Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection
Abstract
:1. Introduction
2. Experiments
2.1. Synthesis of Zr-LMOFs
2.2. Synthesis of Zr-LMOF/Eu
2.3. Fluorescence Assays
3. Results and Discussion
3.1. Characterization of Zr-LMOFs
3.2. Morphology-Dependent Fluorescent Response of Zr-LMOFs toward AFB1
3.3. Mechanism for AFB1 Detection by Zr-LMOF
3.4. Radiometric Fluorescence Detection of AFB1 by Zr-LMOF/Eu
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, Z.B.; Chang, G.G.; Xing, H.B.; Krishna, R.; Ren, Q.L.; Chen, B.L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 2016, 9, 3612–3641. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H.; Llabrés i Xamena, F. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef]
- He, Y.B.; Zhou, W.; Krishna, R.; Chen, B.L. Microporous metal-organic frameworks for storage and separation of small hydrocarbons. Chem. Commun. 2012, 48, 11813–11831. [Google Scholar] [CrossRef]
- Xu, Y.X.; Li, Q.; Xue, H.G.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318. [Google Scholar] [CrossRef]
- Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386–3401. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, C.; Liu, R.; Niu, X.; Xiong, D.; Wang, K.; Yin, D.; Zhang, Z. Biomimic nanozymes with tunable peroxidase-like activity based on the confinement effect of metal-organic frameworks (MOFs) for biosensing. Anal. Chem. 2022, 94, 4821–4830. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Zhang, Z.; Shen, Y.; Li, Y.; Ma, T.; Zhang, Q.; Ying, Y.; Fu, Y. Portable and durable sensor based on porous MOFs hybrid sponge for fluorescent-visual detection of organophosphorus pesticide. Biosens. Bioelectron. 2022, 216, 114659. [Google Scholar] [CrossRef]
- He, K.; Li, Z.; Wang, L.; Fu, Y.; Quan, H.; Li, Y.; Wang, X.; Gunasekaran, S.; Xu, X. A Water-Stable Luminescent Metal-Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2019, 11, 26250–26260. [Google Scholar] [CrossRef]
- Amiripour, F.; Ghasemi, S.; Azizi, S.N. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem. 2021, 347, 129034. [Google Scholar] [CrossRef]
- Wei, D.; Li, M.; Wang, Y.; Zhu, N.; Hu, X.; Zhao, B.; Zhang, Z.; Yin, D. Encapsulating gold nanoclusters into metal-organic frameworks to boost luminescence for sensitive detection of copper ions and organophosphorus pesticides. J. Hazard. Mater. 2023, 441, 129890. [Google Scholar] [CrossRef]
- Zeng, X.; Hu, J.; Zhang, M.; Wang, F.; Wu, L.; Hou, X. Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone. Anal. Chem. 2019, 92, 2097–2102. [Google Scholar] [CrossRef]
- Che, H.; Li, Y.; Tian, X.; Yang, C.; Lu, L.; Nie, Y. A versatile logic detector and fluorescent film based on Eu-based MOF for swift detection of formaldehyde in solutions and gas phase. J. Hazard. Mater. 2021, 410, 124624. [Google Scholar] [CrossRef]
- Wang, X.-N.; Li, J.-L.; Zhao, Y.-M.; Pang, J.; Li, B.; Zhang, T.-L.; Zhou, H.-C. Structural tuning of zinc-porphyrin frameworks via auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chem. Commun. 2019, 55, 6527–6530. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Wang, L.; Xie, Z. Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. J. Mater. Chem. B 2021, 9, 7760–7770. [Google Scholar] [CrossRef]
- Zha, X.; Yang, W.; Shi, L.; Li, Y.; Zeng, Q.; Xu, J.; Yang, Y. Morphology control strategy of bimetallic MOF nanosheets for upgrading the sensitivity of noninvasive glucose detection. ACS Appl. Mater. Interfaces 2022, 14, 37843–37852. [Google Scholar] [CrossRef]
- Gole, B.; Bar, A.K.; Mukherjee, P.S. Multicomponent Assembly of Fluorescent-Tag Functionalized Ligands in Metal-Organic Frameworks for Sensing Explosives. Chem.-A Eur. J. 2014, 20, 13321–13336. [Google Scholar] [CrossRef]
