A Study on the Mechanism and Properties of a Self-Powered H2O2 Electrochemical Sensor Based on a Fuel Cell Configuration with FePc and Graphene Cathode Catalyst Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Electrode Preparation
2.3. Electrochemical Experiments
3. Results and Discussion
3.1. Mechanism
3.2. Morphology Analysis
3.3. Electrochemical Studies of the Cathode
3.4. Open Circuit Potential (OCP) Tests of H2O2 SPES
3.5. Sensor Capability Tests
3.6. Power Output Tests and Sensor Characteristics under the Control of External Variable Load Resistors
3.7. Self-Powered Detection of Hydrogen Peroxide in Blood Serum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, P.; Quan, X.; Nie, X.; Zhao, K.; Liu, Y.; Chen, S.; Yu, H.; Chen, J.G. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 2023, 14, 172. [Google Scholar] [CrossRef]
- Perry, S.C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F.C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458. [Google Scholar] [CrossRef]
- Calas-Blanchard, C.; Catanante, G.; Noguer, T. Electrochemical sensor and biosensor strategies for ROS/RNS detection in biological systems. Electroanalysis 2014, 26, 1277–1286. [Google Scholar] [CrossRef]
- Liu, W.; Yin, L.; Jin, Q.; Zhu, Y.; Zhao, J.; Zheng, L.; Zhou, Z.; Zhu, B. Sensing performance of a self-powered electrochemical sensor for H2O2 detection based on microbial fuel cell. J. Electroanal. Chem. 2019, 832, 97–104. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, W.; Yin, Y.; Wang, N.; Wu, W.; Zhang, W.; Pei, S.; Liu, T.; Tao, C.; Zheng, B.; et al. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors 2023, 13, 508. [Google Scholar] [CrossRef]
- Peng, R.; Offenhäusser, A.; Ermolenko, Y.; Mourzina, Y. Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sens. Actuators B Chem. 2020, 321, 128437. [Google Scholar] [CrossRef]
- Rajarathinam, T.; Kim, S.; Thirumalai, D.; Lee, S.; Kwon, M.; Paik, H.-j.; Kim, S.; Chang, S.-C. Robust Nanozyme-Enzyme Nanosheets-Based Lactate Biosensor for Diagnosing Bacterial Infection in Olive Flounder (Paralichthys olivaceus). Biosensors 2021, 11, 439. [Google Scholar] [CrossRef]
- Geraskevich, A.V.; Solomonenko, A.N.; Dorozhko, E.V.; Korotkova, E.I.; Barek, J. Electrochemical sensors for the detection of reactive oxygen species in biological systems: A critical review. Crit. Rev. Anal. Chem. 2022, 54, 742–774. [Google Scholar] [CrossRef]
- Nikolaev, K.G.; Maybeck, V.; Neumann, E.; Ermakov, S.S.; Ermolenko, Y.E.; Offenhäusser, A.; Mourzina, Y.G. Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture. J. Solid State Electrochem. 2017, 22, 1023–1035. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, Q.; Li, W.; Lin, L.; Qu, F.; Shen, C.; Wei, Y.; Nie, P.; He, Y.; Feng, X. Ultra-sensitive detection of hydrogen peroxide and levofloxacin using a dual-functional fluorescent probe. J. Hazard. Mater. 2022, 432, 128605. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, W.; Yan, K.; Gao, J.; Zhang, J. Fuel cell-based self-powered electrochemical sensors for biochemical detection. Nano Energy 2019, 61, 173–193. [Google Scholar] [CrossRef]
- Wu, F.; Yu, P.; Mao, L. Self-powered electrochemical systems as neurochemical sensors: Toward self-triggered in vivo analysis of brain chemistry. Chem. Soc. Rev. 2017, 46, 2692–2704. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ye, D.; Wang, S.; Zhu, X.; Chen, R.; Liao, Q. Single-stream H2O2 membraneless microfluidic fuel cell and its application as a self-powered electrochemical sensor. Ind. Eng. Chem. Res. 2020, 59, 15447–15453. [Google Scholar] [CrossRef]
- Ruff, A.; Pinyou, P.; Nolten, M.; Conzuelo, F.; Schuhmann, W. A self-powered ethanol biosensor. ChemElectroChem 2017, 4, 890–897. [Google Scholar] [CrossRef]
- Grattieri, M.; Minteer, S.D. Self-powered biosensors. ACS Sens. 2018, 3, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Sun, Q.; Wang, Z.L. Self-powered sensing in wearable electronics—A paradigm shift technology. Chem. Rev. 2023, 123, 12105–12134. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.U.; Duteanu, N.; Ciocan, S.; Nasar, A. Inamuddin A review: Evolution of enzymatic biofuel cells. J. Environ. Manage. 2021, 298, 113483. [Google Scholar] [CrossRef] [PubMed]
