Multifunctional Three-in-One Sensor on t-ZnO for Ultraviolet and VOC Sensing for Bioengineering Applications
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.1.1. Preparation of t-ZnO Networks and Sensor Setup
2.1.2. Material Characterization
2.1.3. UV Installation
3. Results and Discussion
3.1. Morphological and Structural Characterization
3.2. Photo Response at Different Operating Conditions
3.3. Temperature Sensor
3.4. Gas Sensing
3.5. UV Sensing Mechanism
3.6. Gas-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhao, Y.; Jiang, D.; Zhao, M. A Spectrally Selective Self-Powered Photodetector Utilizing a ZnO/Cu2O Heterojunction. Appl. Surf. Sci. 2023, 636, 157800. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Desakumaran Suma, D.; Gopinathan Nair, S.; Ratnam, P.; Mathew, D.; Devasia, R. Zinc Oxide Tetrapod-Based Thermally Conducting Epoxy Systems for Aerospace Applications. Trans. Indian Natl. Acad. Eng. 2021, 6, 71–77. [Google Scholar] [CrossRef]
- Monroy, E.; Calle, F.; Pau, J.L.; Muñoz, E.; Omnès, F.; Beaumont, B.; Gibart, P. AlGaN-Based UV Photodetectors. J. Cryst. Growth 2001, 230, 537–543. [Google Scholar] [CrossRef]
- Puspasari, V.; Ridhova, A.; Hermawan, A.; Amal, M.I.; Khan, M.M. ZnO-Based Antimicrobial Coatings for Biomedical Applications. Bioprocess Biosyst. Eng. 2022, 45, 1421–1445. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.; Dong, J. Immobilized ZnO Based Nanostructures and Their Environmental Applications. Prog. Nat. Sci. Mater. Int. 2021, 31, 821–834. [Google Scholar] [CrossRef]
- Tonon, C.; Duvignacq, C.; Teyssedre, G.; Dinguirard, M. Degradation of the Optical Properties of ZnO-Based Thermal Control Coatings in Simulated Space Environment. J. Phys. D Appl. Phys. 2001, 34, 124. [Google Scholar] [CrossRef]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Review: Ultraviolet Radiation and Skin Cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in Cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef]
- Situm, M.; Buljan, M.; Bulat, V.; Lugović Mihić, L.; Bolanca, Z.; Simić, D. The Role of UV Radiation in the Development of Basal Cell Carcinoma. Coll. Antropol. 2008, 32 (Suppl. S2), 167–170. [Google Scholar] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Sturm, R.A. Skin Colour and Skin Cancer—MC1R, the Genetic Link. Melanoma Res. 2002, 12, 405–416. [Google Scholar] [CrossRef]
- Khadka, I.B.; Alluri, N.R.; Alsardia, M.M.; Joseph Raj, N.P.M.; Prasanna, A.P.S.; Ul Haq, B.; Kim, S.J.; Kim, S.-H. Ultra-Low-Power Photodetector Based on a High-Photoresponse, Plasmonic-Effect-Induced Gateless Quasi-Freestanding Graphene Device. Appl. Surf. Sci. 2023, 610, 155275. [Google Scholar] [CrossRef]
- Bohnert, S.; Klein, K.; Dinges, D.; Kalymnios, D.; Bohnert, S.; Klein, K.; Dinges, D.; Fürstenberg, W. Fiber-Delivery System for High-Power Fiber-Delivery System for High-Power UV-A Lightsources. In Proceedings of the SPIE BiOS, San Jose, CA, USA, 28 February–1 March 2023. [Google Scholar] [CrossRef]
- De Beule, P.A.A.; Dunsby, C.; Galletly, N.P.; Stamp, G.W.; Chu, A.C.; Anand, U.; Anand, P.; Benham, C.D.; Naylor, A.; French, P.M.W. A Hyperspectral Fluorescence Lifetime Probe for Skin Cancer Diagnosis. Rev. Sci. Instrum. 2007, 78, 123101. [Google Scholar] [CrossRef]
