Evaluation of the Immune Response of Patulin by Proteomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Materials, and Apparatus
2.2. Synthesis and Identification of Complete Antigens for Patulin
2.3. Immunization of New Zealand White Rabbits with the Complete Antigen PAT-BSA
2.4. Analysis of Serum Response of Patulin Immunization by ELISA
2.5. Protein Extraction, Digestion, and Cleanup of Rabbit Serum
2.6. 4D-DIA Quantitative Proteomic Analysis of Rabbit Serum
2.7. Proteomic Bioinformatics Analysis
3. Results and Discussion
3.1. Synthesis and Analysis of Complete Antigens for Patulin
3.2. Analysis of Serum Response of Patulin Immunization by ELISA
3.3. Differential Expression Protein Analysis in Rabbit Serum
3.4. Functional Annotation of Differential Proteins
3.5. Functional Enrichment Analysis of Differential Proteins by GO, KOG, and KEGG
3.6. Weighted Protein Co-Expression Network Analysis of Differential Proteins
3.7. Analysis of the Protein–Protein Interaction Networks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bacha, S.A.S.; Li, Y.; Nie, J.; Xu, G.; Han, L.; Farooq, S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. Front. Plant Sci. 2023, 14, 1139757. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z.; Waseem, M.; Razis, A.F.A.; Bhatti, I.A.; Khaneghah, A.M.; Mohammed, O.A.; Lakshminarayanan, S.P.; Iqbal, M. Mycotoxin patulin contamination in various fruits and estimating its dietary impact on the consumers: From orchard to table. Heliyon 2024, 10, e30252. [Google Scholar] [CrossRef] [PubMed]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, Y.; Zong, Y.; Shang, Y.; Zhang, Z.; Xu, X.; Wang, X.; Long, M.; Tian, S. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ. Microbiol. 2019, 21, 1124–1139. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, Z.; Yuan, Y.; Yue, T. Survey of patulin in apple juice concentrates in Shaanxi (China) and its dietary intake. Food Control 2013, 34, 570–573. [Google Scholar] [CrossRef]
- Ji, X.; Li, R.; Yang, H.; Qi, P.; Xiao, Y.; Qian, M. Occurrence of patulin in various fruit products and dietary exposure assessment for consumers in China. Food Control 2017, 78, 100–107. [Google Scholar] [CrossRef]
- Baert, K.; De Meulenaer, B.; Kamala, A.; Kasase, C.; Devlieghere, F. Occurrence of patulin in organic, conventional, and handcrafted apple juices marketed in Belgium. J. Food Prot. 2006, 69, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Kim, K.; Seo, E.; Kassim, N.; Mtenga, A.B.; Shim, W.B.; Lee, S.H.; Chung, D.H. Occurrence of patulin in various fruit juices from South Korea: An exposure assessment. Food Sci. Biotechnol. 2010, 19, 1–5. [Google Scholar] [CrossRef]
- Fan, L.; Hu, H. Involvement of multiple forms of cell death in patulin-induced toxicities. Toxicon 2024, 244, 107768. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, X.; Chen, Z.; Zeng, X.; Yue, T.; Yuan, Y. Effects of selenium nanoparticles on preventing patulin-induced liver, kidney and gastrointestinal damage. Foods 2022, 11, 749. [Google Scholar] [CrossRef]
- Adunphatcharaphon, S.; Elliott, C.T.; Sooksimuang, T.; Charlermroj, R.; Petchkongkaew, A.; Karoonuthaisiri, N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. J. Hazard. Mater. 2022, 432, 128706. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.P.; Zakaria, S.N.A.; Ahmed, M.U. Trends in the development of immunoassays for mycotoxins and food allergens using gold and carbon nanostructured material. Food Chem. Adv. 2022, 1, 100069. [Google Scholar] [CrossRef]