- Liu, J.; Ye, Y.; Sun, X.; Liu, B.; Li, G.; Liang, Z.; Liu, Y. A multifunctional Zr (iv)-based metal-organic framework for highly efficient elimination of Cr (vi) from the aqueous phase. J. Mater. Chem. A 2019, 7, 16833–16841. [Google Scholar] [CrossRef]
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef]
- Hwang, J.; Yan, R.; Oschatz, M.; Schmidt, B.V. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. J. Mater. Chem. A 2018, 6, 23521–23530. [Google Scholar] [CrossRef]
- Biswas, S.; Chen, Y.; Xie, Y.; Sun, X.; Wang, Y. Ultrasmall Au (0) inserted hollow PCN-222 MOF for the high-sensitive detection of estradiol. Anal. Chem. 2020, 92, 4566–4572. [Google Scholar] [CrossRef]
- Hayat, A.; Shaishta, N.; Mane, S.K.B.; Khan, J.; Hayat, A. Rational Ionothermal copolymerization of TCNQ with PCN semiconductor for enhanced Photocatalytic full water splitting. ACS Appl. Mater. Interfaces 2019, 11, 46756–46766. [Google Scholar] [CrossRef]
- Zhang, G.-Y.; Zhuang, Y.-H.; Shan, D.; Su, G.-F.; Cosnier, S.; Zhang, X.-J. Zirconium-based porphyrinic metal-organic framework (PCN-222): Enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal. Chem. 2016, 88, 11207–11212. [Google Scholar] [CrossRef]
- Li, P.; Luo, L.; Cheng, D.; Sun, Y.; Zhang, Y.; Liu, M.; Yao, S. Regulation of the Structure of Zirconium-Based Porphyrinic Metal-Organic Framework as Highly Electrochemiluminescence Sensing Platform for Thrombin. Anal. Chem. 2022, 94, 5707–5714. [Google Scholar] [CrossRef]
- Yang, X.; Bonnett, B.L.; Spiering, G.A.; Cornell, H.D.; Gibbons, B.J.; Moore, R.B.; Foster, E.J.; Morris, A.J. Understanding the Mechanical Reinforcement of Metal-Organic Framework-Polymer Composites: The Effect of Aspect Ratio. ACS Appl. Mater. Interfaces 2021, 13, 51894–51905. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- He, T.; Zhang, Y.-Z.; Kong, X.-J.; Yu, J.; Lv, X.-L.; Wu, Y.; Guo, Z.-J.; Li, J.-R. Zr (IV)-based metal-organic framework with T-shaped ligand: Unique structure, high stability, selective detection, and rapid adsorption of Cr2O72– in water. ACS Appl. Mater. Interfaces 2018, 10, 16650–16659. [Google Scholar] [CrossRef]
- Wu, K.; Zheng, J.; Huang, Y.-L.; Luo, D.; Li, Y.Y.; Lu, W.; Li, D. Cr2O72– inside Zr/Hf-based metal-organic frameworks: Highly sensitive and selective detection and crystallographic evidence. J. Mater. Chem. C 2020, 8, 16974–16983. [Google Scholar] [CrossRef]
- Xu, M.-M.; Kong, X.-J.; He, T.; Wu, X.-Q.; Xie, L.-H.; Li, J.-R. A Stable Zr (IV)-Based Metal-Organic Framework Constructed from C═ C Bridged Di-isophthalate Ligand for Sensitive Detection of Cr2O72– in Water. Inorg. Chem. 2018, 57, 14260–14268. [Google Scholar] [CrossRef]
- Bao, T.; Zou, Y.; Zhang, C.; Yu, C.; Liu, C. Morphological Anisotropy in Metal-Organic Framework Micro/Nanostructures. Angew. Chem. 2022, 134, e202209433. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Fu, Y.; Guo, Y.; Zhang, Q.; Zhang, Q.; Yang, H.; Li, Y. A water-stable luminescent metal-organic framework for effective detection of aflatoxin B1 in walnut and almond beverages. RSC Adv. 2019, 9, 620–625. [Google Scholar] [CrossRef]
- Lammert, M.; Reinsch, H.; Murray, C.A.; Wharmby, M.T.; Terraschke, H.; Stock, N. Synthesis and structure of Zr(iv)- and Ce(iv)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Trans. 2016, 45, 18822–18826. [Google Scholar] [CrossRef]
- Jia, X.Z.; Zhang, B.; Chen, C.; Fu, X.; Huang, Q. Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydr. Polym. 2021, 253, 117305. [Google Scholar] [CrossRef]
- Xiong, D.; Cheng, J.; Ai, F.; Wang, X.; Xiao, J.; Zhu, F.; Zeng, K.; Wang, K.; Zhang, Z. Insight into the Sensing Behavior of DNA Probes Based on MOF-Nucleic Acid Interaction for Bioanalysis. Anal. Chem. 2023, 95, 5470–5478. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chem. A Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T.J.; Li, J. New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. J. Am. Chem. Soc. 2011, 133, 4153–4155. [Google Scholar] [CrossRef]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef]