- Bagotsky, V.S. Fundamentals of Electrochemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; p. 722. [Google Scholar]
- Chávez, M.; Fernandez-Merino, Á.; del Caño, R.; Sánchez-Obrero, G.; Madueño, R.; Blázquez, M.; Pineda, T. Behind the optimization of the sensor film: Bioconjugation of triangular gold nanoparticles with hemoproteins for sensitivity enhancement of enzymatic biosensors. Biosensors 2023, 13, 467. [Google Scholar] [CrossRef] [PubMed]
- Koposova, E.; Liu, X.; Kisner, A.; Ermolenko, Y.; Shumilova, G.; Offenhausser, A.; Mourzina, Y. Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens. Bioelectron. 2014, 57, 54–58. [Google Scholar] [CrossRef]
- Nikolaev, K.G.; Ermolenko, Y.E.; Offenhausser, A.; Ermakov, S.S.; Mourzina, Y.G. Multisensor systems by electrochemical nanowire assembly for the analysis of aqueous solutions. Front. Chem. 2018, 6, 256. [Google Scholar] [CrossRef]
- Zhao, S.; Zang, G.; Zhang, Y.; Liu, H.; Wang, N.; Cai, S.; Durkan, C.; Xie, G.; Wang, G. Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosens. Bioelectron. 2021, 179, 113052. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Gu, Z.; Li, H.; Liu, X.; Li, Y.; Xiao, F. Flexible graphene paper modified using Pt&Pd alloy nanoparticles decorated nanoporous gold support for the electrochemical sensing of small molecular biomarkers. Biosensors 2024, 14, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kudriashov, D.; Pershina, L.; Offenhausser, A.; Mourzina, Y. Intrinsic multienzyme-like activities of the nanoparticles of Mn and Fe cyano-bridged assemblies. Nanomaterials 2022, 12, 2095. [Google Scholar] [CrossRef] [PubMed]
- Romanholo, P.V.V.; Razzino, C.A.; Raymundo-Pereira, P.A.; Prado, T.M.; Machado, S.A.S.; Sgobbi, L.F. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens. Bioelectron. 2021, 185, 113242. [Google Scholar] [CrossRef] [PubMed]
- Wachholz, D.; Kubota, L.T. Metal–Organic frameworks for sensing applications. In Metal–Organic Frameworks in Analytical Chemistry; Amiri, A., Mirzaei, M., Eds.; The Royal Society of Chemistry: London, UK, 2023; pp. 251–300. [Google Scholar]
- Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. Noiseless performance of Prussian blue based (bio)sensors through power generation. Anal. Chem. 2017, 89, 6290–6294. [Google Scholar] [CrossRef] [PubMed]
- Miglbauer, E.; Wo´jcik, P.J.; Głowacki, E.D. Single-compartment hydrogen peroxide fuel cells with poly(3,4-ethylenedioxythiophene) cathodes. Chem. Commun. 2018, 54, 11873–11876. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yoshida, S.; Honda, T.; Fukuzumi, S. Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions. Energy Environ. Sci. 2011, 4, 2822–2825. [Google Scholar] [CrossRef]
- Shaegh, S.A.M.; Nguyen, N.-T.; Ehteshami, S.M.M.; Chan, S.H. A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy Environ. Sci. 2012, 5, 8225–8228. [Google Scholar] [CrossRef]
- Nguyen, B.; Kuperman, N.; Goncher, G.; Solanki, R. Membraneless H2O2 fuel cells driven by metallophthalocyanine electrocatalysts. ECS J. Solid State Sci. Technol. 2020, 9, 061009. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. High power density of one-compartment H2O2 fuel cells using pyrazine-bridged Fe[MC(CN)4] (MC = Pt2+ and Pd2+) complexes as the cathode. Inorg. Chem. 2014, 53, 1272–1274. [Google Scholar] [CrossRef]
- Ellison, S.L.; Thompson, M. Standard additions: Myth and reality. Analyst. 2008, 133, 992–997. [Google Scholar] [CrossRef]
- Burns, D.T.; Danzer, K.; Townshend, A. Use of the term “recovery” and “apparent recovery” in analytical procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 2002, 74, 2201–2205. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974; pp. 106–111. [Google Scholar]
- Ghani, F.; Kristen, J.; Riegler, H. Solubility Properties of Unsubstituted Metal Phthalocyanines in Different Types of Solvents. J. Chem. Eng. Data. 2012, 57, 439–449. [Google Scholar] [CrossRef]