- McElroy, L.J.; Weiss, C.M. The production of polyclonal antibodies against the mycotoxin derivative patulin hemiglutarate. Can. J. Microbiol. 1993, 39, 861–863. [Google Scholar] [CrossRef] [PubMed]
- Sheu, F.; Lee, O.; Shyu, Y.T. The synthesis of antigens and the production of antibodies against patulin derivatives. J. Food Drug Anal. 1999, 7, 65–72. [Google Scholar] [CrossRef]
- de Champdore, M.; Bazzicalupo, P.; De Napoli, L.; Montesarchio, D.; Di Fabio, G.; Cocozza, I.; Rossi, M.; D’Auria, S. A new competitive fluorescence assay for the detection of patulin toxin. Anal. Chem. 2007, 79, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Mhadhbi, H.; Benrejeb, S.; Martel, A. Studies on the affinity chromatography purification of anti-patulin polyclonal antibodies by enzyme linked immunosorbent assay and electrophoresis. Food Addit. Contam. 2005, 22, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, D.; Kim, M. Immunoliposome-based fluorometric patulin assay by using immunomagnetic nanoparticles. Microchim. Acta 2019, 186, 1–7. [Google Scholar] [CrossRef]
- Fliege, R.; Metzler, M. Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts. Chem. Res. Toxicol. 2000, 13, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Glaser, N.; Stopper, H. Patulin: Mechanism of genotoxicity. Food Chem. Toxicol. 2012, 50, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.; Mercader, J.V.; Agulló, C.; Gil-Sepulcre, M.; Abad-Somovilla, A.; Abad-Fuentes, A. Chemical strategies for triggering the immune response to the mycotoxin patulin. Sci. Rep. 2021, 11, 23438. [Google Scholar] [CrossRef]
- Shuken, S.R. An introduction to mass spectrometry-based proteomics. J. Proteome Res. 2023, 22, 2151–2171. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Hussain, M.; Shahid, F.; Siddeeg, A.; Al-Farga, A. Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Sci. Nutr. 2022, 10, 2333–2346. [Google Scholar] [CrossRef] [PubMed]
- Pedreschi, R.; Hertog, M.; Lilley, K.S.; Nicolai, B. Proteomics for the food industry: Opportunities and challenges. Crit. Rev. Food Sci. 2010, 50, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.C.S. Proteomics technologies and challenges. Genom. Proteom. Bioinf. 2007, 5, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.H.; Zhou, P.Y.; Gong, P.Y.; Fu, J.L.; Liu, C.; Wang, H.P. Progress in data analysis methods for proteome mass spectrometry based on data-independent acquisition. Prog. Biochem. Biophys. 2022, 49, 2364–2386. [Google Scholar] [CrossRef]
- VanDuijn, M.M.; Dekker, L.J.; van IJcken, W.F.; Sillevis Smitt, P.A.; Luider, T.M. Immune repertoire after immunization as seen by next-generation sequencing and proteomics. Front. Immunol. 2017, 8, 291394. [Google Scholar] [CrossRef] [PubMed]
- Boutz, D.R.; Horton, A.P.; Wine, Y.; Lavinder, J.J.; Georgiou, G.; Marcotte, E.M. Proteomic identification of monoclonal antibodies from serum. Anal. Chem. 2014, 86, 4758–4766. [Google Scholar] [CrossRef] [PubMed]
