H.; Wang, K.M.; Li, L.; Liu, W.; Shi, X.; Guo, Y.L. Exciton Energy Transfer-Based Quantum Dot Fluorescence Sensing Array: “Chemical Noses” for Discrimination of Different Nucleobases. Anal. Chem. 2015, 87, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, G.; He, X.X.; Yang, X.H.; Liu, S.Y.; Tang, J.L.; Chen, Q.S.; Liu, J.B.; Wang, K.M. Protein- driven disassembly of surfactant- polyelectrolyte nanomicelles: Modulation of quantum dot/fluorochrome FRET for pattern sensing. Sens. Actuators B-Chem. 2018, 272, 393–399. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef]
- Miranda, O.R.; Chen, H.-T.; You, C.-C.; Mortenson, D.E.; Yang, X.-C.; Bunz, U.H.F.; Rotello, V.M. Enzyme-Amplified Array Sensing of Proteins in Solution and in Biofluids. J. Am. Chem. Soc. 2010, 132, 5285–5289. [Google Scholar] [CrossRef]
- Yan, Q.; Ding, X.Y.; Chen, Z.H.; Xue, S.F.; Han, X.Y.; Lin, Z.Y.; Yang, M.; Shi, G.; Zhang, M. pH-Regulated Optical Performances in Organic/Inorganic Hybrid: A Dual-Mode Sensor Array for Pattern-Recognition-Based Biosensing. Anal. Chem. 2018, 90, 10536–10542. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, Q.W.; Gu, Q.; Liu, Z.; He, X.; Tian, Y. Pillar[5]arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-neurotransmitters through Host-Guest Recognitions. J. Am. Chem. Soc. 2022, 144, 2351–2359. [Google Scholar] [CrossRef]
- Yao, J.; Yang, M.; Duan, Y.X. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem. Rev. 2014, 114, 6130–6178. [Google Scholar] [CrossRef]
- Meng, H.M.; Liu, H.; Kuai, H.L.; Peng, R.Z.; Mo, L.T.; Zhang, X.B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 2016, 45, 2583–2602. [Google Scholar] [CrossRef]
- Zhang, S.D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V.V. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem. Rev. 2017, 117, 12942–13038. [Google Scholar] [CrossRef]
- Sun, H.J.; Zhou, Y.; Ren, J.S.; Qu, X.G. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew. Chem.-Int. Ed. 2018, 57, 9224–9237. [Google Scholar] [CrossRef]
- Yadav, V.; Roy, S.; Singh, P.; Khan, Z.; Jaiswal, A. 2D MoS2-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small 2019, 15, e1803706. [Google Scholar] [CrossRef]
- Ji, C.Y.; Zhou, Y.Q.; Leblanc, R.M.; Peng, Z.L. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens. 2020, 5, 2724–2741. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M.Q. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021, 33, e1904362. [Google Scholar] [CrossRef]
- Xu, W.Q.; Jiao, L.; Wu, Y.; Hu, L.Y.; Gu, W.L.; Zhu, C.Z. Metal-Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. Adv. Mater. 2021, 33, 2005172. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.C.; Li, M.Y.; Li, G.R.; Zhang, B.Y.; Singh, R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef]
- Pini, F.; Francés-Soriano, L.; Andrigo, V.; Natile, M.M.; Hildebrandt, N. Optimizing Upconversion Nanoparticles for FRET Biosensing. ACS Nano 2023, 17, 4971–4984. [Google Scholar] [CrossRef]
- Du, H.; Xie, Y.Q.; Wang, J. Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. Trac-Trends Anal. Chem. 2021, 135, 116178. [Google Scholar] [CrossRef]
- Zhai, T.T.; Zheng, H.R.; Fang, W.N.; Gao, Z.S.; Song, S.P.; Zuo, X.L.; Li, Q.; Wang, L.H.; Li, J.; Shi, J.Y.; et al. DNA-Encoded Gold-Gold Wettability for Programmable Plasmonic Engineering. Angew. Chem.-Int. Ed. 2022, 61, e202210377. [Google Scholar] [CrossRef]
- Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716. [Google Scholar] [CrossRef]
- Wang, H.S. Metal-organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 2017, 349, 139–155. [Google Scholar] [CrossRef]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef]
- Xu, W.Q.; Jiao, L.; Yan, H.Y.; Wu, Y.; Chen, L.J.; Gu, W.L.; Du, D.; Lin, Y.H.; Zhu, C.Z. Glucose Oxidase-Integrated Metal-Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101. [Google Scholar] [CrossRef]
- De los Santos, Z.A.; Lin, Z.W.; Zheng, M. Optical Detection of Stereoselective Interactions with DNA-Wrapped Single-Wall Carbon Nanotubes. J. Am. Chem. Soc. 2021, 143, 20628–20632. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z.Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Ahn, N.; Livache, C.; Pinchetti, V.; Jung, H.; Jin, H.; Hahm, D.; Park, Y.S.; Klimov, V.I. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 2023, 617, 79–85. [Google Scholar] [CrossRef]
- Wu, P.; Yan, X.P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521. [Google Scholar] [CrossRef]
- Wu, P.; Hou, X.D.; Xu, J.J.; Chen, H.Y. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016, 8, 8427–8442. [Google Scholar] [CrossRef]
- Sun, J.W.; Lu, Y.X.; He, L.Y.; Pang, J.W.; Yang, F.Y.; Liu, Y.Y. Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. Trac-Trends Anal. Chem. 2020, 122, 115754. [Google Scholar] [CrossRef]
- Behera, P.; De, M. Nanomaterials in Optical Array-Based Sensing. In Organic and Inorganic Materials Based Sensors; Wiley: New York, NY, USA, 2024; pp. 495–533. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- You, C.C.; Miranda, O.R.; Gider, B.; Ghosh, P.S.; Kim, I.B.; Erdogan, B.; Krovi, S.A.; Bunz, U.H.; Rotello, V.M. Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol. 2007, 2, 318–323. [Google Scholar] [CrossRef]
- Li, X.N.; Wen, F.; Creran, B.; Jeong, Y.D.; Zhang, X.R.; Rotello, V.M. Colorimetric Protein Sensing Using Catalytically Amplified Sensor Arrays. Small 2012, 8, 3589–3592. [Google Scholar] [CrossRef]