- Dou, X.; Wu, G.; Ding, Z.; Xie, J. Construction of a nanoscale metal-organic framework aptasensor for fluorescence ratiometric sensing of AFB1 in real samples. Food Chem. 2023, 416, 135805. [Google Scholar] [CrossRef]
- Qu, S.; Song, N.; Xu, G.; Jia, Q. A ratiometric fluorescent probe for sensitive detection of anthrax biomarker based on terbium-covalent organic polymer systems. Sens. Actuators B Chem. 2019, 290, 9–14. [Google Scholar] [CrossRef]
- Yin, S.; Tong, C. Europium (III)-Modified silver nanoparticles as ratiometric colorimetric and fluorescent dual-mode probes for selective detection of dipicolinic acid in bacterial spores and lake waters. ACS Appl. Nano Mater. 2021, 4, 5469–5477. [Google Scholar] [CrossRef]
- Hao Guo, N.W.; Peng, L.; Chen, Y.; Liu, Y.; Li, C.; Zhang, H.; Yang, W. A novel ratiometric fluorescence sensor based on lanthanide-functionalized MOF for Hg2+ detection. Talanta 2022, 250, 123710. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.; Li, Z.; Yao, R.; Deng, Y.; Gong, C.; Zhang, D.; Fan, C.; Pu, S. Dual-ligand lanthanide metal-organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121700. [Google Scholar] [CrossRef]
- Xia, Y.-F.; Bao, G.-M.; Peng, X.-X.; Wu, X.-Y.; Lu, H.-F.; Zhong, Y.-F.; Li, W.; He, J.-X.; Liu, S.-Y.; Fan, Q.; et al. A highly water-stable dual-emission fluorescent probe based on Eu3+-loaded MOF for the simultaneous detection and quantification of Fe3+ and Al3+ in swine wastewater. Anal. Chim. Acta 2022, 1221, 340115. [Google Scholar] [CrossRef]
- Singh, A.K.; Sri, S.; Garimella, L.B.; Dhiman, T.K.; Sen, S.; Solanki, P.R. Graphene quantum dot-based optical sensing platform for aflatoxin B1 detection via the resonance energy transfer phenomenon. ACS Appl. Bio Mater. 2022, 5, 1179–1186. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Quan, H.; Zhang, J.; Zhang, Q.; Fu, Y.; Ying, Y.; Li, Y. Adsorptive and responsive hybrid sponge of melamine foam and metal organic frameworks for rapid collection/removal and detection of mycotoxins. Chem. Eng. J. 2021, 410, 128268. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Jia, H.; Lu, R.; Zhang, S.; Pan, C.; Zhang, Z. An ultralow concentration of Al-MOFs for turn-on fluorescence detection of aflatoxin B1 in tea samples. Food Chem. 2022, 383, 132389. [Google Scholar] [CrossRef]
- Yan, X.; Li, H.; Yan, Y.; Su, X. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chem. 2015, 173, 179–184. [Google Scholar] [CrossRef]
- Fahimi-Kashani, N.; Rashti, A.; Hormozi-Nezhad, M.R.; Mahdavi, V. MoS2 quantum-dots as a label-free fluorescent nanoprobe for the highly selective detection of methyl parathion pesticide. Anal. Methods 2017, 9, 716–723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Chai, Q.; Xiong, D.; Zhu, N.; Zhou, J.; Wu, R.; Zhang, Z. Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection. Biosensors 2024, 14, 273. https://doi.org/10.3390/bios14060273
Zhu F, Chai Q, Xiong D, Zhu N, Zhou J, Wu R, Zhang Z. Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection. Biosensors. 2024; 14(6):273. https://doi.org/10.3390/bios14060273
Chicago/Turabian StyleZhu, Fang, Qiuxue Chai, Dinghui Xiong, Nuanfei Zhu, Jialong Zhou, Ruoxi Wu, and Zhen Zhang. 2024. "Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection" Biosensors 14, no. 6: 273. https://doi.org/10.3390/bios14060273
APA StyleZhu, F., Chai, Q., Xiong, D., Zhu, N., Zhou, J., Wu, R., & Zhang, Z. (2024). Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection. Biosensors, 14(6), 273. https://doi.org/10.3390/bios14060273