Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Synthesis of MWCNT–CM Conjugates
2.4. Synthesis of BDMCAQD
2.5. Electrode Preparation
2.6. Electrochemical Studies
3. Results and Discussion
3.1. Mechanism of Formation of MWCNT–CM Conjugates
3.2. Mechanism of Formation of BDMCAQDs
3.3. Physicochemical Characterization of MWCNT–CM Conjugates
3.4. Physicochemical Characterization of the BDMCAQD
3.5. Electrochemical Characterization of MWCNT–CM Conjugates
3.6. Electrochemical Sensing Performance of the MWCNT–CM Conjugate towards 1,4-Dioxane
3.7. Possible Sensing Mechanism of 1,4-Dioxane by MWCNT–CM/GCE
3.8. Interference Study
3.9. Reliability and Stability of the MWCNT–CM Sensor
3.10. Reproducibility of MWCNT–CM Sensor
3.11. Electrochemical Characterization of BDMCAQD
3.12. The Electrochemical Sensing Performance of the BDMCAQD towards Hydrazine
3.13. Possible Sensing Mechanism of Hydrazine by BDMCAQD/GCE
3.14. Interference Study
3.15. Reliability and Stability of BDMCAQD Sensor
3.16. Reproducibility of BDMCAQD Sensor
4. Real-Time Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef] [PubMed]
- Iffath, B.; Renjithkumar, R.; Devasena, T. Novel one pot synthesis of curcumin quantum dots for non-enzymatic highly sensitive and selective detection of dopamine. Dig. J. Nanomater. Biostruct. 2023, 18, 183–193. [Google Scholar] [CrossRef]
- Mohajeri, M.; Behnam, B.; Tasbandi, A.; Jamialahmadi, T.; Sahebkar, A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. In Studies on Biomarkers and New Targets in Aging Research in Iran; Guest, P.C., Ed.; Springer: Cham, Switzerland, 2021; Volume 1291, pp. 55–74. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 2006, 98, 720–724. [Google Scholar] [CrossRef]
- Ramezani, M.; Hatamipour, M.; Sahebkar, A. Promising anti-tumor properties of bisdemethoxycurcumin: A naturally occurring curcumin analogue. J. Cell. Physiol. 2018, 233, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Angelene, H.J.D.; Rasal, R.K.; Badsha, I.; Nallathambi, G.; Devasena, T. Fabrication and optimization of curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate reinforced electrospun polyacrylonitrile membrane for water treatment applications. Environ. Sci. Pollut. Res. 2023, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.; Bocking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chem. Commun. 2005, 7, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Chengguo, H.; Shengshui, H. Surface Design of Carbon Nanotubes for Optimizing the Adsorption and Electrochemical Response of Analytes. Langmuir 2008, 24, 8890–8897. [Google Scholar] [CrossRef] [PubMed]
- Renjithkumar, R.; Iffath, B.; Devasena, T. Novel statistically optimized one pot synthesis of inherently photoluminescent and electroactive graphene oxide nanosheets as 1, 4 dioxane sensor. Dig. J. Nanomater. Biostruct. 2023, 18, 377–388. [Google Scholar] [CrossRef]
- Bagheri, M.; Mohseni, M. Pilot-scale treatment of 1,4-dioxane contaminated waters using 185 nm radiation: Experimental and CFD modelling. J. Water Process Eng. 2017, 19, 185–192. [Google Scholar] [CrossRef]
- Yamamoto, N.; Saito, Y.; Inoue, D.; Sei, K.; Ike, M. Characterization of newly isolated Pseudonocardia sp. N23 with high 1,4-dioxane-degrading ability. J. Biosci. Bioeng. 2018, 125, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lopez-Velandia, C.; Knappe, D.R. Determination of 1,4-Dioxane in the Cape Fear River Watershed by Heated Purge-and-Trap Pre-concentration and Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2016, 50, 2246–2254. [Google Scholar] [CrossRef] [PubMed]
- Pollitt, K.J.G.; Kim, J.H.; Peccia, J.; Elimelech, M.; Zhang, Y.; Charkoftaki, G.; Hodges, B.; Zucker, I.; Huang, H.; Deziel, N.C.; et al. 1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. Sci. Total Environ. 2019, 690, 853–866. [Google Scholar] [CrossRef]
- Rahman, M.M.; Wahid, A.; Asiri, A.M. Development of highly sensitive 1,4-dioxane sensor with semiconductor NiO-doped Nd2O3 nanostructures by electrochemical approach. New J. Chem. 2019, 43, 17395–17402. [Google Scholar] [CrossRef]
- Karges, U.; Becker, J.; Puttmann, W. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Sci. Total Environ. 2018, 619, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Mohr, T.K.; DiGuiseppi, W.H.; Hatton, J.W.; Anderson, J.K. Environmental Investigation and Remediation 1,4-Dioxane and other Solvent Stabilizers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 549. [Google Scholar] [CrossRef]