- Rana, S.; Singla, A.K.; Bajaj, A.; Elci, S.G.; Miranda, O.R.; Mout, R.; Yan, B.; Jirik, F.R.; Rotello, V.M. Array-Based Sensing of Metastatic Cells and Tissues Using Nanoparticle-Fluorescent Protein Conjugates. ACS Nano 2012, 6, 8233–8240. [Google Scholar] [CrossRef]
- Chou, S.S.; De, M.; Luo, J.Y.; Rotello, V.M.; Huang, J.X.; Dravid, V.P. Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing. J. Am. Chem. Soc. 2012, 134, 16725–16733. [Google Scholar] [CrossRef]
- Pei, H.; Li, J.; Lv, M.; Wang, J.; Gao, J.; Lu, J.; Li, Y.; Huang, Q.; Hu, J.; Fan, C. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 2012, 134, 13843–13849. [Google Scholar] [CrossRef]
- Xu, S.; Lu, X.; Yao, C.; Huang, F.; Jiang, H.; Hua, W.; Na, N.; Liu, H.; Ouyang, J. A Visual Sensor Array for Pattern Recognition Analysis of Proteins Using Novel Blue-Emitting Fluorescent Gold Nanoclusters. Anal. Chem. 2014, 86, 11634–11639. [Google Scholar] [CrossRef]
- Tao, Y.; Ran, X.; Ren, J.S.; Qu, X.G. Array-Based Sensing of Proteins and Bacteria By Using Multiple Luminescent Nanodots as Fluorescent Probes. Small 2014, 10, 3667–3671. [Google Scholar] [CrossRef]
- Yuan, Z.; Du, Y.; Tseng, Y.T.; Peng, M.; Cai, N.; He, Y.; Chang, H.T.; Yeung, E.S. Fluorescent gold nanodots based sensor array for proteins discrimination. Anal. Chem. 2015, 87, 4253–4259. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Tang, B.; Zhang, C.-y. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins. Anal. Chem. 2016, 88, 2051–2058. [Google Scholar] [CrossRef]
- Li, B.Y.; Li, X.Z.; Dong, Y.H.; Wang, B.; Li, D.Y.; Shi, Y.M.; Wu, Y.Y. Colorimetric Sensor Array Based on Gold Nanoparticles with Diverse Surface Charges for Microorganisms Identification. Anal. Chem. 2017, 89, 10639–10643. [Google Scholar] [CrossRef]
- Qiu, H.; Pu, F.; Ran, X.; Liu, C.; Ren, J.; Qu, X. Nanozyme as Artificial Receptor with Multiple Readouts for Pattern Recognition. Anal. Chem. 2018, 90, 11775–11779. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Sun, Y.; Xu, L.; Li, F.; Han, J. Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes. Anal. Chem. 2022, 94, 2757–2763. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, L.; Qin, J.; Chen, J.; Stewart, C.; Sun, Y.; Huang, H.; Xu, L.; Li, L.; Han, J.; et al. One-Component Multichannel Sensor Array for Rapid Identification of Bacteria. Anal. Chem. 2022, 94, 10291–10298. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, X.; Liu, S.; Dong, Y.; Fu, T.; Tian, Z.; Wu, Y. Colorimetric Sensor Array for Identification of Proteins and Classification of Metabolic Profiles under Various Osmolyte Conditions. ACS Sens. 2023, 8, 133–140. [Google Scholar] [CrossRef]
- Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning; Springer: New York, NY, USA, 2008; pp. 237–280. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Bridges, C.C. Hierarchical Cluster Analysis. Psychol. Rep. 1966, 18, 851–854. [Google Scholar] [CrossRef]
- Izenman, A.J. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning; Springer: New York, NY, USA, 2008; pp. 1–731. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Frades, I.; Matthiesen, R. Overview on Techniques in Cluster Analysis. In Bioinformatics Methods in Clinical Research; Matthiesen, R., Ed.; Humana Press: Totowa, NJ, USA, 2010; Volume 593, pp. 81–107. [Google Scholar]
- Mitchell, L.; New, E.J.; Mahon, C.S. Macromolecular Optical Sensor Arrays. ACS Appl. Polym. Mater. 2021, 3, 506–530. [Google Scholar] [CrossRef]
- Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410–10488. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, M.L.; Liu, Y.; Wan, S.; Cui, C.; Zhang, L.Q.; Tan, W.H. Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angew. Chem.-Int. Ed. 2017, 56, 11916–11920. [Google Scholar] [CrossRef]
- Nejati, K.; Dadashpour, M.; Gharibi, T.; Mellatyar, H.; Akbarzadeh, A. Biomedical Applications of Functionalized Gold Nanoparticles: A Review. J. Clust. Sci. 2022, 33, 1–16. [Google Scholar] [CrossRef]
- Miranda, O.R.; Li, X.; Garcia-Gonzalez, L.; Zhu, Z.J.; Yan, B.; Bunz, U.H.; Rotello, V.M. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J. Am. Chem. Soc. 2011, 133, 9650–9653. [Google Scholar] [CrossRef]
- Bajaj, A.; Miranda, O.R.; Kim, I.B.; Phillips, R.L.; Jerry, D.J.; Bunz, U.H.; Rotello, V.M. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 10912–10916. [Google Scholar] [CrossRef]
- Bajaj, A.; Rana, S.; Miranda, O.R.; Yawe, J.C.; Jerry, D.J.; Bunz, U.H.F.; Rotello, V.M. Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. Chem. Sci. 2010, 1, 134. [Google Scholar] [CrossRef]
- Le, N.D.B.; Yesilbag Tonga, G.; Mout, R.; Kim, S.T.; Wille, M.E.; Rana, S.; Dunphy, K.A.; Jerry, D.J.; Yazdani, M.; Ramanathan, R.; et al. Cancer Cell Discrimination Using Host-Guest “Doubled” Arrays. J. Am. Chem. Soc. 2017, 139, 8008–8012. [Google Scholar] [CrossRef]
- Yang, J.E.; Lu, Y.X.; Ao, L.; Wang, F.Y.; Jing, W.J.; Zhang, S.C.; Liu, Y.Y. Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates. Sens. Actuators B-Chem. 2017, 245, 66–73. [Google Scholar] [CrossRef]
- Wang, F.Y.; Zhang, X.; Lu, Y.X.; Yang, J.O.; Jing, W.J.; Zhang, S.C.; Liu, Y.Y. Continuously evolving ‘chemical tongue’ biosensor for detecting proteins. Talanta 2017, 165, 182–187. [Google Scholar] [CrossRef]
