Non-Faradaic Impedimetric Detection of Heavy Metal Ions via a Hybrid Nanoparticle-DNAzyme Biosensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Detection of Heavy Metal Ions via EIS
3.2. Heavy Metal Ion Detection in Real Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koli, P.B.; Kapadnis, K.H.; Deshpande, U.G. Study of Physico-Chemical Properties, Detection and Toxicity Study of Organic Compounds from Effluent of MIDC Thane and GIDC Ankleshwar Industrial Zone. Appl. Water Sci. 2018, 8, 196. [Google Scholar] [CrossRef]
- Mostafaie, A.; Cardoso, D.N.; Kamali, M.; Loureiro, S. A Scientometric Study on Industrial Effluent and Sludge Toxicity. Toxics 2021, 9, 176. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Farzad, F.; Zaboli, A.; Zeraatkar Moghaddam, A. State-of-the-Art Predictive Modeling of Heavy Metal Ions Removal from the Water Environment Using Nanotubes. Sci. Rep. 2023, 13, 11377. [Google Scholar] [CrossRef]
- Birjandi, N.; Younesi, H.; Bahramifar, N. Treatment of Wastewater Effluents from Paper-Recycling Plants by Coagulation Process and Optimization of Treatment Conditions with Response Surface Methodology. Appl. Water Sci. 2016, 6, 339–348. [Google Scholar] [CrossRef]
- Lambert, M.; Leven, B.A.; Green, R.M. New Methods of Cleaning up Heavy Metal in Soils and Water. Environ. Sci. Technol. Briefs Citiz. 2000, 7, 133–163. [Google Scholar]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and Removal of Heavy Metal Ions: A Review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. Nanomaterial-Based Fluorescent Sensors for the Detection of Lead Ions. J. Hazard. Mater. 2021, 407, 124379. [Google Scholar] [CrossRef]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New Insights into the Capture Performance and Mechanism of Hazardous Metals Cr3+ and Cd2+ onto an Effective Layered Double Hydroxide Based Material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef]
- Vikesland, P.J. Nanosensors for Water Quality Monitoring. Nat. Nanotechnol. 2018, 13, 651–660. [Google Scholar] [CrossRef]
- Trindade, A.S.; Dantas, A.F.; Lima, D.C.; Ferreira, S.L.; Teixeira, L.S. Multivariate Optimization of Ultrasound-Assisted Extraction for Determination of Cu, Fe, Ni and Zn in Vegetable Oils by High-Resolution Continuum Source Atomic Absorption Spectrometry. Food Chem. 2015, 185, 145–150. [Google Scholar] [CrossRef]
- Losev, V.N.; Buyko, O.V.; Trofimchuk, A.K.; Zuy, O.N. Silica Sequentially Modified with Polyhexamethylene Guanidine and Arsenazo I for Preconcentration and ICP–OES Determination of Metals in Natural Waters. Microchem. J. 2015, 123, 84–89. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Chen, B.; He, M.; Hu, B. Chip-Based Array Magnetic Solid Phase Microextraction on-Line Coupled with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Heavy Metals in Cells. Analyst 2015, 140, 5619–5626. [Google Scholar] [CrossRef]
- Beltrán, B.; Leal, L.O.; Ferrer, L.; Cerdà, V. Determination of Lead by Atomic Fluorescence Spectrometry Using an Automated Extraction/Pre-Concentration Flow System. J. Anal. At. Spectrom. 2015, 30, 1072–1079. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical Impedance Spectroscopy. Nat. Rev. Methods Primers 2021, 1, 41. [Google Scholar] [CrossRef]