- Kikani, M.; Satasiya, G.V.; Sahoo, T.P.; Kumar, P.S.; Kumar, M.A. Remedial strategies for abating 1, 4-dioxane pollution-special emphasis on diverse biotechnological interventions. Environ. Res. 2022, 214, 113939. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Vyas, G.; Bhatt, M.; Bhatt, S.; Paul, P. Silver nanoparticle based highly selective and sensitive solvatochromatic sensor for colorimetric detection of 1,4-dioxane in aqueous media. Chem. Commun. 2015, 51, 15936–15939. [Google Scholar] [CrossRef] [PubMed]
- Klecka, G.M.; Gonsior, S.J. Removal of 1,4-dioxane from wastewater. J. Hazard. Mater. 1986, 13, 161–168. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. Potential application of mixed metal oxide nanoparticle-embedded glassy carbon electrode as a selective 1,4-dioxane chemical sensor probe by an electrochemical approach. RSC Adv. 2019, 9, 42050–42061. [Google Scholar] [CrossRef]
- Guan, X.; Liu, F.; Wang, J.; Li, C.; Zheng, X. Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses. Water. Sci. Tech. 2018, 77, 123–133. [Google Scholar] [CrossRef]
- Coleman, H.M.; Vimonses, V.; Leslie, G.; Amal, R. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. J. Hazar. Mater. 2007, 146, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Mason, O.U.; Lowe, A.; Zhang, Z.; Zhou, C.; Chen, G.; Villalonga, M.J.; Tang, Y. Investigating promising substrates for promoting 1, 4-dioxane biodegradation: Effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation 2020, 31, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. Fabrication of an acetone sensor based on facile ternary MnO2/Gd2O3/SnO2 nanosheets for environmental safety. New J. Chem. 2017, 41, 9938–9946. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Awual, M.R. Fabrication of 4-aminophenol sensor based on hydrothermally prepared ZnO/Yb2O3 nanosheets. New J. Chem. 2017, 41, 9159–9169. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Mehta, J.; Dilbaghi, N.; Marrazza, G.; Kaushik, A. Point-of-care strategies for detection of waterborne pathogens. Sensors 2019, 19, 4476. [Google Scholar] [CrossRef] [PubMed]
- Binyamin, Y.; Frenkel, A.; Brotfain, E.; Koyfman, L.; Shliom, O.; Klein, M. Elevated CPK levels after hydrazine inhalation exposure in an F16 aircraft technician. Toxicol. Rep. 2018, 5, 927–928. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Raza, R.; Branda, N.R. A dual-mode visual detector for toxic hydrazine. RSC Adv. 2021, 28, 22835–22841. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Askari, M.B.; Ahmadi, S.A.; Nejad, F.G.; Dourandish, Z.; Razavi, R.; Beitollahi, H.; Di Bartolomeo, A. Electrochemical sensor based on ZnFe2O4/RGO nanocomposite for ultrasensitive detection of hydrazine in real samples. Nanomaterials 2022, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yue, Q.; Xin, D.; Wan, H.; Chen, J.; Wang, Y.; Wu, J. A novel electrochemical IL-6 sensor based on Au nanoparticles-modified platinum carbon electrode. Front. Bioeng. Biotechnol. 2023, 11, 79. [Google Scholar] [CrossRef]
- Vinodha, G.; Cindrella, L.; Shima, P.D. Graphene oxide based highly sensitive electrochemical sensor for detection of environmental pollutants and biomolecules. Mater. Res. Express 2019, 6, 085548. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Xu, M.; Zheng, J. Au-modified the hollow ZnSnO3 cubes with high performance for hydrazine electrochemical sensing. Microchem. J. 2022, 175, 107070. [Google Scholar] [CrossRef]
- Meng, S.; Liu, Y.; Wang, L.; Ji, X.; Chen, Y.; Zheng, T.; Yu, J.; Feng, H. Graphene-Based Flexible Sensors for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Front. Bioeng. Biotechnol. 2021, 9, 726071. [Google Scholar] [CrossRef] [PubMed]
- Sana, F.T.K.; Banu, A.; Devasena, T.; Ramaprabhu, S. A novel, highly sensitive electrochemical 1,4-dioxane sensor based on reduced graphene oxide–curcumin nanocomposite. RSC Adv. 2022, 12, 19375–19383. [Google Scholar] [CrossRef] [PubMed]
- Iffath, B.; Renjith, K.R.; Arthanareeswaran, G.; Devasena, T. Modification of electrospun polyacrylonitrile nanofiber membranes with curcumin quantum dots for enhanced self-cleaning, antifouling and photocatalytic performance for water treatment. J. Water Process Eng. 2024, 60, 105251. [Google Scholar] [CrossRef]