- Lin, X.; Hai, X.; Wang, N.; Chen, X.W.; Wang, J.H. Dual-signal model array sensor based on GQDs/AuNPs system for sensitive protein discrimination. Anal. Chim. Acta 2017, 992, 105–111. [Google Scholar] [CrossRef]
- Mao, J.P.; Lu, Y.X.; Chang, N.; Yang, J.E.; Zhang, S.C.; Liu, Y.Y. Multidimensional colorimetric sensor array for discrimination of proteins. Biosens. Bioelectron. 2016, 86, 56–61. [Google Scholar] [CrossRef]
- Jiang, M.D.; Gupta, A.; Zhang, X.Z.; Chattopadhyay, A.N.; Fedeli, S.; Huang, R.; Yang, J.; Rotello, V.M. Identification of Proteins Using Supramolecular Gold Nanoparticle-Dye Sensor Arrays. Anal. Sens. 2023, 3, e202200080. [Google Scholar] [CrossRef]
- Bian, M.M.; Xu, M.; Yuan, Y.L.; Nie, J.F. Colorimetric Array Sensor for Discrimination of Multiple Heavy Metal Ions Based on Different Lengths of DNA-AuNPs. Chin. J. Anal. Chem. 2020, 48, 863–870. [Google Scholar] [CrossRef]
- Li, L.; CiRen, D.; Chen, Z.B. Gold Nanoparticles-Based Dual-Channel Colorimetric Array Sensors for Discrimination of Metal Ions. ACS Appl. Nano Mater. 2022, 5, 18270–18275. [Google Scholar] [CrossRef]
- Liu, Q.; Yeh, Y.C.; Rana, S.; Jiang, Y.; Guo, L.; Rotello, V.M. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays. Cancer Lett. 2013, 334, 196–201. [Google Scholar] [CrossRef]
- Wei, X.C.; Chen, Z.B.; Tan, L.L.; Lou, T.H.; Zhao, Y. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination. Anal. Chem. 2017, 89, 556–559. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, C.; Yu, Y.; Yang, S.J.; Shi, F.F.; Gao, X.; Liu, Y.H.; Huang, H.; Stewart, C.; Li, F.; et al. Machine Learning-Assisted Nanoenzyme/Bioenzyme Dual-Coupled Array for Rapid Detection of Amyloids. Anal. Chem. 2023, 95, 4605–4611. [Google Scholar] [CrossRef]
- Abbasi-Moayed, S.; Orouji, A.; Hormozi-Nezhad, M.R. Multiplex Detection of Biogenic Amines for Meat Freshness Monitoring Using Nanoplasmonic Colorimetric Sensor Array. Biosensors 2023, 13, 803. [Google Scholar] [CrossRef]
- Chen, X.L.; Liang, Y. Colorimetric sensing strategy for multiplexed detection of proteins based on three DNA-gold nanoparticle conjugates sensors. Sens. Actuators B-Chem. 2021, 329, 129202. [Google Scholar] [CrossRef]
- Wong, S.F.; Khor, S.M. Differential colorimetric nanobiosensor array as bioelectronic tongue for discrimination and quantitation of multiple foodborne carcinogens. Food Chem. 2021, 357, 129801. [Google Scholar] [CrossRef]
- Li, Y.N.; Liu, Q.Y.; Chen, Z.B. A colorimetric sensor array for detection and discrimination of antioxidants based on Ag nanoshell deposition on gold nanoparticle surfaces. Analyst 2019, 144, 6276–6282. [Google Scholar] [CrossRef]
- Yang, J.Y.; Yang, T.; Wang, X.Y.; Wang, Y.T.; Liu, M.X.; Chen, M.L.; Yu, Y.L.; Wang, J.H. A Novel Three-Dimensional Nanosensing Array for the Discrimination of Sulfur-Containing Species and Sulfur Bacteria. Anal. Chem. 2019, 91, 6012–6018. [Google Scholar] [CrossRef]
- Li, D.Y.; Dong, Y.H.; Li, B.Y.; Wu, Y.Y.; Wang, K.; Zhang, S.C. Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. Analyst 2015, 140, 7672–7677. [Google Scholar] [CrossRef]
- Jia, F.; Huang, J.; Wei, W.; Chen, Z.; Zhou, Q. Visual sensing of flavonoids based on varying degrees of gold nanoparticle aggregation via linear discriminant analysis. Sens. Actuators B Chem. 2021, 348, 130685. [Google Scholar] [CrossRef]
- Leng, Y.; Cheng, J.; Liu, C.; Wang, D.; Lu, Z.; Ma, C.; Zhang, M.; Dong, Y.; Xing, X.; Yao, L.; et al. A rapid reduction of Au(I→0) strategy for the colorimetric detection and discrimination of proteins. Microchim. Acta 2021, 188, 249. [Google Scholar] [CrossRef]
- Qiang, H.; Wei, X.; Liu, Q.; Chen, Z. Iodide-Responsive Cu–Au Nanoparticle-Based Colorimetric Sensor Array for Protein Discrimination. ACS Sustain. Chem. Eng. 2018, 6, 15720–15726. [Google Scholar] [CrossRef]
- Xi, H.; He, W.; Liu, Q.; Chen, Z. Protein Discrimination Using a Colorimetric Sensor Array Based on Gold Nanoparticle Aggregation Induced by Cationic Polymer. ACS Sustain. Chem. Eng. 2018, 6, 10751–10757. [Google Scholar] [CrossRef]
- Das Saha, N.; Sasmal, R.; Meethal, S.K.; Vats, S.; Gopinathan, P.V.; Jash, O.; Manjithaya, R.; Gagey-Eilstein, N.; Agasti, S.S. Multichannel DNA Sensor Array Fingerprints Cell States and Identifies Pharmacological Effectors of Catabolic Processes. ACS Sens. 2019, 4, 3124–3132. [Google Scholar] [CrossRef]
- Mayilo, S.; Kloster, M.A.; Wunderlich, M.; Lutich, A.; Klar, T.A.; Nichtl, A.; Kürzinger, K.; Stefani, F.D.; Feldmann, J. Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T. Nano Lett. 2009, 9, 4558–4563. [Google Scholar] [CrossRef]
- Hung, S.Y.; Shih, Y.C.; Tseng, W.L. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Anal. Chim. Acta 2015, 857, 64–70. [Google Scholar] [CrossRef]
- Lu, S.S.; Wang, S.; Chen, C.X.; Sun, J.; Yang, X.R. Enzyme-free aptamer/AuNPs-based fluorometric and colorimetric dual-mode detection for ATP. Sens. Actuators B-Chem. 2018, 265, 67–74. [Google Scholar] [CrossRef]
- Lv, L.; Jin, Y.D.; Kang, X.J.; Zhao, Y.Y.; Cui, C.B.; Guo, Z.J. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer. Food Chem. 2018, 249, 45–50. [Google Scholar] [CrossRef]
- Saad, S.M.; Abdullah, J.; Abd Rashid, S.; Fen, Y.W.; Salam, F.; Yih, L.H. A fluorescence quenching based gene assay for Escherichia coli O157:H7 using graphene quantum dots and gold nanoparticles. Microchim. Acta 2019, 186, 804. [Google Scholar] [CrossRef]
