Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of EuNP-Labeled OLA-mAb
2.3. Preparation of AuNP-mAb Probe
2.4. Fabrication of EuNP-LFSBs
2.5. Assessment of Specificity and Sensitivity
2.6. Precision
2.7. Analysis of Spiked Samples—Recovery Assessment
2.8. Analysis of Actual Samples
2.9. Data Analysis
3. Results and Discussion
3.1. Detection Principle
3.2. Characterization of EuNP-mAbs Probes
3.3. Optimization of the EuNP-LFSB Parameter
3.4. Optimization of the AuNP-LFSB Parameter
3.5. Sensitivity and Specificity
3.6. Precision
3.7. Detection of Spiked Samples by EuNP-LFSBs
3.8. Detection of Real Samples by EuNP-LFSBs and HPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.Y.; Sun, Z.L. The metabolism of carbadox, olaquindox, mequindox, quinocetone and cyadox: An overview. Med. Chem. 2013, 9, 1017–1027. [Google Scholar] [CrossRef]
- Liu, M.; Ma, B.; Wang, Y.; Chen, E.; Li, J.; Zhang, M. Research on Rapid Detection Technology for β2-Agonists: Multi-Residue Fluorescence Immunochromatography Based on Dimeric Artificial Antigen. Foods 2022, 11, 863. [Google Scholar] [CrossRef]
- Zhang, K.; Ban, M.; Zhao, Z.; Zheng, H.; Wang, X.; Wang, M.; Fei, C.; Xue, F. Cytotoxicity and genotoxicity of 1,4-bisdesoxyquinocetone, 3-methylquinoxaline-2-carboxylic acid (MQCA) in human hepatocytes. Res. Vet. Sci. 2012, 93, 1393–1401. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.; Chang, X.; Tao, X. Development of a sensitive chemiluminescent immunoassay for the determination of 3-methyl-quinoxaline-2-carboxylic acid and quinoxaline-2-carboxylic acid in edible animal tissues using immunomagnetic beads capturing. Anal. Sci. 2019, 35, 1291–1293. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, C.; Tang, Q.; Zhang, Y.; Wang, H.; Zhai, B.; Xu, K.; Zhou, Y.; Qu, L.; Li, Q.; et al. Distribution and elimination of quinocetone and its major metabolites in Cherry Valley ducks. J. Vet. Pharmacol. Ther. 2019. online ahead of print. [Google Scholar]
- Commission Regulation (EC) No 2788/98 of 22 December 1998 amending Council Directive 70/524/EEC concerning additives in feeding stuffs as regards the withdrawal of authorisation for certain growth promoters. Off. J. Eur. Communities 1998, L34, 731–732.
- Wang, H.; Yao, S.; Liu, Y.; Wei, S.; Su, J.; Hu, G. Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs. Biosens. Bioelectron. 2017, 87, 417–421. [Google Scholar] [CrossRef]
- Regulation of Department of Agriculture of China, 2018, No. 2638 246. Available online: http://file1.foodmate.net/file/upload/201801/15/16-38-37-56-563536.pdf (accessed on 2 June 2024).