- Sennels, L.; Salek, M.; Lomas, L.; Boschetti, E.; Righetti, P.G.; Rappsilber, J. Proteomic analysis of human blood serum using peptide library beads. J. Proteome Res. 2007, 6, 4055–4062. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Dou, J.; Wu, C.; Fan, G.; Li, T.; Shen, D. Intestinal barrier protective study of jujube peel polyphenols/zein complexes by a combined Caco-2 cell and caenorhabditis elegans model: A perspective of proteomics. J. Agric. Food Chem. 2023, 71, 10097–10106. [Google Scholar] [CrossRef]
- Sakamoto, S.; Nagamitsu, R.; Yusakul, G.; Miyamoto, T.; Tanaka, H.; Morimoto, S. Ultrasensitive immunoassay for monocrotaline using monoclonal antibody produced by N,N’-carbonyldiimidazole mediated hapten-carrier protein conjugates. Talanta 2017, 168, 67–72. [Google Scholar] [CrossRef]
- Xu, N.; Zhu, Q.; Zhu, J.; Jia, J.; Wei, X.; Wang, Y. Novel latex microsphere immunochromatographic assay for rapid detection of cadmium ion in asparagus. Foods 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.Q.; Hernandez, C.; Waridel, P.; Potts, A.; Barblan, J.; Lisacek, F.; Quadroni, M. Addressing trypsin bias in large scale (phospho) proteome analysis by size exclusion chromatography and secondary digestion of large post-trypsin peptides. J. Proteome Res. 2011, 10, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Kodangattil, S.; Huard, C.; Ross, C.; Li, J.; Gao, H.; Mascioni, A.; Hodawadekar, S.; Naik, S.; Min-debartolo, J.; Visintin, A.; et al. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing. MAbs 2014, 6, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Peng, H.; Rader, C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp. Mol. Med. 2017, 49, e305. [Google Scholar] [CrossRef] [PubMed]
- Christopher, J.A.; Stadler, C.; Martin, C.E.; Morgenstern, M.; Pan, Y.; Betsinger, C.N.; Rattray, D.G.; Mahdessian, D.; Gingras, A.; Warscheid, B.; et al. Subcellular proteomics. Nat. Rev. Methods Prime 2021, 1, 32. [Google Scholar] [CrossRef] [PubMed]
- Drissi, R.; Dubois, M.L.; Boisvert, F.M. Proteomics methods for subcellular proteome analysis. FEBS J. 2013, 280, 5626–5634. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Xu, X.; Huang, P.; Bao, G.; Liu, Y. Safety and efficacy of the Bordetella bronchiseptica vaccine combined with a vegetable oil adjuvant and multi-omics analysis of its potential role in the protective response of rabbits. Pharmaceutics 2022, 14, 1434. [Google Scholar] [CrossRef]
- Li, Y.; Kong, Y.; Yu, X.; Yu, W.; Wen, K.; Shen, J.; Wang, Z. Characteristics of rabbit hapten-specific and germline-based BCR repertoires following repeated immunization. One Health Adv. 2023, 1, 17. [Google Scholar] [CrossRef]
- Wine, Y.; Boutz, D.R.; Lavinder, J.J.; Miklos, A.E.; Hughes, R.A.; Hoi, K.H.; Jung, S.T.; Horton, A.P.; Murrin, E.M.; Ellington, A.D.; et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. USA 2013, 110, 2993–2998. [Google Scholar] [CrossRef]
- Liu, F.J.; Shen, S.K.; Chen, Y.W.; Dong, X.P.; Han, J.R.; Xie, H.J.; Ding, Z.W. Quantitative proteomics reveals the relationship between protein changes and off-flavor in Russian sturgeon (Acipenser gueldenstaedti) fillets treated with low temperature vacuum heating. Food Chem. 2022, 370, 131371. [Google Scholar] [CrossRef]
- Shen, S.; Liu, F.; Chen, Y.; Xie, H.; Hu, H.; Ren, S.; Ding, Z.; Bu, Q. Insight into the molecular mechanism of texture improvement of sturgeon fillets treated by low temperature vacuum heating technology using label-free quantitative proteomics. Food Res. Int. 2022, 157, 111251. [Google Scholar] [CrossRef] [PubMed]
