Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Instruments
2.3. Design and Fabrication of the pCBAA-μPAD
2.4. Synthesis of Chitosan-Stabilized Silver Nanoparticles
2.5. Simultaneous Colorimetric Detection of Glucose, Free Amino Acids, and Vitamin C
2.6. Sample Preparation
3. Results
3.1. FT-IR and XPS Analysis
3.2. Properties Characterization of pCBAA-μPAD
3.3. Detection of Glucose
3.4. Detection of Free Amino Acids
3.5. Detection of Vitamin C
3.6. Real Samples Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sui Kiat, C.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects-a comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar]
- Ho, K.; Ferruzzi, M.G.; Wightman, J.D. Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Nutr. Rev. 2020, 78, 145–174. [Google Scholar] [CrossRef] [PubMed]
- Mason-D’Croz, D.; Bogard, J.R.; Sulser, T.B.; Cenacchi, N.; Dunston, S.; Herrero, M.; Wiebe, K. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: An integrated modelling study. Lancet Planet. Health 2019, 3, E318–E329. [Google Scholar] [CrossRef]
- Gu, Y.X.; He, Y.S.; Ali, S.H.; Harper, K.; Dong, H.J.; Gittelsohn, J. Fruit and vegetable intake and all-cause mortality in a Chinese population: The China health and nutrition survey. Int. J. Environ. Res. Public Health 2021, 18, 342. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Yu, H.J.; Liu, M.W.; Tang, B.W.; Zhang, J.; Gasevic, D.; Larsson, S.C.; He, Q.Q. Fat intake and hypertension among adults in China: The modifying effects of fruit and vegetable intake. Am. J. Prev. Med. 2020, 58, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Sheu, S.C.; Chen, C.W.; Huang, S.C.; Li, B.R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 11. [Google Scholar] [CrossRef]
- Lutt, N.; Brunkard, J.O. Amino acid signaling for TOR in eukaryotes: Sensors, transducers, and a sustainable agricultural fuTORe. Biomolecules 2022, 12, 387. [Google Scholar] [CrossRef]
- Shen, S.; Du, L.N.; Hu, X.B. Determiination of vitamin C in hordeum vulgare L. Seedling powder by HPLC. Fresenius Environ. Bull. 2020, 29, 7832–7839. [Google Scholar]
- Serafim, J.A.; Silveira, R.F.; Vicente, E.F. Fast determination of short-chain fatty acids and glucose simultaneously by ultraviolet/visible and refraction index detectors via high-performance liquid chromatography. Food Anal. Meth. 2021, 14, 1387–1393. [Google Scholar] [CrossRef]
- Guelpa, A.; Marini, F.; du Plessis, A.; Slabbert, R.; Manley, M. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control 2017, 73, 1388–1396. [Google Scholar] [CrossRef]
- Li, L.; Hu, D.Y.; Tang, T.Y.; Tang, Y.L. Non-destructive detection of the quality attributes of fruits by visible-near infrared spectroscopy. J. Food Meas. Charact. 2023, 17, 1526–1534. [Google Scholar] [CrossRef]
- del Barrio, M.; Cases, R.; Cebolla, V.; Hirsch, T.; de Marcos, S.; Wilhelm, S.; Galban, J. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase. Talanta 2016, 160, 586–591. [Google Scholar] [CrossRef]