- Zang, R.; Li, D.; Tang, I.-C.; Wang, J.-F.; Yang, S.-T. Cell-Based Assays in High-Throughput Screening for Drug Discovery. Int. J. Biotechnol. Wellness Ind. 2012, 1, 31. [Google Scholar] [CrossRef]
- Sreeprasad, T.S.; Rodriguez, A.A.; Colston, J.; Graham, A.; Shishkin, E.; Pallem, V.; Berry, V. Electron-Tunneling Modulation in Percolating Network of Graphene Quantum Dots: Fabrication, Phenomenological Understanding, and Humidity/Pressure Sensing Applications. Nano Lett. 2013, 13, 1757–1763. [Google Scholar] [CrossRef]
- Gogurla, N.; Sinha, A.K.; Santra, S.; Manna, S.; Ray, S.K. Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices. Sci. Rep. 2014, 4, 6483. [Google Scholar] [CrossRef]
- Chakraborty, B.; Schadte, P.; Poschmann, M.; Lupan, C.; Zadorojneac, T.; Magariu, N.; Padunnappattu, A.; Schütt, F.; Oleg, L.; Siebert, L.; et al. MOF-Coated 3D-Printed ZnO Tetrapods as a Two-in-One Sensor for H2 Sensing and UV Detection; Springer: Cham, Switzerland, 2023; pp. 70–79. ISBN 978-3-031-42774-9. [Google Scholar] [CrossRef]
- Xu, J.; Xie, Z.; Yue, H.; Lu, Y.; Yang, F. A Triboelectric Multifunctional Sensor Based on the Controlled Buckling Structure for Motion Monitoring and Bionic Tactile of Soft Robots. Nano Energy 2022, 104, 107845. [Google Scholar] [CrossRef]
- Ilickas, M.; Marčinskas, M.; Peckus, D.; Mardosaitė, R.; Abakevičienė, B.; Tamulevičius, T.; Račkauskas, S. ZnO UV Sensor Photoresponse Enhancement by Coating Method Optimization. J. Photochem. Photobiol. 2023, 14, 100171. [Google Scholar] [CrossRef]
- Chao, J.; Yu, H.; Zhang, K.; Zhou, Y.; Meng, D.; Sun, Y. Integration of ZnO and Au/ZnO Nanostructures into Gas Sensor Devices for Sensitive Ethanolamine Detection. ACS Appl. Nano Mater. 2023, 6, 5994–6001. [Google Scholar] [CrossRef]
- Mirzaeifard, Z.; Shariatinia, Z.; Jourshabani, M.; Rezaei Darvishi, S.M. ZnO Photocatalyst Revisited: Effective Photocatalytic Degradation of Emerging Contaminants Using S-Doped ZnO Nanoparticles under Visible Light Radiation. Ind. Eng. Chem. Res. 2020, 59, 15894–15911. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.Y.; Gupta, M.K.; Majumder, S.; Kim, S.-W. Self-Compensated Insulating ZnO-Based Piezoelectric Nanogenerators. Adv. Funct. Mater. 2014, 24, 6949–6955. [Google Scholar] [CrossRef]
- Pietruszka, R.; Witkowski, B.S.; Gieraltowska, S.; Caban, P.; Wachnicki, L.; Zielony, E.; Gwozdz, K.; Bieganski, P.; Placzek-Popko, E.; Godlewski, M. New Efficient Solar Cell Structures Based on Zinc Oxide Nanorods. Sol. Energy Mater. Sol. Cells 2015, 143, 99–104. [Google Scholar] [CrossRef]
- Baro, B.; Khimhun, S.; Das, U.; Bayan, S. ZnO Based Triboelectric Nanogenerator on Textile Platform for Wearable Sweat Sensing Application. Nano Energy 2023, 108, 108212. [Google Scholar] [CrossRef]
- Zhong, Y.; Djurišić, A.B.; Hsu, Y.F.; Wong, K.S.; Brauer, G.; Ling, C.C.; Chan, W.K. Exceptionally Long Exciton Photoluminescence Lifetime in ZnO Tetrapods. J. Phys. Chem. C 2008, 112, 16286–16295. [Google Scholar] [CrossRef]
- Gedamu, D.; Paulowicz, I.; Kaps, S.; Lupan, O.; Wille, S.; Haidarschin, G.; Mishra, Y.K.; Adelung, R. Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors. Adv. Mater. 2014, 26, 1541–1550. [Google Scholar] [CrossRef]
- Ali, G.M.; Chakrabarti, P. Performance of ZnO-Based Ultraviolet Photodetectors Under Varying Thermal Treatment. IEEE Photonics J. 2010, 2, 784–793. [Google Scholar] [CrossRef]