- Chen, Y.S.; Chen, Z.W.; Yuan, Y.W.; Chen, K.C.; Liu, C.P. Fluorescence Quenchers Manipulate the Peroxidase-like Activity of Gold-Based Nanomaterials. ACS Omega 2020, 5, 24487–24494. [Google Scholar] [CrossRef]
- Saad, S.M.; Abdullah, J.; Abd Rashid, S.; Fen, Y.W.; Salam, F.; Yih, L.H. A carbon dots based fluorescence sensing for the determination of Escherichia coli O157:H7. Measurement 2020, 160, 107845. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Z.; Beier, R.C.; Jiang, H.; Wu, Y.; Shen, J. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay. Anal. Chem. 2013, 85, 1995–1999. [Google Scholar] [CrossRef]
- Bajaj, A.; Miranda, O.R.; Phillips, R.; Kim, I.-B.; Jerry, D.J.; Bunz, U.H.F.; Rotello, V.M. Array-Based Sensing of Normal, Cancerous, and Metastatic Cells Using Conjugated Fluorescent Polymers. J. Am. Chem. Soc. 2010, 132, 1018–1022. [Google Scholar] [CrossRef]
- Kumar, V.V.; Anthony, S.P. Highly selective colorimetric sensing of Hg2+ ions by label free AuNPs in aqueous medium across wide pH range. Sens. Actuators B-Chem. 2016, 225, 413–419. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, Y.; Chen, P.; McCadden, A.; Palaniappan, A.; Zhang, J.L.; Liedberg, B. Peptide Functionalized Gold Nanoparticles with Optimized Particle Size and Concentration for Colorimetric Assay Development: Detection of Cardiac Troponin I. ACS Sens. 2016, 1, 1416–1422. [Google Scholar] [CrossRef]
- Yang, J.J.; Feng, L.J.; Liu, J.; Li, S.; Li, N.; Zhang, X.F. DNA-mediated charge neutralization of AuNPs for colorimetric sensing of Hg2+ in environmental waters and cosmetics. Sens. Actuators B-Chem. 2024, 398, 134697. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Zhang, S.; Wang, S.; Zhang, S.; Zhang, X. Aptamer-based plasmonic sensor array for discrimination of proteins and cells with the naked eye. Anal. Chem. 2013, 85, 6571–6574. [Google Scholar] [CrossRef]
- Sun, W.; Lu, Y.; Mao, J.; Chang, N.; Yang, J.; Liu, Y. Multidimensional sensor for pattern recognition of proteins based on DNA-gold nanoparticles conjugates. Anal. Chem. 2015, 87, 3354–3359. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Zhao, Y.; Chen, Z. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation. Biosens. Bioelectron. 2017, 97, 332–337. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Pei, H.; Zhao, Y.; Zuo, X.; Fan, C.; Huang, Q. DNA-gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. Anal. Chem. 2014, 86, 3227–3231. [Google Scholar] [CrossRef]
- Gao, X.; Li, M.; Zhao, M.; Wang, X.; Wang, S.; Liu, Y. Metabolism-Triggered Colorimetric Sensor Array for Fingerprinting and Antibiotic Susceptibility Testing of Bacteria. Anal. Chem. 2022, 94, 6957–6966. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, F.; Wang, D.; Xiong, D.; Yan, S.; Liu, S.; Tang, H. Fabrication of avidin-stabilized gold nanoclusters with dual emissions and their application in biosensing. J. Nanobiotechnology 2022, 20, 306. [Google Scholar] [CrossRef]
- Biswas, A.; Banerjee, S.; Gart, E.V.; Nagaraja, A.T.; McShane, M.J. Gold Nanocluster Containing Polymeric Microcapsules for Intracellular Ratiometric Fluorescence Biosensing. ACS Omega 2017, 2, 2499–2506. [Google Scholar] [CrossRef]
- Niazi, S.; Khan, I.M.; Akhtar, W.; ul Haq, F.; Pasha, I.; Khan, M.K.I.; Mohsin, A.; Ahmad, S.; Zhang, Y.; Wang, Z. Aptamer functionalized gold nanoclusters as an emerging nanoprobe in biosensing, diagnostic, catalysis and bioimaging. Talanta 2024, 268, 125270. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Xu, C.; Wang, X.; Liu, C.; Waterhouse, G.I.N.; Wang, Y.; Yin, H. Ultrasmall Au nanoclusters for biomedical and biosensing applications: A mini-review. Talanta 2019, 200, 432–442. [Google Scholar] [CrossRef]
- Gan, Z.B.; Lin, Y.J.; Luo, L.; Han, G.M.; Liu, W.; Liu, Z.J.; Yao, C.H.; Weng, L.H.; Liao, L.W.; Chen, J.S.; et al. Fluorescent Gold Nanoclusters with Interlocked Staples and a Fully Thiolate-Bound Kernel. Angew. Chem.-Int. Ed. 2016, 55, 11567–11571. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.H.; Amunyela, H.; Cheng, Y.L.; Xie, Y.F.; Yu, H.; Yao, W.R.; Li, H.W.; Qian, H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem. 2021, 335, 127657. [Google Scholar] [CrossRef]
- Sonia; Komal; Kukreti, S.; Kaushik, M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021, 234, 122623. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhou, Z.P.; Shu, T.; Qian, L.S.; Su, L.; Zhang, X.J. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging. Prog. Chem. 2021, 33, 179–187. [Google Scholar] [CrossRef]
- Chen, S.Q.; Li, S.S.; Wang, Y.L.; Chen, Z.H.; Wang, H.; Zhang, X.D. Gold Nanoclusters for Tumor Diagnosis and Treatment. Adv. Nanobiomed Res. 2023, 3, 2300082. [Google Scholar] [CrossRef]
- Ivanova, N.K.; Karpushkin, E.A.; Lopatina, L.I.; Sergeyev, V.G. DNA as a template for synthesis of fluorescent gold nanoclusters. Mendeleev Commun. 2023, 33, 346–348. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Luo, L.S.; Jin, R.C. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. Adv. Mater. 2023, 36, e2309073. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.C.; Gustavsson, L.; Beaune, G.; Chandra, S.; Niskanen, J.; Ruokolainen, J.; Timonen, J.V.I.; Ikkala, O.; Peng, B.; Ras, R.H.A. pH-Responsive Near-Infrared Emitting Gold Nanoclusters. Angew. Chem.-Int. Ed. 2023, 62, e202312679. [Google Scholar] [CrossRef]