- Lever, A.B.P.; Wilshire, J.P. Electrochemistry of iron phthalocyanine complexes in nonaqueous solvents and the identification of five-coordinate iron(I) phthalocyanine derivatives. Inorg. Chem. 2002, 17, 1145–1151. [Google Scholar] [CrossRef]
- Jones, J.G.; Twigg, M.V. Dimerisation and de-demerisation of ferrous phthalocyanine in DMSO. Inorg. Nucl. Chem. Lett. 1972, 8, 305–308. [Google Scholar] [CrossRef]
- Honda, T.; Kojima, T.; Kobayashi, N.; Fukuzumi, S. Crystal structures and electronic properties of saddle-distorted and protonated phthalocyanines. Angew. Chem. Int. Ed. Engl. 2011, 50, 2725–2728. [Google Scholar] [CrossRef] [PubMed]
- Herranz, J.; Jaouen, F.; Lefevre, M.; Kramm, U.I.; Proietti, E.; Dodelet, J.P.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Bertrand, P.; et al. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells. J. Phys. Chem. C. 2011, 115, 16087–16097. [Google Scholar] [CrossRef] [PubMed]
- Adam, S.M.; Wijeratne, G.B.; Rogler, P.J.; Diaz, D.E.; Quist, D.A.; Liu, J.J.; Karlin, K.D. Synthetic Fe/Cu complexes: Toward understanding heme-copper oxidase structure and function. Chem. Rev. 2018, 118, 10840–11022. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhao, K.; Wang, Y.-C.; Wei, N.; Zhang, P.; Yuan, J.; Zhou, Z.; Sun, S.-G. Molecular degradation of iron phthalocyanine during the oxygen reduction reaction in acidic media. ACS Catal. 2022, 12, 11097–11107. [Google Scholar] [CrossRef]
- Tsuneda, T.; Singh, R.K.; Iiyama, A.; Miyatake, K. Theoretical investigation of the H2O2-induced degradation mechanism of hydrated Nafion membrane via ether-linkage dissociation. ACS Omega 2017, 2, 4053–4064. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Z.; Yin, L.; Zhu, Y.; Zhao, J.; Zhu, B.; Zheng, L.; Jin, Q.; Wang, L. A novel self-powered bioelectrochemical sensor based on CoMn2O4 nanoparticle modified cathode for sensitive and rapid detection of hydrogen peroxide. Sens. Actuators B Chem. 2018, 271, 247–255. [Google Scholar] [CrossRef]
- Ohnuki, H.; Wako, T.; Mecheri, B.; Wu, H.; Tsuya, D.; Endo, H. Self-powered hydrogen peroxide sensor and its application as a biosensor. Jpn. J. Appl. Phys. 2019, 58, SBBG16. [Google Scholar] [CrossRef]
- Wong, L.P.; Wei, Y.; Toh, C.-S. Self-powering amperometric sensor and biosensor. J. Electroanal. Chem. 2012, 671, 80–84. [Google Scholar] [CrossRef]
- Forman, H.J.; Bernardo, A.; Davies, K.J. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 2016, 603, 48–53. [Google Scholar] [CrossRef]
- Scherer, J.; Ocko, B.M.; Magnussen, O.M. Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: An in situ STM, X-ray scattering, and electrochemical study. Electrochim. Acta 2003, 48, 1169–1191. [Google Scholar] [CrossRef]
- Barbosa, M.R.; Real, S.G.; Vilche, J.R.; Arvia, A.J. Comparative potentiodynamic study of Nickel in still and stirred sulfuric acid-potassium sulfate solutions in the 0.4–5.7 pH range. J. Electrochem. Soc. 1988, 135, 1077. [Google Scholar] [CrossRef]
- Sanli, A.E.; Aytac, A. Electrochemistry of the nickel electrode as a cathode catalyst In the media of acidic peroxide for application of the peroxide fuel cell. ECS Trans. 2012, 42, 3–22. [Google Scholar] [CrossRef]
- Weininger, J.L.; Breiter, M.W. Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J. Electrochem. Soc. 1964, 111, 707. [Google Scholar] [CrossRef]
- Du, T.; Vijayakumar, A.; Sundaram, K.B.; Desai, V. Chemical mechanical polishing of nickel for applications in MEMS devices. Microelectron. Eng. 2004, 75, 234–241. [Google Scholar] [CrossRef]
- Maier, A.C.; Iglebaek, E.H.; Jonsson, M. Confirming the formation of hydroxyl radicals in the catalytic decomposition of H2O2 on metal oxides using coumarin as a probe. ChemCatChem 2019, 11, 5435–5438. [Google Scholar] [CrossRef]
- Nairn, J.J. The Electrochemical Oxidation of Hydrogen Peroxide on Nickel Electrodes in Phosphate Buffer Solutions; Massey University: Palmerston North, New Zealand, 2000; Available online: http://hdl.handle.net/10179/12347 (accessed on 30 May 2024).