- Du, R.R.; Yang, D.T.; Jiang, G.J.; Song, Y.R.; Yin, X.Q. An approach for in situ rapid detection of deep-sea aromatic amino acids using laser-induced fluorescence. Sensors 2020, 20, 1330. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.J.; Chen, X.G.; Liu, D.; Wu, C.Y.; Liu, M.L.; Li, H.T.; Zhang, Y.Y.; Yao, S.Z. A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system. Microchim. Acta 2019, 186, 8. [Google Scholar] [CrossRef] [PubMed]
- Asanica, A.C.; Catana, L.; Catana, M.; Burnete, A.G.; Lazar, M.A.; Belc, N.; Sanmartin, A.M. Internal validation of the methods for determination of water-soluble vitamins from frozen fruits by HPLC-HRMS. Rom. Biotech. Lett. 2019, 24, 1000–1007. [Google Scholar] [CrossRef]
- Harada, M.; Karakawa, S.; Yamada, N.; Miyano, H.; Shimbo, K. Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1593, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.Z.; Shen, H.C.; Deng, K.Y.; Zhang, H.M.; Yang, C.Y. Microfluidic devices with simplified signal readout. Sens. Actuator B-Chem. 2021, 339, 14. [Google Scholar] [CrossRef]
- Wu, K.M.; He, X.L.; Wang, J.L.; Pan, T.; He, R.; Kong, F.Z.; Cao, Z.M.; Ju, F.Y.; Huang, Z.; Nie, L.B. Recent progress of microfluidic chips in immunoassay. Front. Bioeng. Biotechnol. 2022, 10, 16. [Google Scholar] [CrossRef]
- Cui, P.; Wang, S.C. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019, 9, 238–247. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef]
- Wen, G.; Guo, Z.G. A paper-making transformation: From cellulose-based superwetting paper to biomimetic multifunctional inorganic paper. J. Mater. Chem. A 2020, 8, 20238–20259. [Google Scholar] [CrossRef]
- Andini; Andayani, U.; Anneke; Sari, M.I.; Sabarudin, A. IOP Printed Low-Cost Microfluidic Paper-based Analytical Devices for Quantitative Detection of Vitamin C in Fruits. In Proceedings of the 9th Annual Basic Science International Conference (BaSIC)—Recent Advances in Basic Sciences Toward 4.0 Industrial Revolution, Malang, Indonesia, 20–21 March 2019. [Google Scholar]
- Aksorn, J.; Teepoo, S. Development of the simultaneous colorimetric enzymatic detection of sucrose, fructose and glucose using a microfluidic paper-based analytical device. Talanta 2020, 207, 8. [Google Scholar] [CrossRef] [PubMed]
- Kaewchuay, N.; Jantra, J.; Khettalat, C.; Ketnok, S.; Peungpra, N.; Teepoo, S. On-site microfluidic paper- based titration device for rapid semi-quantitative vitamin C content in beverages. Microchem. J. 2021, 164, 8. [Google Scholar] [CrossRef]
- Prasad, A.; Tran, T.; Gartia, M.R. Multiplexed paper microfluidics for titration and detection of ingredients in beverages. Sensors 2019, 19, 1286. [Google Scholar] [CrossRef] [PubMed]
- Laschewsky, A.; Rosenhahn, A. Molecular design of zwitterionic polymer interfaces: Searching for the difference. Langmuir 2019, 35, 1056–1071. [Google Scholar] [CrossRef] [PubMed]
- Li, D.X.; Wei, Q.L.; Wu, C.X.; Zhang, X.F.; Xue, Q.H.; Zheng, T.R.; Cao, M.W. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv. Colloid Interface Sci. 2020, 278, 18. [Google Scholar] [CrossRef]
- Wang, S.Y.; Fang, L.F.; Matsuyama, H. Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking. J. Membr. Sci. 2020, 597, 9. [Google Scholar] [CrossRef]
