Design and Characterization of a Dual-Protein Strategy for an Early-Stage Assay of Ovarian Cancer Biomarker Lysophosphatidic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cleaning of EMPAS Quartz Crystals
2.3. Functionalization of EMPAS Quartz Crystals
2.4. Contact Angle Goniometry (CAG)
2.5. Atomic Force Microscopy
2.6. EMPAS Measurements
2.7. Nanoparticle Synthesis and Modification
2.8. Nanoparticle Characterization
2.9. Nanoparticle-Chemiluminescence Measurements
3. Results and Discussion
3.1. Surface Characterization of EMPAS Discs
3.2. Iron Oxide Nanoparticle Characterization
3.2.1. FTIR-ATR of Bare and Modified Iron Oxide Nanoparticles
3.2.2. Transmission Electron Microscopy of Bare and Modified Iron Oxide Nanoparticles
3.3. Testing the Gelsolin(1-3)–Actin Protein Sensors for Lysophosphatidic Acid Quantification
3.3.1. Acoustic Wave Analysis with EMPAS
3.3 kHz/43 ≈ 77 Hz
3.3.2. Iron Oxide Nanoparticles and Chemiluminescence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kandalaft, L.E.; Dangaj, L.D.; Coukos, G. Immunobiology of high-grade serous ovarian cancer: Lessons for clinical translation. Nat. Rev. Cancer 2022, 22, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Ahmadi, S.; Davoudian, K.; De La Franier, B.; Lotay, N.; Bernardini, M.Q. Sensor detection in gynaecological medicine. Sens. Diagn. 2022, 1, 877–901. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, Z.; Wiper, D.W.; Wu, M.; Morton, R.E.; Elson, P.; Kennedy, A.W.; Belinson, J.; Markman, M.; Casey, G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998, 280, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Sedláková, I.; Vávrová, J.; Tošner, J.; Hanousek, L. Lysophosphatidic acid (LPA)—A perspective marker in ovarian cancer. Tumor Bio. 2010, 32, 311–316. [Google Scholar] [CrossRef] [PubMed]
- De La Franier, B.; Thompson, M. Detection of the ovarian cancer biomarker lysophosphatidic acid in serum. Biosensors 2020, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Davoudian, K.; Bhattacharya, S.; Thompson, D.; Thompson, M. Coupled electrostatic and hydrophobic destabilisation of the gelsolin-actin complex enables facile detection of ovarian cancer biomarker lysophosphatidic acid. Biomolecules 2023, 13, 1426. [Google Scholar] [CrossRef]
- Mészáros, G.; Akbarzadeh, S.; De La Franier, B.; Keresztes, Z.; Thompson, M. Advances in electromagnetic piezoelectric acoustic sensor technology for biosensor-based detection. Chemosensors 2021, 9, 58. [Google Scholar] [CrossRef]
- Fereja, T.H.; Hymete, A.; Gunasekaran, T. A Recent Review on Chemiluminescence Reaction, Principle and Application on Pharmaceutical Analysis. ISRN Spectrosc. 2013, 2013, 230858. [Google Scholar] [CrossRef]
- Song, G.; Han, H.; Ma, Z. Anti-Fouling Strategies of Electrochemical Sensors for Tumor Markers. Sensors 2023, 23, 5202. [Google Scholar] [CrossRef]
- De La Franier, B.; Jankowski, A.; Thompson, M. Functionalizable self-assembled trichlorosilyl-based monolayer for application in biosensor technology. Appl. Surf. Sci. 2017, 414, 435–441. [Google Scholar] [CrossRef]
- Yao, S.; Yan, H.; Tian, S.; Luo, R.; Zhao, Y.; Wang, J. Anti-fouling coatings for blood-contacting devices. Smart Mater. Med. 2023, 5, 166–180. [Google Scholar] [CrossRef]
- Spagnolo, S.; De La Franier, B.; Davoudian, K.; Hianik, T.; Thompson, M. Detection of E. Coli bacteria in milk by an acoustic wave aptasensor with an anti-fouling coating. Sensors 2022, 22, 1853. [Google Scholar] [CrossRef] [PubMed]
- Safdarian, M.; Ramezani, Z. Sequential synthesis of a magnetic nano-adsorbent: How the first step identifies the final product. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 97–107. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, M.; Wan, Y.; Cui, Y.; Ma, L. Preparation of an Acridinium Ester-Labeled Antibody and Its Application in GoldMag Nanoparticle-Based, Ultrasensitive Chemiluminescence Immunoassay for the Detection of Human Epididymis Protein 4. Micromachines 2017, 8, 149. [Google Scholar] [CrossRef]