pH | Fe(III/II)Pc | GNP–Fe(III/II)Pc | ||||||
---|---|---|---|---|---|---|---|---|
Ec, V | Ea, V | ΔE, V | −Ipc/Ipa | Ec, V | Ea, V | ΔE, V | −Ipc/Ipa | |
3.0 | 0.233 | 0.354 | 0.121 | 0.644 | 0.241 | 0.301 | 0.06 | 0.709 |
7.4 | 0.188 | 0.255 | 0.067 | 0.549 | 0.175 | 0.207 | 0.032 | 0.724 |
LDL, μM | HDL, mM | Sensitivity, A/(M·cm2) | ||||
---|---|---|---|---|---|---|
pH | 3.0 | 7.4 | 3.0 | 7.4 | 3.0 | 7.4 |
FePc | 1.0 ± 0.11 | 0.2 ± 0.04 | 0.91 ± 0.09 | 0.3 ± 0.05 | 0.117 ± 0.005 | 0.176 ± 0.016 |
GNP–FePc | 0.6 ± 0.07 | 0.2 ± 0.03 | 3.0 ± 0.48 | 0.3 ± 0.06 | 0.198 ± 0.006 | 0.197 ± 0.021 |
Resistor | LDL, μM | HDL, mM | Sensitivity, A/(M·cm2) |
---|---|---|---|
0 kOhm | 0.6 ± 0.07 | 3.0 ± 0.48 | 0.198 ± 0.006 |
3 kOhm | 0.6 ± 0.08 | 3.0 ± 0.60 | 0.197 ± 0.008 |
10 kOhm | 0.8 ± 0.09 | 1.0 ± 0.12 | 0.350 ± 0.011 |
50 kOhm | 1.0 ± 0.09 | 0.5 ± 0.07 | 0.262 ± 0.010 |
Cathode | Anode | Compartment | pH; External Load | Detection Limit, µM | Working Range, mM | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|
CoMn2O4 NPs/graphite | Bioanode from MFC [a] | 2 | pH 7; 300 Ohm | 40.2 | 1–1000 | 0.0132 A M−1 | [44] |
Graphite | Bioanode from MFC [a] | 2 | pH 7; 300 Ohm | 34.6 | 1–2000 | 0.011 A M−1 | [4] |
PB/NiHCF [b] | Ag/AgCl in 0.1 M KCl | 1 | pH 6 | – | 2·10−4–1 | 0.59 to 0.65 A M−1 cm−2 | [27] |
Au/PB | Pt | 1 (IDE [c]) | H2O | 0.02 | Up to 0.2 | 0.00352 A M−1 cm−2 | [45] |
PB nanotubes | Pt | 2 | pH 7 | 0.1 | Up to 0.08 | 0.048 A M−1 cm−2 | [46] |
PB MWCNT | Ni | 1 | pH 1; 100 | 1440 | 5–50 | 0.0375 A M−1 | [13] |
GNP–FePc | Ni | 1 | pH 3 | 0.6 | Up to 3 | 0.198 A M−1 cm−2 | This work |
GNP–FePc | Ni | 1 | pH 7.4 | 0.2 | Up to 0.3 | 0.197 A M−1 cm−2 | This work |
GNP–FePc | Ni | 1 | pH 3; 10 kOhm | 0.8 | Up to 1 | 0.350 A M−1 cm−2 | This work |
H2O2 Added, µM | H2O2 Found (x ± Δx) [a], μM | R [b] (n = 3), % |
---|---|---|
5.2 | 5.2 ± 2.3 | 100.0 |
15.7 | 15.8 ± 8.0 | 100.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Offenhäusser, A.; Mourzina, Y. A Study on the Mechanism and Properties of a Self-Powered H2O2 Electrochemical Sensor Based on a Fuel Cell Configuration with FePc and Graphene Cathode Catalyst Materials. Biosensors 2024, 14, 290. https://doi.org/10.3390/bios14060290
Zhang Y, Offenhäusser A, Mourzina Y. A Study on the Mechanism and Properties of a Self-Powered H2O2 Electrochemical Sensor Based on a Fuel Cell Configuration with FePc and Graphene Cathode Catalyst Materials. Biosensors. 2024; 14(6):290. https://doi.org/10.3390/bios14060290
Chicago/Turabian StyleZhang, Yunong, Andreas Offenhäusser, and Yulia Mourzina. 2024. "A Study on the Mechanism and Properties of a Self-Powered H2O2 Electrochemical Sensor Based on a Fuel Cell Configuration with FePc and Graphene Cathode Catalyst Materials" Biosensors 14, no. 6: 290. https://doi.org/10.3390/bios14060290
APA StyleZhang, Y., Offenhäusser, A., & Mourzina, Y. (2024). A Study on the Mechanism and Properties of a Self-Powered H2O2 Electrochemical Sensor Based on a Fuel Cell Configuration with FePc and Graphene Cathode Catalyst Materials. Biosensors, 14(6), 290. https://doi.org/10.3390/bios14060290