- Valiūnienė, A.; Petroniene, J.; Morkvenaite-Vilkonciene, I.; Popkirov, G.; Ramanaviciene, A.; Ramanavicius, A. Redox-Probe-Free Scanning Electrochemical Microscopy Combined with Fast Fourier Transform Electrochemical Impedance Spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 9831–9836. [Google Scholar] [CrossRef]
- Valiūnienė, A.; Sabirovas, T.; Petronienė, J.; Ramanavičius, A. Towards the Application of Fast Fourier Transform-Scanning Electrochemical Impedance Microscopy (FFT-SEIM). J. Electroanal. Chem. 2020, 864, 114067. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, H.J.; Lee, J.-H.; Park, J.H.; Kim, J.; Hwang, K.S.; Lee, B.C. Amyloid Beta Detection by Faradaic Electrochemical Impedance Spectroscopy Using Interdigitated Microelectrodes. Sensors 2018, 18, 426. [Google Scholar] [CrossRef]
- Daniels, J.S.; Pourmand, N. Label-free Impedance Biosensors: Opportunities and Challenges. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2007, 19, 1239–1257. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Hezam, M.; Al-Gawati, M.A.; Alzahrani, K.E.; Alswieleh, A.; Arunachalam, P.; Al-Mayouf, A.; Alodhayb, A.; Albrithen, H. Label-Free and Simple Detection of Trace Pb(II) in Tap Water Using Non-Faradaic Impedimetric Sensors. Sens. Actuators A Phys. 2021, 329, 112833. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Alqahtani, F.A.; El-Toni, A.M.; Albrithen, H.; Alshehri, N.A. Coffee-Ring Effect-Driven TiO2 Microstructures as Sensing Layer for Redox-Free Impedimetric Detection of Hg(II) in Tap Water. Surf. Interfaces 2022, 33, 102201. [Google Scholar] [CrossRef]
- Jacobs, M.; Panneer Selvam, A.; Craven, J.E.; Prasad, S. Antibody-Conjugated Gold Nanoparticle-Based Immunosensor for Ultra-Sensitive Detection of Troponin-T. J. Lab. Autom. 2014, 19, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, V.J.; Aithal, S.; Eaton, S.; Bothara, M.; Wiktor, P.; Prasad, S. NanoMonitor: A Miniature Electronic Biosensor for Glycan Biomarker Detection. Nanomedicine 2010, 5, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, N.R.; Muthukumar, S.; Prasad, S. Ultrasensitive and Low-Volume Point-of-Care Diagnostics on Flexible Strips—A Study with Cardiac Troponin Biomarkers. Sci. Rep. 2016, 6, 33423. [Google Scholar] [CrossRef]
- Breaker, R.R.; Joyce, G.F. A DNA Enzyme That Cleaves RNA. Chem. Biol. 1994, 1, 223–229. [Google Scholar] [CrossRef]
- Liang, G.; Man, Y.; Li, A.; Jin, X.; Liu, X.; Pan, L. DNAzyme-Based Biosensor for Detection of Lead Ion: A Review. Microchem. J. 2017, 131, 145–153. [Google Scholar] [CrossRef]
- Pavadai, R.; Amalraj, A.; Subramanian, S.; Perumal, P. High Catalytic Activity of Fluorophore-Labeled Y-Shaped DNAzyme/3D MOF-MoS2NBs as a Versatile Biosensing Platform for the Simultaneous Detection of Hg2+, Ni2+, and Ag+ Ions. ACS Appl. Mater. Interfaces 2021, 13, 31710–31724. [Google Scholar] [CrossRef]
- Chen, J.; Pan, J.; Chen, S. A Naked-Eye Colorimetric Sensor for Hg2+ Monitoring with Cascade Signal Amplification Based on Target-Induced Conjunction of Split DNAzyme Fragments. Chem. Commun. 2017, 53, 10224–10227. [Google Scholar] [CrossRef]