- Fu, F.F.; Wang, J.L.; Tan, Y.R.; Yu, J. Super-hydrophilic zwitterionic polymer surface modification facilitates liquid transportation of microfluidic sweat sensors. Macromol. Rapid Commun. 2022, 43, 8. [Google Scholar] [CrossRef]
- Huang, H.Z.; Yuan, Q.; Yang, X.R. Preparation and characterization of metal-chitosan nanocomposites. Colloid Surf. B Biointerfaces 2004, 39, 31–37. [Google Scholar] [CrossRef]
- Liu, P.S.; Chen, Q.; Liu, X.; Yuan, B.; Wu, S.S.; Shen, J.; Lin, S.C. Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 2009, 10, 2809–2816. [Google Scholar] [CrossRef]
- Xu, M.; Ji, F.; Qin, Z.H.; Dong, D.Y.; Tian, X.L.; Niu, R.; Sun, D.; Yao, F.L.; Li, J.J. Biomimetic mineralization of a hydroxyapatite crystal in the presence of a zwitterionic polymer. Crystengcomm 2018, 20, 2374–2383. [Google Scholar] [CrossRef]
- Wu, R.J.; Li, L.; Dong, G.L.; Qin, Y.Q.; Li, M.W.; Hao, H. Fabrication and characterization of zwitterionic coatings with anti-oil and anti-biofouling activities. J. Macromol. Sci. Part B Phys. 2022, 61, 825–843. [Google Scholar] [CrossRef]
- Shen, X.; Liu, T.; Xia, S.B.; Liu, J.J.; Liu, P.; Cheng, F.X.; He, C.X. Polyzwitterions grafted onto polyacrylonitrile membranes by Thiol- Ene click chemistry for oil/water separation. Ind. Eng. Chem. Res. 2020, 59, 20382–20393. [Google Scholar] [CrossRef]
- Elgamouz, A.; Kawde, A.; Alharthi, S.S.; Laghoub, M.; Miqlid, D.; Nassab, C.; Bajou, K.; Patole, S.P. Cinnamon extract’s phytochemicals stabilized Ag nanoclusters as nanozymes “peroxidase and xanthine oxidase mimetic” for simultaneous colorimetric sensing of H2O2 and xanthine. Colloid Surf. A Physicochem. Eng. Asp. 2022, 647, 10. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, C.; Ma, R.F.; Xu, Z.R.; Ozaki, Y. In situ SERS monitoring of intracellular H2O2 in single living cells based on label-free bifunctional Fe3O4@Ag nanoparticles. Analyst 2022, 147, 1815–1823. [Google Scholar] [CrossRef]
- Laudenslager, M.J.; Schiffman, J.D.; Schauer, C.L. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 2008, 9, 2682–2685. [Google Scholar] [CrossRef]
- Shen, X.L.; Wu, J.M.; Chen, Y.H.; Zhao, G.H. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll. 2010, 24, 285–290. [Google Scholar] [CrossRef]
- Pilicer, S.L.; Wolf, C. Ninhydrin revisited: Quantitative chirality recognition of amines and amino alcohols based on nondestructive dynamic covalent chemistry. J. Org. Chem. 2020, 85, 11560–11565. [Google Scholar] [CrossRef]
- Rukmini, N.; Kavitha, V.S.; Devendra Vijaya, K. Determination of ascorbic acid with ferricyanide. Talanta 1981, 28, 332–333. [Google Scholar] [CrossRef]
- Filiz, B.C.; Elalmis, Y.B.; Bektas, I.S.; Figen, A.K. Fabrication of stable electrospun blended chitosan-poly(vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. Int. J. Biol. Macromol. 2021, 192, 999–1012. [Google Scholar] [CrossRef]