- Agrawal, J.; Dixit, T.; Palani, I.A.; Singh, V. Development of Reliable and High Responsivity ZnO-Based UV-C Photodetector. IEEE J. Quantum Electron. 2020, 56, 1–5. [Google Scholar] [CrossRef]
- Liu, H.; Tan, C. Study on the Effect of Temperature on the Ratio of Signal to Noise for NDIR Gas Analyzer. In Proceedings of the 2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), Zhangjiajie, China, 18–19 July 2020; pp. 482–485. [Google Scholar] [CrossRef]
- Madden, J.E.; Lopez, L.; Yang, H.; Moore, D.G. Effect of Temperature on IC Signal Noise; Thermo Fisher Scientific Pierce: Rockford, IL, USA, 2016. [Google Scholar]
- Sharma, A.K.; Gupta, B.D. Influence of Temperature on the Sensitivity and Signal-to-Noise Ratio of a Fiber-Optic Surface-Plasmon Resonance Sensor. Appl. Opt. 2006, 45, 151–161. [Google Scholar] [CrossRef]
- Zhu, S.; Yuan, Q.; Yin, T.; You, J.; Gu, Z. Self-Assembly of Collagen-Based Biomaterials: Preparation, Characterizations and Biomedical Applications. J. Mater. Chem. B 2018, 6, 2650–2676. [Google Scholar] [CrossRef]
- Köktürk, M.; Alak, G.; Atamanalp, M. The Effects of N-Butanol on Oxidative Stress and Apoptosis in Zebra Fish (Danio Rerio) Larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 227, 108636. [Google Scholar] [CrossRef]
- Usha, R.; Maheshwari, R.; Dhathathreyan, A.; Ramasami, T. Structural Influence of Mono and Polyhydric Alcohols on the Stabilization of Collagen. Colloids Surf. B Biointerfaces 2006, 48, 101–105. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Li, G. The Effect of Glycerol and 2-Propanol on the Molecular Aggregation of Collagen in Solution. Int. J. Biol. Macromol. 2015, 72, 1097–1103. [Google Scholar] [CrossRef]
- Pullano, S.A.; Islam, S.K.; Fiorillo, A.S. Pyroelectric Sensor for Temperature Monitoring of Biological Fluids in Microchannel Devices. IEEE Sens. J. 2014, 14, 2725–2730. [Google Scholar] [CrossRef]
- Dong, H.; Liu, W.; Li, Y.; Chen, X.; Wang, D. Fully Printed Flexible Zinc Oxide Patch for Wearable UV Light Sensing. Adv. Electron. Mater. 2023, 9, 2300469. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Biomedical Applications of Zinc Oxide Nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef]
- Mishra, Y.; Kaps, S.; Schuchardt, A.; Paulowicz, I.; Jin, X.; Gedamu, D.; Wille, S.; Lupan, O.; Adelung, R. Versatile Fabrication of Complex Shaped Metal Oxide Nano-Microstructures and Their Interconnected Networks for Multifunctional Applications. Powder Part. 2014, 31, 92–110. [Google Scholar] [CrossRef]
- Reimer, T.; Paulowicz, I.; Röder, R.; Kaps, S.; Lupan, O.; Chemnitz, S.; Benecke, W.; Ronning, C.; Adelung, R.; Mishra, Y.K. Single Step Integration of ZnO Nano- and Microneedles in Si Trenches by Novel Flame Transport Approach: Whispering Gallery Modes and Photocatalytic Properties. ACS Appl. Mater. Interfaces 2014, 6, 7806–7815. [Google Scholar] [CrossRef]
- Lupan, C.; Khaledialidusti, R.; Mishra, A.K.; Postica, V.; Terasa, M.-I.; Magariu, N.; Pauporté, T.; Viana, B.; Drewes, J.; Vahl, A.; et al. Pd-Functionalized ZnO:Eu Columnar Films for Room-Temperature Hydrogen Gas Sensing: A Combined Experimental and Computational Approach. ACS Appl. Mater. Interfaces 2020, 12, 24951–24964. [Google Scholar] [CrossRef]