- Freeman, R.; Liu, X.; Willner, I. Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer–Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597–11604. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wang, J.; Xiong, B.; Hou, X. Electrochemical Impedance Biosensor Array Based on DNAzyme-Functionalized Single-Walled Carbon Nanotubes Using Gaussian Process Regression for Cu(II) and Hg(II) Determination. Microchim. Acta 2020, 187, 207. [Google Scholar] [CrossRef] [PubMed]
- Skotadis, E.; Aslanidis, E.; Tsekenis, G.; Panagopoulou, C.; Rapesi, A.; Tzourmana, G.; Kennou, S.; Ladas, S.; Zeniou, A.; Tsoukalas, D. Hybrid Nanoparticle/DNAzyme Electrochemical Biosensor for the Detection of Divalent Heavy Metal Ions and Cr3+. Sensors 2023, 23, 7818. [Google Scholar] [CrossRef] [PubMed]
- Skotadis, E.; Voutyras, K.; Chatzipetrou, M.; Tsekenis, G.; Patsiouras, L.; Madianos, L.; Chatzandroulis, S.; Zergioti, I.; Tsoukalas, D. Label-Free DNA Biosensor Based on Resistance Change of Platinum Nanoparticles Assemblies. Biosens. Bioelectron. 2016, 81, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Skotadis, E.; Tsekenis, G.; Chatzipetrou, M.; Patsiouras, L.; Madianos, L.; Bousoulas, P.; Zergioti, I.; Tsoukalas, D. Heavy Metal Ion Detection Using DNAzyme-Modified Platinum Nanoparticle Networks. Sens. Actuators B Chem. 2017, 239, 962–969. [Google Scholar] [CrossRef]
- Sebechlebská, T.; Kolivoška, V.; Šebera, J.; Fukal, J.; Řeha, D.; Buděšínský, M.; Rosenberg, I.; Bednárová, L.; Gasior, J.; Mészáros, G.; et al. Additive Transport in DNA Molecular Circuits. J. Mater. Chem. C 2022, 10, 12022–12031. [Google Scholar] [CrossRef]
- Madianos, L.; Skotadis, E.; Tsekenis, G.; Patsiouras, L.; Tsigkourakos, M.; Tsoukalas, D. Ιmpedimetric Nanoparticle Aptasensor for Selective and Label Free Pesticide Detection. Microelectron. Eng. 2018, 189, 39–45. [Google Scholar] [CrossRef]
- Skotadis, E.; Tanner, J.; Stathopoulos, S.; Tsouti, V.; Tsoukalas, D. Chemical Sensing Based on Double Layer PHEMA Polymer and Platinum Nanoparticle Films. Sens. Actuators B Chem. 2012, 175, 85–91. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical Biosensors and Nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar] [CrossRef]
- Lisdat, F.; Schäfer, D. The Use of Electrochemical Impedance Spectroscopy for Biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef]
- Dak, P.; Ebrahimi, A.; Alam, M.A. Non-Faradaic Impedance Characterization of an Evaporating Droplet for Microfluidic and Biosensing Applications. Lab Chip 2014, 14, 2469–2479. [Google Scholar] [CrossRef]
- Berdat, D.; Rodríguez, A.C.M.; Herrera, F.; Gijs, M.A.M. Label-Free Detection of DNA with Interdigitated Micro-Electrodes in a Fluidic Cell. Lab Chip 2008, 8, 302–308. [Google Scholar] [CrossRef]