- Georgelis, N.; Fencil, K.; Richael, C.M. Validation of a rapid and sensitive HPLC/MS method for measuring sucrose, fructose and glucose in plant tissues. Food Chem. 2018, 262, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.H.; Wang, H.; Xie, J.P.; Su, Y. Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract: Comparison of HPLC-ELSD, LC-ESI-MS/MS and GC-MS. Chem. Cent. J. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Naik, W.; Kumar, D.; Singh, D.; Dewangan, K.; Kant, T.; Yadav, S.; Tikeshwari; Jaiswal, N. Experimental and theoretical investigations for selective colorimetric recognition and determination of arginine and histidine in vegetable and fruit samples using bare-AgNPs. Microchem. J. 2021, 160, 9. [Google Scholar] [CrossRef]
- Yang, Q.M.; Xie, C.; Luo, K.; Tan, L.B.; Peng, L.P.; Zhou, L.Y. Rational construction of a new water soluble turn-on colorimetric and NIR fluorescent sensor for high selective Sec detection in Se-enriched foods and biosystems. Food Chem. 2022, 394, 8. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.W.; Yang, F.; Dong, Q.; Wang, H.L.; Hu, N. Rapid determination of amino acids of nitraria tangutorum Bobr. from the Qinghai-tibet Plateau using HPLC-FLD-MS/MS and a highly selective and sensitive pre-column derivatization method. Molecules 2019, 24, 1665. [Google Scholar] [CrossRef] [PubMed]
- Patle, T.K.; Shrivas, K.; Patle, A.; Patel, S.; Harmukh, N.; Kumar, A. Simultaneous determination of B1, B3, B6 and C vitamins in green leafy vegetables using reverse phase-high performance liquid chromatography. Microchem. J. 2022, 176, 7. [Google Scholar]
- Yu, M.Q.; Wen, R.Z.; Jiang, L.; Huang, S.; Fang, Z.F.; Chen, B.; Wang, L.P. Rapid analysis of benzoic acid and vitamin C in beverages by paper spray mass spectrometry. Food Chem. 2018, 268, 411–415. [Google Scholar] [CrossRef]
- Bakhsh, H.; Palabiyik, I.M.; Oad, R.K.; Qambrani, N.; Buledi, J.A.; Solangi, A.R.; Sherazi, S.T.H. SnO2 nanostructure based electroanalytical approach for simultaneous monitoring of vitamin C and vitamin B6 in pharmaceuticals. J. Electroanal. Chem. 2022, 910, 8. [Google Scholar] [CrossRef]
- Rodriguez-Emmenegger, C.; Houska, M.; Alles, A.B.; Brynda, E. Surfaces resistant to fouling from biological fluids: Towards bioactive surfaces for real applications. Macromol. Biosci. 2012, 12, 1413–1422. [Google Scholar] [CrossRef]
- Rodriguez-Emmenegger, C.; Schmidt, B.; Sedlakova, Z.; Subr, V.; Alles, A.B.; Brynda, E.; Barner-Kowollik, C. Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights. Macromol. Rapid Commun. 2011, 32, 958–965. [Google Scholar] [CrossRef]
Samples | Glucose (mg/100 g) | RSD (%) (n = 3) | ||
---|---|---|---|---|
μPAD | UV–vis Spectrum | μPAD | UV–vis Spectrum | |
Yellow peach | 762.284 | 756.668 | 2.6 | 2.5 |
Xinyi peach | 646.173 | 640.763 | 2.1 | 3.0 |
Longquan peach | 928.909 | 950.763 | 3.1 | 3.1 |
Yangshan peach | 752.196 | 719.653 | 3.9 | 2.5 |
Jasmine grapes | 1053.776 | 996.987 | 2.6 | 2.9 |
Sunshine grapes | 1383.334 | 1406.763 | 2.9 | 2.5 |
Kiwi fruit | 1574.912 | 1489.866 | 3.5 | 2.9 |
Litchi | 1077.419 | 1165.763 | 3.1 | 2.3 |
Sugar pear | 1083.361 | 1134.862 | 2.9 | 2.5 |
Crown pear | 1115.616 | 1198.765 | 2.9 | 3.1 |
Su Crisp pear | 1016.362 | 1068.762 | 2.2 | 2.9 |
Mangosteen | 1094.019 | 999.605 | 2.1 | 2.4 |
Longan | 1051.619 | 1110.384 | 3.2 | 3.1 |
Samples | Amino Acids (mg/100 g) | RSD (%) (n = 3) | ||
---|---|---|---|---|