- Alam, M.M.; Asiri, A.M.; Uddin, J.; Rahman, M.M. Selective 1,4-dioxane chemical sensor development with doped ZnO/GO nanocomposites by electrochemical approach. J. Mater. Sci. Mater. Electron. 2022, 33, 4360–4374. [Google Scholar] [CrossRef]
- Yuan, B.; Sun, P.; Fernandez, C.; Wang, H.; Guan, P.; Xu, H.; Niu, Y. Molecular fluorinated cobalt phthalocyanine immobilized on ordered mesoporous carbon as an electrochemical sensing platform for sensitive detection of hydrogen peroxide and hydrazine in alkaline medium. J. Electroanal. Chem. 2022, 906, 116019. [Google Scholar] [CrossRef]
- Ahmad, K.; Kim, H. Synthesis of MoS2/WO3 hybrid composite for hydrazine sensing applications. Mater. Sci. Semicond. Process. 2022, 148, 106803. [Google Scholar] [CrossRef]
- Abuilaiwi, F.A.; Laoui, T.; Al-Harthi, M.; Atieh, M.A. Modification and Functionalization of Multiwalled Carbon Nanotube (MWCNT) via Fischer Esterification. Arab. J. Sci. Eng. 2010, 35, 37–48. [Google Scholar] [CrossRef]
- Hashwan, S.S.B.; Fatin, M.F.; Ruslinda, A.R.; Arshad, M.M.; Hashim, U.; Ayub, R. Functionalization of Multi Wall Carbon Nanotubes Using Nitric Acid Oxidation. Appl. Mech. Mater. 2015, 755, 1156–1160. [Google Scholar] [CrossRef]
- Fraga-Dubreuil, J.; Bourahla, K.; Rahmouni, M.; Bazureau, J.P.; Hamelin, J. Catalysed esterifications in room temperature ionic liquids with acidic counter anion as recyclable reaction media. Catal. Commun. 2002, 3, 185–190. [Google Scholar] [CrossRef]
- Dhakal, S.; Schmidt, W.F.; Kim, M.; Tang, X.; Peng, Y.; Chao, K. Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy. Foods 2019, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Hatamie, S.; Akhavan, O.; Sadrnezhaad, S.K.; Ahadian, M.M.; Shirolkar, M.M.; Wang, H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 2015, 55, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Voltammetric simultaneous quantification of p-nitrophenol and hydrazine by using magnetic spinel FeCo2O4 nanosheets on reduced graphene oxide layers modified with curcumin-stabilized silver nanoparticles. Microchim. Acta 2019, 186, 561. [Google Scholar] [CrossRef] [PubMed]
- Sha, R.; Jones, S.S.; Vishnu, N.; Soundiraraju, B.; Badhulika, S. A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine. Electroanalysis 2018, 30, 2228–2232. [Google Scholar] [CrossRef]
- Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Curcumin graphite pencil electrode modified with molybdenum disulfide nanosheets decorated gold foams for simultaneous quantification of nitrite and hydrazine in water samples. Anal. Chim. Acta 2020, 1137, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Dong, Y.; Sheng, Q.; Zheng, J. A high-performance non-enzymatic electrochemical hydrazine sensor based on NiCo2S4 porous sphere. Talanta 2019, 198, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.M.; Kumar, A.; Suneetha, M.; Han, S.S. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. Int. J. Biol. Macromol. 2018, 112, 119–125. [Google Scholar] [CrossRef]
- Payton, F.; Sandusky, P.; Alworth, W.L. NMR Study of the Solution Structure of Curcumin. J. Nat. Prod. 2007, 70, 143–146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasal, R.K.; Badsha, I.; Shellaiah, M.; Subramanian, K.; Gayathri, A.; Hirad, A.H.; Kaliaperumal, K.; Devasena, T. Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine. Biosensors 2024, 14, 291. https://doi.org/10.3390/bios14060291
Rasal RK, Badsha I, Shellaiah M, Subramanian K, Gayathri A, Hirad AH, Kaliaperumal K, Devasena T. Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine. Biosensors. 2024; 14(6):291. https://doi.org/10.3390/bios14060291
Chicago/Turabian StyleRasal, Renjith Kumar, Iffath Badsha, Muthaiah Shellaiah, Kumaran Subramanian, Abinaya Gayathri, Abdurahman Hajinur Hirad, Kumaravel Kaliaperumal, and Thiyagarajan Devasena. 2024. "Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine" Biosensors 14, no. 6: 291. https://doi.org/10.3390/bios14060291
APA StyleRasal, R. K., Badsha, I., Shellaiah, M., Subramanian, K., Gayathri, A., Hirad, A. H., Kaliaperumal, K., & Devasena, T. (2024). Fabrication of Curcumin-Based Electrochemical Nanosensors for the Detection of Environmental Pollutants: 1,4-Dioxane and Hydrazine. Biosensors, 14(6), 291. https://doi.org/10.3390/bios14060291