- Salis, A.; Cappai, L.; Carucci, C.; Parsons, D.F.; Monduzzi, M. Specific Buffer Effects on the Intermolecular Interactions among Protein Molecules at Physiological pH. J. Phys. Chem. Lett. 2020, 11, 6805–6811. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. DNA-Based Single-Molecule Electronics: From Concept to Function. J. Funct. Biomater. 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, K.; Zerah-Harush, E.; Hamill, J.; Wang, B.; Dubi, Y.; Xu, B. Molecular Rectifier Composed of DNA with High Rectification Ratio Enabled by Intercalation. Nat. Chem. 2016, 8, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Nogues, C.; Naaman, R.; Porath, D. Direct Measurement of Electrical Transport through Single DNA Molecules of Complex Sequence. Proc. Natl. Acad. Sci. USA 2005, 102, 11589–11593. [Google Scholar] [CrossRef] [PubMed]
- Aslanidis, E.; Skotadis, E.; Panagopoulou, C.; Rapesi, A.; Tzourmana, G.; Tsekenis, G.; Tsoukalas, D. Nanoparticle/DNAzyme Based Biosensors for Heavy-Metal Ion Detection: Effect of DNAzyme Surface Modifications on Device Sensitivity. Eng. Proc. 2023, 35, 17. [Google Scholar] [CrossRef]
- Assaifan, A.K.; Alqahtani, F.A.; Alnamlah, S.; Almutairi, R.; Alkhammash, H.I. Detection and Real-Time Monitoring of LDL-Cholesterol by Redox-Free Impedimetric Biosensors. BioChip J. 2022, 16, 197–206. [Google Scholar] [CrossRef]
- Eveness, J.; Cao, L.; Kiely, J.; Luxton, R. Equivalent Circuit Model of a Non-Faradaic Impedimetric ZnO Nano-Crystal Biosensor. J. Electroanal. Chem. 2022, 906, 116003. [Google Scholar] [CrossRef]
- Tanak, A.S.; Jagannath, B.; Tamrakar, Y.; Muthukumar, S.; Prasad, S. Non-Faradaic Electrochemical Impedimetric Profiling of Procalcitonin and C-Reactive Protein as a Dual Marker Biosensor for Early Sepsis Detection. Anal. Chim. Acta X 2019, 3, 100029. [Google Scholar] [CrossRef]
- Yusof, Y.; Sugimoto, K.; Ozawa, H.; Uno, S.; Nakazato, K. On-Chip Microelectrode Capacitance Measurement for Biosensing Applications. Jpn. J. Appl. Phys. 2010, 49, 01AG05. [Google Scholar] [CrossRef]
- Stagni, C.; Guiducci, C.; Benini, L.; Ricco, B.; Carrara, S.; Paulus, C.; Schienle, M.; Thewes, R. A Fully Electronic Label-Free DNA Sensor Chip. IEEE Sens. J. 2007, 7, 577–585. [Google Scholar] [CrossRef]
- Hsu, C.-P.; Huang, Y.-F.; Wang, Y.-L. Investigation of the Non-Faradaic Current of DNA-Immobilized Microelectrodes in Concentrated Salt Environment for Biosensors. ECS J. Solid State Sci. Technol. 2016, 5, Q149. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Dak, P.; Salm, E.; Dash, S.; Garimella, S.V.; Bashir, R.; Alam, M.A. Nanotextured Superhydrophobic Electrodes Enable Detection of Attomolar-Scale DNA Concentration within a Droplet by Non-Faradaic Impedance Spectroscopy. Lab Chip 2013, 13, 4248–4256. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Alam, M.A. Time-Resolved PCA of ‘Droplet Impedance’ Identifies DNA Hybridization at nM Concentration. Sens. Actuators B Chem. 2015, 215, 215–224. [Google Scholar] [CrossRef]
- Subramani, I.G.; Perumal, V.; Gopinath, S.C.; Mohamed, N.M.; Joshi, N.; Ovinis, M.; Sze, L.L. 3D Nanoporous Hybrid Nanoflower for Enhanced Non-Faradaic Redox-Free Electrochemical Impedimetric Biodetermination—ScienceDirect. J. Taiwan Inst. Chem. Eng. 2020, 116, 26–35. [Google Scholar] [CrossRef]
Pb2+ Addition | R1 (Ohm) | C1 (10−10 Farad) | R2 (Ohm) | C2 (10−11 Farad) | R2 Value |
---|---|---|---|---|---|
0 (buffer) | 819,714.289 | 1.058 | 1,332,126.638 | 7.048 | 0.960 |
100 nM | 819,714.289 | 1.058 | 1,719,696.480 | 5.567 | 0.942 |