μPAD | UV–vis Spectrum | μPAD | UV–vis Spectrum | |
Yellow peach | 165.217 | 178.753 | 2.9 | 3.4 |
Xinyi peach | 41.425 | 32.7527 | 4.5 | 2.9 |
Longquan peach | 133.072 | 148.763 | 3.9 | 4.2 |
Yangshan peach | 120.271 | 110.763 | 2.9 | 2.7 |
Jasmine grapes | 144.995 | 136.7652 | 2.4 | 3.8 |
Sunshine grapes | 147.597 | 156.7573 | 3.5 | 2.7 |
Kiwi fruit | 51.811 | 67.753 | 4.3 | 3.5 |
Litchi | 357.854 | 329.7653 | 3.8 | 2.3 |
Sugar pear | 82.969 | 73.762 | 2.5 | 2.6 |
Crown pear | 82.969 | 72.656 | 3.4 | 4.1 |
Su Crisp pear | 93.355 | 86.767 | 4.2 | 4.3 |
Mangosteen | 117.103 | 126.763 | 3.7 | 2.9 |
Longan | 530.310 | 553.763 | 3.9 | 3.7 |
Samples | Vitamin C (mg/100 g) | RSD (%) (n = 3) | ||
---|---|---|---|---|
μPAD | UV–vis Spectrum | μPAD | UV–vis Spectrum | |
Yellow peach | 24.810 | 20.876 | 3.5 | 2.7 |
Xinyi peach | 101.035 | 92.878 | 4.2 | 3.8 |
Longquan peach | 15.451 | 20.863 | 2.6 | 3.5 |
Yangshan peach | 44.363 | 55.864 | 3.8 | 3.2 |
Jasmine grapes | 24.6115 | 35.763 | 4.1 | 3.1 |
Sunshine grapes | 7.608 | 12.733 | 2.6 | 2.3 |
Kiwi fruit | 162.976 | 173.763 | 4.3 | 2.6 |
Litchi | 119.783 | 126.733 | 2.5 | 2.4 |
Sugar pear | 6.386 | 16.733 | 4.2 | 2.8 |
Crown pear | 13.481 | 18.873 | 3.5 | 3.1 |
Su Crisp pear | 17.147 | 25.763 | 3.6 | 4.0 |
Mangosteen | 27.532 | 25.863 | 2.9 | 2.5 |
Longan | 109.637 | 120.863 | 3.8 | 2.8 |
Method | Target | LOD | Characteristic | Path | Ref. |
---|---|---|---|---|---|
UV spectrophotometry | Glucose | 2.70 mM | Strong stability, insufficient accuracy | CS/PVA | [41] |
HPLC/MS | 0.10 ng | High accuracy, complex operation | - | [42] | |
HPLC-ELSD | 1.03 μg/mL | Good repeatability, moderate sensitivity | - | [43] | |
LC–ESI–MS/MS | 0.01 μg/mL | High sensitivity, high accuracy | |||
GC–MS | 0.65 μg/mL | Moderate accuracy, qualitative analysis | |||
UV spectrophotometry | Amino acids | 0.15 μM | Strong stability, insufficient accuracy | AgNPs | [44] |
NIR | 52 nM | High sensitivity, simple operation. | - | [45] | |
HPLC-FLD-MS/MS | 0.13–1.13 nM | High sensitivity, expensive instrument | - | [46] | |
RP-HPLC | Vitamin C | 0.1 μg/mL | High accuracy, complex operation | DAD | [47] |
PS-MS | 0.3 μg/mL | Moderate accuracy, short duration. | - | [48] | |
Electroanalysis | 0.067 μM | High accuracy, high sensitivity | SO2NPs | [49] | |
pCBAA-μPAD | Three analytes | 0.049/0.236/0.125 mM | High accuracy, portable, simple operation | Paper sensor | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Zhao, C.; Zhao, Y.; Zhu, Y. Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide). Biosensors 2023, 13, 1001. https://doi.org/10.3390/bios13121001
Yin X, Zhao C, Zhao Y, Zhu Y. Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide). Biosensors. 2023; 13(12):1001. https://doi.org/10.3390/bios13121001
Chicago/Turabian StyleYin, Xinru, Cheng Zhao, Yong Zhao, and Yongheng Zhu. 2023. "Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide)" Biosensors 13, no. 12: 1001. https://doi.org/10.3390/bios13121001
APA StyleYin, X., Zhao, C., Zhao, Y., & Zhu, Y. (2023). Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide). Biosensors, 13(12), 1001. https://doi.org/10.3390/bios13121001