- Gao, Y.Q.; Ge, L.; Han, Z.; Hao, X.; Zhang, M.L.; Zhang, X.J.; Zhou, C.J.; Zhang, D.J.; Liang, C.G. Oral administration of olaquindox negatively affects oocytes quality and reproductive ability in female mice. Ecotoxicol. Environ. Saf. 2020, 201, 110826. [Google Scholar] [CrossRef]
- Tang, Y.; Meng, H.; Wang, W.; Song, Y.; Wang, S.; Li, Z.; Wang, X.; Hu, X. Off-line magnetic Fe3O4@SiO2@MIPs-based solid phase dispersion extraction coupling with HPLC for the simultaneous determination of olaquindox and its metabolite in fish muscle and milk samples. Food Chem. X 2023, 17, 100611. [Google Scholar] [CrossRef]
- Dibai, W.; Filho, J.; Oliveira, F.; Assis, D.; Lara, L.; Figueiredo, T.; Cançado, S. HPLC-MS/MS method validation for the detection of carbadox and olaquindox in poultry and swine feedingstuffs. Talanta 2015, 144, 740–744. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, H.; Zong, L.; Cui, P.; Wu, X.; Wang, M.; Hua, X. Biotin-labelled peptidomimetic for competitive time-resolved fluoroimmunoassay of benzothiostrobin. Anal. Bioanal. Chem. 2022, 414, 7143–7151. [Google Scholar] [CrossRef]
- Li, R.; Wen, Y.; Yang, L.; Liu, A.; Wang, F.; He, P. Dual quantum dot nanobeads-based fluorescence-linked immunosorbent assay for simultaneous detection of aflatoxin B1 and zearalenone in feedstuffs. Food Chem. 2022, 366, 130527. [Google Scholar] [CrossRef]
- Ma, J.; Peng, Z.; Ma, L.; Diao, L.; Shao, X.; Zhao, Z.; Liu, L.; Zhang, L.; Huang, C.; Liu, M. A multiple-target simultaneous detection method for immunosorbent assay and immunospot assay. Anal. Chem. 2022, 94, 8704–8714. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, T.; Xin, X.; Wu, D.; Huang, Y.; Liu, Y.; Cao, Y.; Guo, M.; Yu, Y. Europium (III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switc. Mikrochim Acta 2019, 186, 442. [Google Scholar] [CrossRef]
- Peng, D.; Kavanagh, O.; Gao, H.; Zhang, X.; Deng, S.; Chen, D.; Liu, Z.; Xie, C.; Situ, C.; Yuan, Z. Surface plasmon resonance biosensor for the determination of 3-methyl-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in swine tissues. Food Chem. 2020, 302, 124623. [Google Scholar]
- Jin, B.; Ma, B.; Mei, Q.; Xu, S.; Deng, X.; Hong, Y.; Li, J.; Xu, H.; Zhang, M. Europium nanoparticle-based lateral flow strip biosensors combined with recombinase polymerase amplification for simultaneous detection of five zoonotic foodborne pathogens. Biosensors 2023, 13, 652. [Google Scholar] [CrossRef]
- Martinez-Liu, C.; Machain-Williams, C.; Martinez-Acuña, N.; Lozano-Sepulveda, S.; Galan-Huerta, K.; Arellanos-Soto, D.; Meléndez-Villanueva, M.; Ávalos-Nolazco, D.; Pérez-Ibarra, K.; Galindo-Rodríguez, S.; et al. Development of a Rapid gold nanoparticle-based lateral flow immunoassay for the detection of dengue virus. Biosensors 2022, 12, 495. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, J.; Tang, Z.; Pounds, J.; Lin, Y.; Li, Z.; Wang, Y.; Wang, J.; Tang, Z.; et al. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 2010, 82, 7008–7014. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Y.; Sun, Y.; Wang, H.; Shen, Y. Semiquantitative immunochromatographic colorimetric biosensor for the detection of dexamethasone based on up-conversion fluorescent nanoparticles. Mikrochim. Acta 2020, 187, 447. [Google Scholar] [CrossRef]