- Sun, M.; Wu, L.; Ren, H.; Chen, X.; Ouyang, J.; Na, N. Radical-Mediated Spin-Transfer on Gold Nanoclusters Driven an Unexpected Luminescence for Protein Discrimination. Anal. Chem. 2017, 89, 11183–11188. [Google Scholar] [CrossRef]
- Xu, S.; Gao, T.; Feng, X.; Fan, X.; Liu, G.; Mao, Y.; Yu, X.; Lin, J.; Luo, X. Near infrared fluorescent dual ligand functionalized Au NCs based multidimensional sensor array for pattern recognition of multiple proteins and serum discrimination. Biosens. Bioelectron. 2017, 97, 203–207. [Google Scholar] [CrossRef]
- Xu, S.; Li, W.; Zhao, X.; Wu, T.; Cui, Y.; Fan, X.; Wang, W.; Luo, X. Ultrahighly Efficient and Stable Fluorescent Gold Nanoclusters Coated with Screened Peptides of Unique Sequences for Effective Protein and Serum Discrimination. Anal. Chem. 2019, 91, 13947–13952. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, B.; Wang, K.; Yan, P. Identification of proteins and bacteria based on a metal ion–gold nanocluster sensor array. Anal. Methods 2018, 10, 3939–3944. [Google Scholar] [CrossRef]
- Lu, H.; Lu, Q.; Sun, H.; Wang, Z.; Shi, X.; Ding, Y.; Ran, X.; Pei, J.; Pan, Y.; Zhang, Q. ROS-Responsive Fluorescent Sensor Array for Precise Diagnosis of Cancer via pH-Controlled Multicolor Gold Nanoclusters. ACS Appl. Mater. Interfaces 2023, 15, 38381–38390. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Cheng, P.; Zhu, X.; Xu, M.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Antimicrobial Agent Functional Gold Nanocluster-Mediated Multichannel Sensor Array for Bacteria Sensing. Langmuir 2024, 40, 2369–2376. [Google Scholar] [CrossRef]
- Li, X.; Kong, H.; Mout, R.; Saha, K.; Moyano, D.F.; Robinson, S.M.; Rana, S.; Zhang, X.; Riley, M.A.; Rotello, V.M. Rapid Identification of Bacterial Biofilms and Biofilm Wound Models Using a Multichannel Nanosensor. ACS Nano 2014, 8, 12014–12019. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Matsuda, A.; Nishinami, S.; Kurita, R.; Shiraki, K. One-Step Identification of Antibody Degradation Pathways Using Fluorescence Signatures Generated by Cross-Reactive DNA-Based Arrays. Anal. Chem. 2017, 89, 7818–7822. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Q.; Wang, L.; Zhang, B.; Lim, C.H.; Chen, Y.; Neoh, K.-G.; Kang, E.-T.; Fu, G.D. Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. Polymer 2011, 52, 2376–2383. [Google Scholar] [CrossRef]
- Suguna, S.; David, C.I.; Prabhu, J.; Nandhakumar, R. Functionalized graphene oxide materials for the fluorometric sensing of various analytes: A mini review. Mater. Adv. 2021, 2, 6197–6212. [Google Scholar] [CrossRef]
- Tao, Y.; Auguste, D.T. Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes. Biosens. Bioelectron. 2016, 81, 431–437. [Google Scholar] [CrossRef]
- Hizir, M.S.; Robertson, N.M.; Balcioglu, M.; Alp, E.; Rana, M.; Yigit, M.V. Universal sensor array for highly selective system identification using two-dimensional nanoparticles. Chem. Sci. 2017, 8, 5735–5745. [Google Scholar] [CrossRef]
- Park, J.S.; Goo, N.I.; Kim, D.E. Mechanism of DNA Adsorption and Desorption on Graphene Oxide. Langmuir 2014, 30, 12587–12595. [Google Scholar] [CrossRef]
- Lu, C.; Huang, P.J.J.; Liu, B.W.; Ying, Y.B.; Liu, J.W. Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. Langmuir 2016, 32, 10776–10783. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y.B.; Ying, Y.B.; Liu, J.W. Comparison of MoS2, WS2, and Graphene Oxide for DNA Adsorption and Sensing. Langmuir 2017, 33, 630–637. [Google Scholar] [CrossRef]
- Lu, Z.J.; Wang, P.; Xiong, W.W.; Qi, B.P.; Shi, R.J.; Xiang, D.S.; Zhai, K. Simultaneous detection of mercury (II), lead (II) and silver (I) based on fluorescently labelled aptamer probes and graphene oxide. Environ. Technol. 2021, 42, 3065–3072. [Google Scholar] [CrossRef]
- Morales-Narvaez, E.; Merkoci, A. Graphene Oxide as an Optical Biosensing Platform: A Progress Report. Adv. Mater. 2019, 31, e1805043. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Behera, P.; De, M. Nano-Graphene Oxide Based Multichannel Sensor Arrays towards Sensing of Protein Mixtures. Chem.-Asian J. 2019, 14, 553–560. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Zhang, F.R.; Du, Y.; Zhang, X.X.; Lu, J.Y.; Yao, Q.F.; Huang, W.T.; Ding, X.Z.; Xia, L.Q. Graphene-Based Steganographically Aptasensing System for Information Computing, Encryption and Hiding, Fluorescence Sensing and in Vivo Imaging of Fish Pathogens. ACS Appl. Mater. Interfaces 2019, 11, 8904–8914. [Google Scholar] [CrossRef]
- Tomita, S.; Ishihara, S.; Kurita, R. A Multi-Fluorescent DNA/Graphene Oxide Conjugate Sensor for Signature-Based Protein Discrimination. Sensors 2017, 17, 2194. [Google Scholar] [CrossRef]
- Lin, M.; Li, W.S.; Wang, Y.L.; Yang, X.H.; Wang, K.M.; Wang, Q.; Wang, P.; Chang, Y.J.; Tan, Y.Y. Discrimination of hemoglobins with subtle differences using an aptamer based sensing array. Chem. Commun. 2015, 51, 8304–8306. [Google Scholar] [CrossRef]
- Fu, M.Q.; Wang, X.C.; Dou, W.T.; Chen, G.R.; James, T.D.; Zhou, D.M.; He, X.P. Supramolecular fluorogenic peptide sensor array based on graphene oxide for the differential sensing of ebola virus. Chem. Commun. 2020, 56, 5735–5738. [Google Scholar] [CrossRef] [PubMed]