- Nagpal, R.; Chiriac, M.; Sereacov, A.; Bîrnaz, A.; Nicolai, A.; Lupan, C.; Buzdugan, A.; Sandu, I.; Siebert, L.; Lupan, O. Annealing effect on UV detection properties of ZnO:Al structures. J. Eng. Sci. 2024, 30, 45–62. [Google Scholar] [CrossRef]
- Paulowicz, I.; Postica, V.; Lupan, O.; Wolff, N.; Shree, S.; Cojocaru, A.; Deng, M.; Mishra, Y.K.; Tiginyanu, I.; Kienle, L.; et al. Zinc Oxide Nanotetrapods with Four Different Arm Morphologies for Versatile Nanosensors. Sens. Actuators B Chem. 2018, 262, 425–435. [Google Scholar] [CrossRef]
- Lupan, O.; Chow, L.; Chai, G. A Single ZnO Tetrapod-Based Sensor. Sens. Actuators B Chem. 2009, 141, 511–517. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Xie, X.; Wang, N.; Ma, Z.; Song, K.; Zhang, X. Analysis of Temperature-Dependent Characteristics of a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector. Chin. Sci. Bull. 2012, 57, 4427–4433. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Hou, X. Temperature Dependence of Performance of ZnO-Based Metal-Semiconductor-Metal Ultraviolet Photodetectors. Sens. Actuators A Phys. 2014, 209, 149–153. [Google Scholar] [CrossRef]
- Yin, Z.G.; Zhang, X.W.; Fu, Z.; Yang, X.L.; Wu, J.L.; Wu, G.S.; Gong, L.; Chu, P.K. Persistent Photoconductivity in ZnO Nanostructures Induced by Surface Oxygen Vacancy. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2012, 6, 117–119. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt, Rinehart and Winston: New York, NY, USA, 1976; 826p, ISBN 0030839939/9780030839931/0030493463/9780030493461. [Google Scholar]
- Du, G.H.; Xu, F.; Yuan, Z.Y.; Van Tendeloo, G. Flowerlike ZnO Nanocones and Nanowires: Preparation, Structure, and Luminescence. Appl. Phys. Lett. 2006, 88, 243101. [Google Scholar] [CrossRef]
- Madhusoodhanan, S.; Sabbar, A.; Tran, H.; Lai, P.; Gonzalez, D.; Mantooth, A.; Yu, S.-Q.; Chen, Z. High-Temperature Analysis of Optical Coupling Using AlGaAs/GaAs LEDs for High-Density Integrated Power Modules. Sci. Rep. 2022, 12, 3168. [Google Scholar] [CrossRef]
- Hwang, J.; Lin, M. Sensors and Actuators: A. Physical ZnO Hole Blocking Layer Induced Highly UV Responsive p-NiO/n-ZnO/n-Si Heterojunction Photodiodes. Sens. Actuators A Phys. 2023, 349, 114087. [Google Scholar] [CrossRef]
- Zong, X.-L.; Zhu, R. Effects of Surface Adsorbed Oxygen, Applied Voltage, and Temperature on UV Photoresponse of ZnO Nanorods. Chinese Phys. B 2015, 24, 107703. [Google Scholar] [CrossRef]
- Talib, R.A.; Abdullah, M.J.; Al-Salman, H.S.; Mohammad, S.M.; Allam, N.K. ZnO Nanorods/Polyaniline Heterojunctions for Low-Power Flexible Light Sensors. Mater. Chem. Phys. 2016, 181, 7–11. [Google Scholar] [CrossRef]
- Postica, V.; Paulowicz, I.; Lupan, O.; Schütt, F.; Wolff, N.; Cojocaru, A.; Mishra, Y.K.; Kienle, L.; Adelung, R. The Effect of Morphology and Functionalization on UV Detection Properties of ZnO Networked Tetrapods and Single Nanowires. Vacuum 2019, 166, 393–398. [Google Scholar] [CrossRef]
- Ghorbani, L.; Nasirian, S. Zinc Oxide Nanorods Assisted by Polyaniline Network as a Flexible Self-Powered Ultraviolet Photodetector: A Comprehensive Study. Appl. Surf. Sci. 2020, 527, 146786. [Google Scholar] [CrossRef]