- Tang, X.; Li, P.; Zhang, Q.; Zhang, Z.; Zhang, W.; Jiang, J.; Tang, X.; Li, P.; Zhang, Q.; Zhang, Z.; et al. Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Anal. Chem. 2017, 89, 11520–11528. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, P.; Liang, J.; Shen, X.; Lei, H.; Li, X. A highly sensitive and quantitative time resolved fluorescent microspheres lateral flow immunoassay for streptomycin and dihydrostreptomycin in milk, honey, muscle, liver, and kidney. Anal. Chim. Acta 2022, 1192, 339360. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Wang, J.; Zhou, L.; Yang, R. A novel electro-driven immunochromatography assay based on upconversion nanoparticles for rapid pathogen detection. Biosens. Bioelectron. 2020, 152, 112037. [Google Scholar] [CrossRef]
- Bian, F.; Sun, L.; Cai, L.; Wang, Y.; Zhao, Y. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, 1567. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, F.; Liu, J. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochim. Acta 2022, 189, 109. [Google Scholar] [CrossRef]
- Jiang, W.; Yi, J.; Li, X.; He, F.; Niu, N.; Chen, L. A comprehensive review on upconversion nanomaterials-based fluorescent sensor for environment, biology, food and medicine applications. Biosensors 2022, 12, 1036. [Google Scholar] [CrossRef]
- Liang, R.; Xu, X.; Liu, T.; Zhou, J.; Wang, X.; Ren, Z.; Hao, F.; Wu, Y. Rapid and sensitive lateral flow immunoassay method for determining alpha fetoprotein in serum using europium (III) chelate microparticles-based lateral flow test strips. Anal. Chim. Acta 2015, 891, 277–283. [Google Scholar] [CrossRef]
- Huang, D.; Ying, H.; Jiang, D.; Liu, F.; Tian, Y.; Du, C.; Zhang, L.; Pu, X. Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay. Anal. Biochem. 2020, 588, 113468. [Google Scholar] [CrossRef]
- Ashuo, A.; Zou, W.; Fu, J.; Yang, T.; Yu, L.; Liu, W.; Yang, L.; Mari, G.; Jiang, H. High throughput detection of antibiotic residues in milk by time-resolved fluorescence immunochromatography based on QR code. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess 2020, 37, 1481–1490. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, B.; Liu, M.; Chen, E.; Xu, Y.; Zhang, M. Europium fluorescent nanoparticles-based multiplex lateral flow immunoassay for simultaneous detection of three antibiotic families residue. Front Chem. 2021, 9, 793355. [Google Scholar] [CrossRef]
- Lu, J.; Wu, Z.; Liu, B.; Wang, C.; Wang, Q.; Zhang, L.; Wang, Z.; Chen, C.; Fu, Y.; Li, C.; et al. A time-resolved fluorescence lateral flow immunoassay for rapid and quantitative serodiagnosis of Brucella infection in humans. J. Pharm. Biomed. Anal. 2021, 200, 114071. [Google Scholar] [CrossRef]
- Chen, E.; Xu, Y.; Ma, B.; Cui, H.; Sun, C.; Zhang, M. Carboxyl-functionalized, europium nanoparticle-based fluorescent immunochromatographic assay for sensitive detection of citrinin in monascus fermented food. Toxins 2019, 11, 605. [Google Scholar] [CrossRef]