- Nandu, N.; Smith, C.W.; Uyar, T.B.; Chen, Y.S.; Kachwala, M.J.; He, M.H.; Yigit, M.V. Machine-Learning Single-Stranded DNA Nanoparticles for Bacterial Analysis. ACS Applied. Nano Mater. 2020, 3, 11709–11714. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Hu, R.; Zhou, T.; Wang, Z.; Zhang, Y.; Li, S.; Gui, C.; Jiang, M.; Qin, A.; Tang, B.Z. Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions. ACS Sens. 2018, 3, 2218–2222. [Google Scholar] [CrossRef]
- Martynenko, I.V.; Litvin, A.P.; Purcell-Milton, F.; Baranov, A.V.; Fedorov, A.V.; Gun’ko, Y.K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727. [Google Scholar] [CrossRef]
- Freire, R.M.; Le, N.D.B.; Jiang, Z.W.; Kim, C.S.; Rotello, V.M.; Fechine, P.B.A. NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. Sens. Actuators B-Chem. 2018, 255, 2725–2732. [Google Scholar] [CrossRef]
- Zheng, L.B.; Qi, P.; Zhang, D. Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized carbon dots. Sens. Actuators B-Chem. 2019, 286, 206–213. [Google Scholar] [CrossRef]
- Wang, M.; Ye, H.; You, L.; Chen, X. A Supramolecular Sensor Array Using Lanthanide-Doped Nanoparticles for Sensitive Detection of Glyphosate and Proteins. ACS Appl. Mater. Interfaces 2016, 8, 574–581. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, Y.; Wu, J.; Chen, S.; Chen, Y.Z.; Zhou, X.; Jiang, Y.; Tan, C. Fluorescence array-based sensing of metal ions using conjugated polyelectrolytes. ACS Appl. Mater. Interfaces 2015, 7, 6882–6888. [Google Scholar] [CrossRef]
- Wu, P.; Miao, L.N.; Wang, H.F.; Shao, X.G.; Yan, X.P. A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew. Chem. Int. Ed. Engl. 2011, 50, 8118–8121. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Li, B.; Li, D.; Zhang, S.; Wu, Y. Differentiation of proteins and cancer cells using metal oxide and metal nanoparticles-quantum dots sensor array. Sens. Actuators B Chem. 2017, 250, 69–75. [Google Scholar] [CrossRef]
- Chen, S.; Wei, L.; Chen, X.W.; Wang, J.H. Suspension Array of Ionic Liquid or Ionic Liquid-Quantum Dots Conjugates for the Discrimination of Proteins and Bacteria. Anal. Chem. 2015, 87, 10902–10909. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, N.; Xiao, Y.; Zhang, Y.; Tang, Z.; Zhang, M. Metal-Nanoparticle-Supported Nanozyme-Based Colorimetric Sensor Array for Precise Identification of Proteins and Oral Bacteria. ACS Appl. Mater. Interfaces 2022, 14, 11156–11166. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, Z.; Yang, Y.; Lu, N.; Tang, Z. Enhanced “Electronic Tongue” for Dental Bacterial Discrimination and Elimination Based on a DNA-Encoded Nanozyme Sensor Array. ACS Appl. Mater. Interfaces 2024, 16, 11228–11238. [Google Scholar] [CrossRef]
- Chen, H.; Guo, S.; Zhuang, Z.; Ouyang, S.; Lin, P.; Zheng, Z.; You, Y.; Zhou, X.; Li, Y.; Lu, J.; et al. Intelligent Identification of Cerebrospinal Fluid for the Diagnosis of Parkinson’s Disease. Anal. Chem. 2024, 96, 2534–2542. [Google Scholar] [CrossRef]
- Yang, J.; Lu, S.; Chen, B.; Hu, F.; Li, C.; Guo, C. Machine learning-assisted optical nano-sensor arrays in microorganism analysis. TrAC Trends Anal. Chem. 2023, 159, 116945. [Google Scholar] [CrossRef]
- Behera, P.; Singh, K.K.; Pandit, S.; Saha, D.; Saini, D.K.; De, M. Machine Learning-Assisted Array-Based Detection of Proteins in Serum Using Functionalized MoS2 Nanosheets and Green Fluorescent Protein Conjugates. ACS Appl. Nano Mater. 2021, 4, 3843–3851. [Google Scholar] [CrossRef]
- Yan, P.; Ding, Z.; Li, X.; Dong, Y.; Fu, T.; Wu, Y. Colorimetric Sensor Array Based on Wulff-Type Boronate Functionalized AgNPs at Various pH for Bacteria Identification. Anal. Chem. 2019, 91, 12134–12137. [Google Scholar] [CrossRef]
- Yang, H.M.; Jie, X.; Wang, L.; Zhang, Y.; Wang, M.; Wei, W.L. An array consisting of glycosylated quantum dots conjugated to MoS2 nanosheets for fluorometric identification and quantitation of lectins and bacteria. Microchimica Acta 2018, 185, 512. [Google Scholar] [CrossRef]
- Behera, P.; Kumar Singh, K.; Kumar Saini, D.; De, M. Rapid Discrimination of Bacterial Drug Resistivity by Array-Based Cross-Validation Using 2D MoS2. Chem.—A Eur. J. 2022, 28, e202201386. [Google Scholar] [CrossRef]
- He, Y.; He, X.; Liu, X.; Gao, L.; Cui, H. Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and its application to protein sensing arrays. Anal. Chem. 2014, 86, 12166–12171. [Google Scholar] [CrossRef]
- Pu, F.; Ran, X.; Guan, M.; Huang, Y.; Ren, J.; Qu, X. Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition. Nano Res. 2017, 11, 3213–3221. [Google Scholar] [CrossRef]
- Ran, X.; Pu, F.; Ren, J.; Qu, X. A CuS-based chemical tongue chip for pattern recognition of proteins and antibiotic-resistant bacteria. Chem. Commun. 2015, 51, 2675–2678. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Sun, Y.; Qi, P.; Wang, P.; Zhang, D. Quaternized magnetic nanoparticles-fluorescent polymer system for detection and identification of bacteria. Biosens. Bioelectron. 2014, 55, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.M.; Bisetty, K. A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays. Adv. Eng. Mater. 2017, 19, 1700270. [Google Scholar] [CrossRef]
- Geng, Y.; Peveler, W.J.; Rotello, V.M. Array-based “Chemical Nose” Sensing in Diagnostics and Drug Discovery. Angew. Chem.-Int. Ed. 2019, 58, 5190–5200. [Google Scholar] [CrossRef]