- Perng, D.-C.; Lin, H.-P.; Hong, M.-H. High-Performance Ultraviolet Detection and Visible-Blind Photodetector Based on Cu2O/ZnO Nanorods with Poly-(N-Vinylcarbazole) Intermediate Layer. Appl. Phys. Lett. 2015, 107, 241113. [Google Scholar] [CrossRef]
- Weng, S.; Zhao, M.; Jiang, D. Preparation and Performance Enhancement Study of Organic ZnO/Au/PEDOT:PSS Heterojunction UV Photodetector. J. Mater. Sci. Mater. Electron. 2022, 33, 5161–5173. [Google Scholar] [CrossRef]
- Huynh, H.N.D.; Nguyen, B.G.M.; Dinh, T.M.; Nguyen, N.M.; Tran, C.K.; Nguyen, T.T.; Tran, N.H.T.; La, H.P.P.; Van Tran, T.T.; Duy, L.T.; et al. Enhancing the Performance of ZnO-Based Photodetectors by Forming ZnO/(Cu:ZnO) Core/Shell Nanorods. ACS Appl. Electron. Mater. 2024, 6, 1894–1903. [Google Scholar] [CrossRef]
- Pham, H.N.; Tong, M.H.; Huynh, H.Q.; Phan, H.D.; Tran, C.K.; Phan, B.T.; Dang, V.Q. The Enhancement of Visible Photodetector Performance Based on Mn Doped ZnO Nanorods by Substrate Architecting. Sens. Actuators A Phys. 2020, 311, 112085. [Google Scholar] [CrossRef]
- Khalil, A.; Dimas, C.; Hashaikeh, R. Electrospun Copper Oxide Nanofibers as Infrared Photodetectors. Appl. Phys. A 2015, 118, 217–224. [Google Scholar] [CrossRef]
- Ji, L.-W.; Wu, C.-Z.; Lin, C.-M.; Meen, T.-H.; Lam, K.-T.; Peng, S.-M.; Young, S.-J.; Liu, C.-H. Characteristic Improvements of ZnO-Based Metal–Semiconductor–Metal Photodetector on Flexible Substrate with ZnO Cap Layer. Jpn. J. Appl. Phys. 2010, 49, 52201. [Google Scholar] [CrossRef]
- Kaya, Ş.E. Effect of Annealing Temperature on Structural, Electrical, and UV Sensing characteristics of n-ZnO/p-Si Heterojunction Photodiodes. 2019, 43, 253–263. [CrossRef]
- Amiri, I.S.; Houssien, F.M.A.M.; Rashed, A.N.Z.; Mohammed, A.E.-N.A. Temperature Effects on Characteristics and Performance of Near-Infrared Wide Bandwidth for Different Avalanche Photodiodes Structures. Results Phys. 2019, 14, 102399. [Google Scholar] [CrossRef]
- Khokhra, R.; Bharti, B.; Lee, H.N.; Kumar, R. Visible and UV Photo-Detection in ZnO Nanostructured Thin Films via Simple Tuning of Solution Method/639/301/1005/639/301/357/551/140/146 Article. Sci. Rep. 2017, 7, 15032. [Google Scholar] [CrossRef]
- Vempati, S.; Mitra, J.; Dawson, P. One-Step Synthesis of ZnO Nanosheets: A Blue-White Fluorophore. Nanoscale Res. Lett. 2012, 7, 470. [Google Scholar] [CrossRef] [PubMed]
- Lupan, C.; Bîrnaz, A.; Buzdugan, A.; Magariu, N.; Lupan, O. Gamma Radiation Sensitization of ZnO/Al2O3 Sensors Based on Nanoheterostructures. In Proceedings of the 6th International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 20–23 September 2023; Sontea, V., Tiginyanu, I., Railean, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 22–30. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Pan, Y.; Cheng, L.; Zhai, S.; Gao, X. A Two-Stage Method for Real-Time Baseline Drift Compensation in Gas Sensors. Meas. Sci. Technol. 2022, 33, 045108. [Google Scholar] [CrossRef]
- Li, Q.H.; Gao, T.; Wang, Y.G.; Wang, T.H. Adsorption and Desorption of Oxygen Probed from ZnO Nanowire Films by Photocurrent Measurements. Appl. Phys. Lett. 2005, 86, 123117. [Google Scholar] [CrossRef]
- Telfah, A.; Al Bataineh, Q.M.; Ahmad, A.A.; Bani, A.A.; Ahmad, S.; Sabirianov, R.F.; Ahmad, A.A. Modulated Transparent Conductive Zinc Oxide Films for Efficient Water Splitting. Appl. Phys. A 2024, 130, 23. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Q.J.; Zhou, Z.L.; Wang, Y.D. A High Sensitivity Gas Sensor for Formaldehyde Based on CdO and In2O3 Doped Nanocrystalline SnO2. Nanotechnology 2008, 19, 95506. [Google Scholar] [CrossRef] [PubMed]