- Wen, Z.; Hu, X.; Yan, R.; Wang, W.; Meng, H.; Song, Y.; Wang, S.; Wang, X.; Tang, Y. A reliable upconversion nanoparticle-based immunochromatographic assay for the highly sensitive determination of olaquindox in fish muscle and water samples. Food Chem. 2023, 406, 135081. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, H.; Wang, Y.; Huang, L.; Tao, Y.; Chen, D.; Peng, D.; Liu, Z.; Yuan, Z. Development of a high-performance liquid chromatography method for the simultaneous quantification of quinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid in animal tissues. J. Chromatogr. A 2007, 1146, 1–7. [Google Scholar] [CrossRef]
- Jiang, W.; Beier, R.; Wang, Z.; Wu, Y.; Shen, J. Simultaneous screening analysis of 3-methyl-quinoxaline-2-carboxylic acid and quinoxaline-2-carboxylic acid residues in edible animal tissues by a competitive indirect immunoassay. J. Agric. Food Chem. 2013, 61, 10018–10025. [Google Scholar] [CrossRef]
- Zou, R.; Chang, Y.; Zhang, T.; Si, F.; Liu, Y.; Zhao, Y.; Liu, Y.; Zhang, M.; Yu, X.; Qiao, X.; et al. Up-converting nanoparticle-based immunochromatographic strip for multi-residue detection of three organophosphorus pesticides in food. Front Chem. 2019, 7, 18. [Google Scholar] [CrossRef]
Method | Test Substance | Sample | LOD | Reference |
---|---|---|---|---|
CL-ciELISA | MQCA | Fish samples | 0.01 μg/kg | [4] |
UCNP-ICG | OLA | Fish muscle and water samples | 1.42 ng/mL | [33] |
AuNP-ICG | QCT | Animal feed | 3.9 ng/mL | [18] |
EuNP-LFSBs | OLA, QCT, MQCA | Fish feed and tissue | 0.067, 0.017, 0.099 ng/mL | This work |
Sample | Spiked Level (ng/mL) | Detected Result (ng/mL) | Average Recovery Rate | RSD a (n = 3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OLA | QCT | MQCA | OLA | QCT | MQCA | OLA | QCT | MQCA | OLA | QCT | MQCA | |
Fish feed | 0.2 | / | / | 0.201 ± 0.004 | / | / | 100.67% | / | / | 1.88% | / | / |
0.4 | / | / | 0.399 ± 0.007 | / | / | 99.58% | / | / | 1.71% | / | / | |
0.6 | / | / | 0.600 ± 0.040 | / | / | 100.22% | / | / | 0.44% | / | / | |
/ | 0.2 | / | / | 0.203 ± 0.006 | / | / | 100.77% | / | / | 3.48% | / | |
/ | 0.4 | / | / | 0.399 ± 0.003 | / | / | 99.75% | / | / | 0.75% | / | |
/ | 0.6 | / | / | 0.602 ± 0.213 | / | / | 100.42% | / | / | 0.53% | / | |
/ | / | 0.2 | / | / | 0.201 ± 0.005 | / | / | 99.92% | / | / | 2.32% | |
/ | / | 0.4 | / | / | 0.389 ± 0.019 | / | / | 98.17% | / | / | 5.06% | |
/ | / | 0.6 | / | / | 0.600 ± 0.005 | / | / | 99.78% | / | / | 0.92% | |
0.2 | 0.2 | / | 0.199 ± 0.003 | 0.197 ± 0.002 | / | 99.17% | 98.25% | / | 1.62% | 1.11% | / | |
0.4 | 0.4 | / | 0.398 ± 0.014 | 0.401 ± 0.003 | / | 99.67% | 100.25% | / | 3.18% | 0.66% | / | |
0.6 | 0.6 | / | 0.605 ± 0.040 | 0.599 ± 0.003 | / | 100.72% | 99.67% | / | 0.77% | 0.58% | / | |
0.2 | / | 0.2 | 0.199 ± 0.002 | / | 0.202 ± 0.005 | 99.25% | / | 101.42% | 1.31% | / | 3.52% | |
0.4 | / | 0.4 | 0.495 ± 0.007 | / | 0.403 ± 0.005 | 123.75% | / | 100.83% | 1.32% | / | 1.25% | |
0.6 | / | 0.6 | 0.600 ± 0.030 | / | 0.599 ± 0.048 | 99.97% | / | 99.92% | 0.69% | / | 0.80% | |
/ | 0.2 | 0.2 | / | 0.198 ± 0.003 | 0.201 ± 0.002 | / | 99.00% | 100.77% | / | 1.52% | 1.26% | |
/ | 0.4 | 0.4 | / | 0.402 ± 0.003 | 0.407 ± 0.01 | / | 99.42% | 100.33% | / | 2.58% | 3.49% | |