- Medrano-Lopez, J.A.; Villalpando, I.; Salazar, M.I.; Torres-Torres, C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. Biosensors 2024, 14, 108. [Google Scholar] [CrossRef]
- Behera, P.; De, M.M. Surface-Engineered Nanomaterials for Optical Array Based Sensing. Chempluschem 2023, e202300610. [Google Scholar] [CrossRef]
Nanomaterials | Biological Interaction | Optical Signal |
---|---|---|
AuNPs | Competitive adsorption, Au-S modification | fluorescence quenching, Colorimetric signal due to aggregation |
Graphene oxide (GO) | Competitive adsorption, Modification through -COOH | fluorescence quenching |
QDs | Bind nonspecifically via electrostatic interactions | Fluorescence emission with different lengths and high quantum yield |
Year | Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis |
---|---|
2007 | Rotello’s group developed a sensor array consisting of six non-covalent gold nanoparticle-fluorescent polymer conjugates for identification and quantitative differentiation of proteins [65] |
2010 | Rotello and co-workers developed enzyme-amplified array sensing (EAAS) with NPs to dramatically increase the sensitivity for protein identification [38] |
2012 | Rotello and co-workers also achieved colorimetric differentiation of proteins with catalytically active NPs used for both recognition and signal transduction/amplification [66] |
2012 | Rotello and co-workers also developed gold-nanoparticle green-fluorescent protein (NP−GFP)-based sensor arrays for the identification of mammalian cell types and cancer states [67] |
2012 | Dravid, Chou, and De developed nanoscale graphene oxide (nGO) as artificial receptors for array-based protein identification [68] |
2012 | Fan, Hu, and co-workers employed the combination of fluorescently labeled adaptive “ensemble aptamers” (ENSaptamers) and nGOs for high-precision identification of a wide range of bioanalytes, including proteins, cells, and bacteria [69] |
2014 | Ouyang and co-workers have synthesized novel blue-emitting ColAu NCs and Mac-Au NCs for discriminating proteins [70] |
2014 | Qu and Ren utilized a sensing array composed of seven luminescent nanodots, combined with graphene oxide, for protein recognition [71] |
2015 | He and Chang constructed an array-based protein discrimination system by using eight Au NDs as efficient protein receptors and competent signal transducers [72] |
2016 | Zhang and Tang develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins [73] |
2017 | Shi and Wu employed a colorimetric sensor array consisting of four gold nanoparticles (AuNPs) with diverse surface properties for the rapid identification of microorganisms [74] |
2018 | Pu, Ren and Qu developed a sensitive and effective method for pattern recognition of proteins using nanozyme (g-C3N4) as a receptor [75] |
2022 | Li and Han utilized five fluorescent positively charged polymers (P1–P5) and negatively charged graphene oxide (GO) for differentiating between different proteins [76] |
2022 | Huang, Han and Li utilized three modified polyethyleneimine and negatively charged graphene oxide for differentiating different bacteria [77] |
2023 | Tian and Wu utilized silver nanoparticles for differentiating proteins in various osmolyte solutions [78] |
2024 | Yang employed DBCO-UCNPs for the differentiation of different pathogens in terms of phenotyping classification and antibiotic resistance identification [34] |
Nanomaterials | Strategies | Numbers of ARs | Signals | Data Analysis Methods | Analytes | LOD | Ref. |
---|---|---|---|---|---|---|---|
AuNPs | Competitive binding between nanoparticle-polymer complexes and cells | 3 | Fluorescence | LDA | Cells | n.a. | [90] |
AuNPs | Competitive binding between NP-GFP complexes and cells | 6 | Fluorescence | LDA | Cells | 5000 cells | [91] |
AuNPs | Proteins displace β-Gal from the β-Gal/AuNP complex to restore its catalytic activity towards the fluorogenic substrate | 6 | Fluorescence | LDA | Proteins | 1 nM | [38] |
AuNPs | Competitive binding between GFP and analytes to the particle surface | 8 | Fluorescence | LDA | Cells, tissues | 200 ng/1000 cells | [67] |
AuNPs | Different aggregation behaviors and color changes when the aptamer-protected AuNPs mixed with proteins | 3 | Absorbance | LDA | Proteins | n.a. | [126] |
AuNPs | Competitive interactions between bacterial species and the cationic AuNPs, | 1 | Fluorescence | LDA | Bacteria | n.a. | [149] |
Col-Au NCs and Mac-Au NCs | Different interactions between proteins and the Au NCs surface | 2 | Fluorescence | LDA | Proteins | n.a. | [150] |
AuNPs | Differential interactions between DNA-AuNPs and cells result in distinct Au growth reactions | 6 | Absorbance | LDA | Cells | n.a. | [129] |
AuNPs | Competitive binding between DNA and proteins from the surface of AuNPs | 3 | Fluorescence, Absorbance | LDA, HCA | Proteins | 50 nM | [127] |
AuNDs | Differential interactions of proteins with AuNDs | 8 | Fluorescence | LDA, HCA | Proteins | n.a. | [72] |
AuNPs | Competitive binding between the fluorescent proteins and the cell lysate analytes to BenzNPs | 1 | Fluorescence | LDA, HCA | Cells | 1000 cells | [92] |
AuNPs | Differential interactions of microorganisms and AuNPs caused aggregation of four sensing elements at different degrees | 4 | Absorbance | LDA | Microorganisms | n.a. | [28] |