- Morrison, R. Electronic Processes on Semiconductor Surfaces during Chemisorption; Springer: Berlin/Heidelberg, Germany, 1991; p. 135. [Google Scholar]
- Wang, X.; Liu, F.; Chen, X.; Song, X.; Xu, G.; Han, Y.; Tian, J.; Cui, H.-Z. In2O3 Nanoparticles Decorated ZnO Hierarchical Structures for N-Butanol Sensor. ACS Appl. Nano Mater. 2020, 3, 3295–3304. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, L.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J. Chemiresistive Sensors Based on Core-Shell ZnO@TiO2 Nanorods Designed by Atomic Layer Deposition for n-Butanol Detection. Sens. Actuators B Chem. 2020, 310, 127846. [Google Scholar] [CrossRef]
- Liu, F.; Huang, G.; Wang, X.; Xie, X.; Xu, G.; Lu, G.; He, X.; Tian, J.; Cui, H. High Response and Selectivity of Single Crystalline ZnO Nanorods Modified by In2O3 Nanoparticles for N-Butanol Gas Sensing. Sens. Actuators B Chem. 2018, 277, 144–151. [Google Scholar] [CrossRef]
Sensing Material | λ (nm) | Intensity (mW/cm2) | R (A/W) | D (Jones) | EQE (%) | Applied Bias (V) | Reference |
---|---|---|---|---|---|---|---|
ZnO NRs/PANI | 400 | - | 0.039 | - | 12.3 | 5 | [55] |
t-ZnO with complex arms | 365 | 50 | 2.1 | - | 713.4 | 3 | [56] |
ZnO/PANI NC | 365 | 12,740 | 1.43 | - | 485.8 | 0 | [57] |
Cu2O/ZnO/PVK | 360 | 24.9 µ | 13.28 | 1.03 × 1013 | - | −0.1 | [58] |
ZnO/Au/PEDOT:PSS | 380 | - | 0.181 | 1.39 × 1011 | 59 | 8 | [59] |
ZnO/(Cu:ZnO) | 395 | 4 | 4.5 m | - | 1.4 | 0.5 | [60] |
ZnO:Mn NRs | 400 | - | 1.25 m | - | 0.3 | 1 | [61] |
t-ZnO networks | 394 | 0.56 µ | 5.85 | 1.6 × 1014 | 1841.1 | 5 | This work |
Bias Voltage (V) | Dark Current (nA) | Response | Responsivity (A/W) | IUV (μA) | Response/Recovery Time (s) |
1 | 1.4 | 1164 | 0.394 | 1.62 | 386/514 |
3 | 4.2 | 1644 | 1.680 | 6.89 | 371/614 |
5 | 10.2 | 2369 | 5.85 | 24 | 344/937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagpal, R.; Lupan, C.; Bîrnaz, A.; Sereacov, A.; Greve, E.; Gronenberg, M.; Siebert, L.; Adelung, R.; Lupan, O. Multifunctional Three-in-One Sensor on t-ZnO for Ultraviolet and VOC Sensing for Bioengineering Applications. Biosensors 2024, 14, 293. https://doi.org/10.3390/bios14060293
Nagpal R, Lupan C, Bîrnaz A, Sereacov A, Greve E, Gronenberg M, Siebert L, Adelung R, Lupan O. Multifunctional Three-in-One Sensor on t-ZnO for Ultraviolet and VOC Sensing for Bioengineering Applications. Biosensors. 2024; 14(6):293. https://doi.org/10.3390/bios14060293
Chicago/Turabian StyleNagpal, Rajat, Cristian Lupan, Adrian Bîrnaz, Alexandr Sereacov, Erik Greve, Monja Gronenberg, Leonard Siebert, Rainer Adelung, and Oleg Lupan. 2024. "Multifunctional Three-in-One Sensor on t-ZnO for Ultraviolet and VOC Sensing for Bioengineering Applications" Biosensors 14, no. 6: 293. https://doi.org/10.3390/bios14060293
APA StyleNagpal, R., Lupan, C., Bîrnaz, A., Sereacov, A., Greve, E., Gronenberg, M., Siebert, L., Adelung, R., & Lupan, O. (2024). Multifunctional Three-in-One Sensor on t-ZnO for Ultraviolet and VOC Sensing for Bioengineering Applications. Biosensors, 14(6), 293. https://doi.org/10.3390/bios14060293