- Brackley, K.I.; Grantham, J. Activities of the chaperonin containing TCP-1 (CCT): Implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperon. 2009, 14, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; Gurbuxani, S.; Ravagnan, L.; Kroemer, G. Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochem. Biophys. Res. Commun. 2001, 286, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Qin, X.; Qiu, Y.; Hou, L.; Yang, N. The change of synovial fluid proteome in rabbit surgery-induced model of knee osteoarthritis. Am. J. Transl. Res. 2018, 10, 2087–2101. [Google Scholar]
- Chondrogianni, N.; Sakellari, M.; Lefaki, M.; Papaevgeniou, N.; Gonos, E.S. Proteasome activation delays aging in vitro and in vivo. Free Radic. Bio. Med. 2014, 71, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U.; Bialy, L.P.; Ebstein, F.; Bech-Otschir, D.; Voigt, A.; Schröter, F.; Prozorovski, T.; Lange, N.; Steffen, J.; Rieger, M.; et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 2010, 142, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, A.N.; Perez, W.B.; Kinzy, T.G. The many roles of the eukaryotic elongation factor 1 complex. WIREs RNA 2012, 3, 543–555. [Google Scholar] [CrossRef]
- Lee, A.S. The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem. Sci. 2001, 26, 504–510. [Google Scholar] [CrossRef]
Accession Number | Protein Name | Gene | Protein Regulated | FC | p-Value |
---|---|---|---|---|---|
G1U9T1 | T-complex protein 1 subunit eta | CCT7 | down | 0.508072 | 0.004703 |
B6V9S9 | T-complex protein 1 subunit beta | CCT2 | down | 0.507246 | 0.02178 |
G1SCN8 | T-complex protein 1 subunit gamma | CCT3 | down | 0.498206 | 0.009301 |
G1TMS5 | T-complex protein 1 subunit epsilon | CCT5 | down | 0.488531 | 0.000455 |
G1U9U0 | T-complex protein 1 subunit delta | CCT4 | down | 0.526914 | 0.004409 |
A0A0G2JH20 | Heat shock protein HSP 90-alpha | HSP90AA1 | down | 0.358797 | 0.014942 |
G1SR03 | Transitional endoplasmic reticulum ATPase | VCP | down | 0.46324 | 8.21 × 10−5 |
A0A5F9DAT4 | 26S proteasome non-ATPase regulatory subunit 1 | PSMD1 | down | 0.662827 | 0.013399 |
G1SSA2 | 26S proteasome non-ATPase regulatory subunit 2 | PSMD2 | down | 0.635052 | 0.019449 |
G1SZ14 | Proteasome subunit alpha type-3 | PSMA3 | up | 2.304367 | 0.003462 |
G1T670 | Proteasome subunit alpha type | PSMA5 | up | 2.100609 | 0.001789 |
P30947 | Heat shock protein HSP 90-beta | HSP90AB1 | down | 0.437356 | 0.003641 |
P29694 | Elongation factor 1-gamma | EEF1G | down | 0.643377 | 0.010648 |
A0A5F9C804 | glucose-regulated protein | HSPA5 | up | 1.861571 | 0.002569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Ma, L.; Wang, Q.; Hammock, B.D.; Xiao, G.; Liu, R. Evaluation of the Immune Response of Patulin by Proteomics. Biosensors 2024, 14, 322. https://doi.org/10.3390/bios14070322
Wang F, Ma L, Wang Q, Hammock BD, Xiao G, Liu R. Evaluation of the Immune Response of Patulin by Proteomics. Biosensors. 2024; 14(7):322. https://doi.org/10.3390/bios14070322
Chicago/Turabian StyleWang, Feng, Lukai Ma, Qin Wang, Bruce D. Hammock, Gengsheng Xiao, and Ruijing Liu. 2024. "Evaluation of the Immune Response of Patulin by Proteomics" Biosensors 14, no. 7: 322. https://doi.org/10.3390/bios14070322
APA StyleWang, F., Ma, L., Wang, Q., Hammock, B. D., Xiao, G., & Liu, R. (2024). Evaluation of the Immune Response of Patulin by Proteomics. Biosensors, 14(7), 322. https://doi.org/10.3390/bios14070322