/ | 0.6 | 0.6 | / | 0.603 ± 0.005 | 0.602 ± 0.043 | / | 100.25% | 100.22% | / | 0.94% | 0.75% | |
0.2 | 0.2 | 0.2 | 0.204 ± 0.017 | 0.197 ± 0.002 | 0.196 ± 0.005 | 100.32% | 98.25% | 98.43% | 9.38% | 1.11% | 2.44% | |
0.4 | 0.4 | 0.4 | 0.495 ± 0.006 | 0.503 ± 0.001 | 0.501 ± 0.003 | 98.8% | 102.4% | 100.2% | 0.40% | 2.77% | 0.53% | |
0.6 | 0.6 | 0.6 | 0.604 ± 0.005 | 0.599 ± 0.035 | 0.601 ± 0.045 | 104.4% | 99.5% | 99.7% | 0.56% | 3.54% | 4.74% | |
Carp | 0.2 | / | / | 0.204 ± 0.017 | / | / | 100.32% | / | / | 9.38% | / | / |
0.4 | / | / | 0.394 ± 0.005 | / | / | 98.58% | / | / | 1.55% | / | / | |
0.6 | / | / | 0.604 ± 0.001 | / | / | 100.61% | / | / | 0.10% | / | / | |
/ | 0.2 | / | / | 0.203 ± 0.007 | / | / | 100.50% | / | / | 3.89% | / | |
/ | 0.4 | / | / | 0.399 ± 0.003 | / | / | 99.67% | / | / | 0.63% | / | |
/ | 0.6 | / | / | 0.603 ± 0.201 | / | / | 100.22% | / | / | 0.35% | / | |
/ | / | 0.2 | / | / | 0.196 ± 0.005 | / | / | 98.43% | / | / | 2.44% | |
/ | / | 0.4 | / | / | 0.391 ± 0.011 | / | / | 98.33% | / | / | 2.95% | |
/ | / | 0.6 | / | / | 0.601 ± 0.196 | / | / | 100.22% | / | / | 0.35% | |
0.2 | 0.2 | / | 0.200 ± 0.012 | 0.200 ± 0.01 | / | 99.84% | 101.67% | / | 5.86% | 5.68% | / | |
0.4 | 0.4 | / | 0.405 ± 0.002 | 0.401 ± 0.003 | / | 101.25% | 100.25% | / | 0.49% | 0.66% | / | |
0.6 | 0.6 | / | 0.599 ± 0.003 | 0.599 ± 0.003 | / | 99.94% | 99.67% | / | 0.63% | 0.58% | / | |
0.2 | / | 0.1 | 0.195 ± 0.012 | / | 0.199 ± 0.005 | 97.59% | / | 99.67% | 7.80% | / | 2.26% | |
0.4 | / | 0.5 | 0.417 ± 0.015 | / | 0.401 ± 0.003 | 104.17% | / | 100.25% | 5.89% | / | 0.66% | |
0.6 | / | 1.0 | 0.598 ± 0.008 | / | 0.601 ± 0.005 | 99.50% | / | 99.94% | 1.66% | / | 0.79% | |
/ | 0.2 | 0.2 | / | 0.202 ± 0.009 | 0.201 ± 0.002 | / | 100.33% | 100.67% | / | 4.30% | 1.03% | |
/ | 0.4 | 0.4 | / | 0.415 ± 0.013 | 0.416 ± 0.011 | / | 102.69% | 103.17% | / | 3.49% | 3.01% | |
/ | 0.6 | 0.6 | / | 0.599 ± 0.003 | 0.599 ± 0.004 | / | 100.06% | 99.78% | / | 0.63% | 0.68% | |
0.2 | 0.2 | 0.2 | 0.201 ± 0.005 | 0.201 ± 0.005 | 0.199 ± 0.003 | 99.01% | 99.02% | 98.02% | 4.97% | 4.54% | 2.56% | |
0.4 | 0.4 | 0.4 | 0.404 ± 0.001 | 0.401 ± 0.003 | 0.391 ± 0.011 | 102.01% | 100.20% | 98.01% | 4.75% | 0.53% | 2.35% | |
0.6 | 0.6 | 0.6 | 0.504 ± 0.005 | 0.599 ± 0.030 | 0.601 ± 0.505 | 99.6% | 100.06% | 102.13% | 3.80% | 3.53% | 2.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Q.; Ma, B.; Fang, Y.; Gong, Y.; Li, J.; Zhang, M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues. Biosensors 2024, 14, 292. https://doi.org/10.3390/bios14060292
Mei Q, Ma B, Fang Y, Gong Y, Li J, Zhang M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues. Biosensors. 2024; 14(6):292. https://doi.org/10.3390/bios14060292
Chicago/Turabian StyleMei, Qing, Biao Ma, Yun Fang, Yunfei Gong, Jiali Li, and Mingzhou Zhang. 2024. "Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues" Biosensors 14, no. 6: 292. https://doi.org/10.3390/bios14060292
APA StyleMei, Q., Ma, B., Fang, Y., Gong, Y., Li, J., & Zhang, M. (2024). Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues. Biosensors, 14(6), 292. https://doi.org/10.3390/bios14060292