AuNCs | Differential interactions between free proteins and capping proteins on Au NCs | 5 | Phosphorescence | LDA, HCA | Proteins | n.a. | [143] |
AuNPs | Different proteins triggered the DNA-protected AuNPs to exhibit different aggregation behaviors caused various solution color change | 2 | Absorbance | LDA, HCA | Proteins | 50 nM | [128] |
AuNCs | Differential binding between proteins and AuNCs resulting in the fluorescence change of AuNCs | 6 | Fluorescence | LDA | Proteins, serum | 10 nM | [144] |
AuNCs | Differential interactions between the protein and the metal ion-AuNCs | 6 | Fluorescence | LDA | Proteins, bacteria | n.a. | [146] |
AuNPs | Aggregation of AuNPs induced by the differential metabolic capabilities of bacteria towards D-amino acids (D-AAs) | 3 | Absorbance | LDA, HCA | Bacteria | n.a. | [130] |
AuNCs | Different oxidation of AuNCs@His by ROS | 3 | Fluorescence | PCA, HCA | Cells | n.a. | [147] |
AuNCs | Fluorescence intensity of AuNCs was quenched to varying degrees by the bacteria | 3 | Fluorescence | LDA, HCA | Bacteria | 105 CFU/mL | [148] |
Nanomaterials | Strategies | Numbers of ARs | Signals | Data Analysis Methods | Analytes | LOD | Ref. |
---|---|---|---|---|---|---|---|
nGO | Proteins displace fluorophores from the nGO surface through binding competition | 5 | Fluorescence | LDA | Proteins | 10 nM | [68] |
nGO | Competitive binding between ssDNA-nGO complexes and analytes | 7 | Fluorescence | LDA | Proteins, cells and bacteria | 5 μM | [69] |
GQDs, QDs, CDs-COOH, PEI-CDs, BSA-AuNCs, Lys-AuNCs, AgNCs and GO | Competitive binding between luminescent nanodots and analytes to GO surfaces | 7 | Fluorescence | LDA | Proteins, bacteria | n.a. | [71] |
GQDs-COOH, GQDs-NH2, PEI-CDs, QDs, BSA-AuNCs, Lys-AuNCs and GO | Competitive binding between luminescent nanodots and cells to GO surfaces | 6 | Fluorescence | LDA | Cells | 200 cells | [153] |
GO | Competitive interaction among GO, AIEgen and biomolecules | 7 | Fluorescence | PCA | Microbes | n.a. | [167] |
GO | Competitive interaction among GO, fluorescent polymers and proteins | 5 | Fluorescence | LDA | Proteins | n.a. | [76] |
GO | Competitive binding between bacteria and GO with fluorescent PEIs | 1 | Fluorescence | LDA | Bacteria | OD600 = 0.125 | [77] |
Nanomaterials | Strategies | Numbers of ARs | Signals | Data Analysis Methods | Analytes | LOD | Ref. |
---|---|---|---|---|---|---|---|
Mn–ZnS QDs | Different interactions of Mn–ZnS QDs with proteins | 1 | Fluorescence phosphorescence light scattering | PCA | Proteins | 0.5 µM | [173] |
QDs | Differential competitive and selective non-covalent interactions between nanoparticles and cell surface | 2 | Fluorescence | LDA | Cells | 10,000 cells | [100] |
CdTe QDs | Differential interactions between analytes and IL@CdTe QDs | 5 | Fluorescence | LDA | Proteins, bacteria | 10 nM | [175] |
CuO NPs, ZnO NPs, Eu2O3 NPs, AuNPs, AgNPs, Au-Ag core-shell and CdSe QDs | Protein presence disrupts nanoparticle-QD interactions, resulting in fluorescence turn on or further quenching | 6 | Fluorescence | LDA | Proteins, cells | 5 µM | [174] |
Nanomaterials | Strategies | Numbers of ARs | Signals | Data Analysis Methods | Analytes | LOD | Ref. |
---|---|---|---|---|---|---|---|
Fe3O4 NPs | Differential interactions of proteins with Fe3O4 NPs affected the accessibility of ABTS to the NP surface | 2 | Fluorescence | LDA | Proteins | 50 nM | [66] |
AgNPs | Different adsorption capacity of proteins onto luminol-AgNPs affected the accessibility of H2O2 to the NPs surface | 1 | Chemiluminescence | PCA | Proteins | n.a. | [184] |
Quaternized magnetic nanoparticles (q-MNP) | Competitive binding between fluorescent polymer and bacteria to GO surfaces q-MNP | 3 | Fluorescence | LDA | Bacteria | n.a. | [187] |
CuS NPs | Competitive binding between analytes and fluorescent dyes towards CuS NPs | 4 | Fluorescence | PCA | Proteins, bacteria | n.a. | [186] |
AgNPs | The diversity in structure and properties of various proteins results in different effects on the synthesis of AgNPs under light irradiation, leading to AgNPs with distinct LSPR absorption spectra | 3 | Absorbance | PCA | Proteins | n.a. | [185] |
DBCO-UCNPs | Different bacteria exhibit differences in metabolic capability, sensitivity to antibiotics, and surface properties and thus lead to discriminative responses | 6 | Fluorescence | PCA, HCA, LDA | Bacteria | 105 CFU/mL | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wen, Y.; Li, L.; Yang, X.; Li, W.; Cao, M.; Tao, Q.; Sun, X.; Liu, G. Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. Biosensors 2024, 14, 170. https://doi.org/10.3390/bios14040170
Wang L, Wen Y, Li L, Yang X, Li W, Cao M, Tao Q, Sun X, Liu G. Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. Biosensors. 2024; 14(4):170. https://doi.org/10.3390/bios14040170
Chicago/Turabian StyleWang, Lele, Yanli Wen, Lanying Li, Xue Yang, Wen Li, Meixia Cao, Qing Tao, Xiaoguang Sun, and Gang Liu. 2024. "Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis" Biosensors 14, no. 4: 170. https://doi.org/10.3390/bios14040170
APA StyleWang, L., Wen, Y., Li, L., Yang, X., Li, W., Cao, M., Tao, Q., Sun, X., & Liu, G. (2024). Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. Biosensors, 14(4), 170. https://doi.org/10.3390/bios14040170