- Ahmadi, S.; Lotay, N.; Thompson, M. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker. Bioelectrochemistry 2023, 153, 108466. [Google Scholar] [CrossRef] [PubMed]
- Wolgemuth, C.W. Biomechanics of cell motility. In Comprehensive Biophysics; Elsevier B.V.: Amsterdam, The Netherlands, 2012; Volume 7, pp. 168–193. [Google Scholar]
- Vemula, V.; Huber, T.; Ušaj, M.; Bugyi, B.; Månsson, A. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. J. Biol. Chem. 2021, 296, 100181. [Google Scholar] [CrossRef] [PubMed]
- Kloc, M.; Chanana, P.; Vaughn, N.; Uosef, A.; Kubiak, J.Z.; Ghobrial, R.M. New insights into cellular functions of nuclear actin. Biology 2021, 10, 304. [Google Scholar] [CrossRef]
- He, H.J.; Wang, X.S.; Pan, R.; Wang, D.L.; Liu, M.N.; He, R.Q. The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol. 2009, 10, 81. [Google Scholar] [CrossRef]
- Lotfi, S.; Ghaderi, F.; Bahari, A.; Mahjoub, S. Preparation and characterization of magnetite–chitosan nanoparticles and evaluation of their cytotoxicity effects on MCF7 and fibroblast cells. J. Supercond. Nov. Magn. 2017, 30, 3431–3438. [Google Scholar] [CrossRef]
- Spagnolo, S.; Muckley, E.S.; Ivanov, I.N.; Hianik, T. Analysis of trypsin activity at β-casein layers formed on hydrophobic surfaces using a multiharmonic acoustic method. Analyst 2022, 147, 461–470. [Google Scholar] [CrossRef]
- Reviakine, I.; Johannsmann, D.; Richter, R.P. Hearing what you cannot see and visualizing what you hear: Interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 2011, 83, 8838–8848. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.-J.; Frank, C.W.; Kasemo, B.; Höök, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 2010, 5, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.P. Molecular structure of the sarcomere. In Myology, 3rd ed.; Engel, A.C., Franzini-Armstrong, C., Eds.; McGraw-Hill Companies Inc.: Columbus, OH, USA, 2004; Chapter 7; pp. 129–166. [Google Scholar]
- Feldt, J.; Schicht, M.; Garreis, F.; Welss, J.; Schneider, U.W.; Paulsen, F. Structure, regulation, and related diseases of the actin-binding protein gelsolin. Expert Rev. Mol. Med. 2018, 20, e7. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, S.; De La Franier, B.; Hianik, T.; Thompson, M. Surface probe linker with tandem anti-fouling properties for application in biosensor technology. Biosensors 2020, 10, 20. [Google Scholar] [CrossRef]
- Spagnolo, S.; Muckley, E.S.; Ivanov, I.N.; Hianik, T. Application of multiharmonic QCM-D for detection of plasmin at hydrophobic surfaces modified by β-casein. Chemosensors 2022, 10, 143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davoudian, K.; Spagnolo, S.; Lotay, N.; Satkauskas, M.; Mészáros, G.; Hianik, T.; Keresztes, Z.; Walker, G.; Thompson, M. Design and Characterization of a Dual-Protein Strategy for an Early-Stage Assay of Ovarian Cancer Biomarker Lysophosphatidic Acid. Biosensors 2024, 14, 287. https://doi.org/10.3390/bios14060287
Davoudian K, Spagnolo S, Lotay N, Satkauskas M, Mészáros G, Hianik T, Keresztes Z, Walker G, Thompson M. Design and Characterization of a Dual-Protein Strategy for an Early-Stage Assay of Ovarian Cancer Biomarker Lysophosphatidic Acid. Biosensors. 2024; 14(6):287. https://doi.org/10.3390/bios14060287
Chicago/Turabian StyleDavoudian, Katharina, Sandro Spagnolo, Navina Lotay, Monika Satkauskas, Gábor Mészáros, Tibor Hianik, Zsófia Keresztes, Gilbert Walker, and Michael Thompson. 2024. "Design and Characterization of a Dual-Protein Strategy for an Early-Stage Assay of Ovarian Cancer Biomarker Lysophosphatidic Acid" Biosensors 14, no. 6: 287. https://doi.org/10.3390/bios14060287
APA StyleDavoudian, K., Spagnolo, S., Lotay, N., Satkauskas, M., Mészáros, G., Hianik, T., Keresztes, Z., Walker, G., & Thompson, M. (2024). Design and Characterization of a Dual-Protein Strategy for an Early-Stage Assay of Ovarian Cancer Biomarker Lysophosphatidic Acid. Biosensors, 14(6), 287. https://doi.org/10.3390/bios14060287