200 nM | 819,714.289 | 1.058 | 1,903,953.434 | 5.080 | 0.934 |
Properties | Non-Faradaic EIS | Resistance Measurements |
---|---|---|
Analytes | Pb2+ and Cr3+ | |
Fabrication/reagents/materials | Same for both detection schemes | |
Limit of detection (LOD) | 0.4 nM for Pb2+ and 1 nM for Cr3+ | 0.8 nM for Pb2+ and 10 nM for Cr3+ |
Standard deviation values | 0.4–1.9% | 0.2–1.5% |
Yield | 71% | 42% |
Linearity | Similar | |
Cross-sensitivity and selectivity | Similar | |
Measurement setup and data-analysis | Complex | Simple |
Limit of detection (LOD) for real samples | 1 nM for Pb2+ and 5 nM for Cr3+ | 10 nM for Pb2+ and 40 nM for Cr3+ |
Metal Ion/Ions | Detection Technique | Limit of Detection | References |
---|---|---|---|
General detection techniques | |||
Cu2+, Fe3+, Ni2+ and Zn2+ | Atomic absorption spectrometry (AAS) | 41, 61, 63, and 12 μg/kg | Trindade et al. [11] |
Al3+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Mg2+, Ni2+, Pb2+, and Sr2+ | Inductively coupled plasma optical emission spectrometry (ICP-OES) | 0.03–0.44 μg/L | Losev et al. [12] |
Trace Cu, Zn, Cd, Hg, Pb, and Bi | Inductively coupled plasma mass spectrometry (ICP-MS) | 49, 43, 4.2, 6.1, 13, and 18 ng/L | Wang et al. [13] |
Pb2+ | Atomic fluorescence spectroscopy | 0.004 μg/L | Beltrán et al. [14] |
Techniques where DNAzymes were used | |||
Hg2+, Ni2+, and Ag+ | DNAzymes as optical quenchers | 0.11 nM, 7.8 μM, and 0.25 nM | Pavadai et al. [28] |
Hg2+ | DNAzymes for colorimetric detection | 10 pM | Chen et al. [29] |
Hg2+ | DNAzymes and quantum dots for chemiluminescent and chemiluminescence resonance energy transfer | 10 nM | Freeman et al. [30] |
Cu2+ and Hg2+ | DNAzyme-functionalized single-walled carbon nanotubes for electrochemical impedance detection | 0.01 and 5 nM | Wang et al. [31] |
Pb2+, Cd2+, and Cr3+ | DNAzymes based on platinum nanoparticles for resistive detection | 0.8 nM, 1 nm, and 10 nM | Skotadis et al. [32] |
Non-faradaic electrochemical impedance spectroscopy (EIS) | |||
Pb2+ | L-cysteine on Au-IDE for non-faradaic EIS | 45 pM | Assaifan et al. [21] |
Hg2+ | TiO2 microstructures on Au-IDEs for non-faradaic EIS | 60 pM | Assaifan et al. [22] |
Pb2+ and Cr3+ | DNAzymes immobilized on Pt nanoparticles for non-faradaic EIS | 0.4 nM and 1 nM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagopoulou, C.; Skotadis, E.; Aslanidis, E.; Tzourmana, G.; Rapesi, A.; Tsioustas, C.; Kainourgiaki, M.; Kleitsiotis, G.; Tsekenis, G.; Tsoukalas, D. Non-Faradaic Impedimetric Detection of Heavy Metal Ions via a Hybrid Nanoparticle-DNAzyme Biosensor. Biosensors 2024, 14, 321. https://doi.org/10.3390/bios14070321
Panagopoulou C, Skotadis E, Aslanidis E, Tzourmana G, Rapesi A, Tsioustas C, Kainourgiaki M, Kleitsiotis G, Tsekenis G, Tsoukalas D. Non-Faradaic Impedimetric Detection of Heavy Metal Ions via a Hybrid Nanoparticle-DNAzyme Biosensor. Biosensors. 2024; 14(7):321. https://doi.org/10.3390/bios14070321
Chicago/Turabian StylePanagopoulou, Chrysi, Evangelos Skotadis, Evangelos Aslanidis, Georgia Tzourmana, Annita Rapesi, Charalampos Tsioustas, Maria Kainourgiaki, Georgios Kleitsiotis, George Tsekenis, and Dimitrios Tsoukalas. 2024. "Non-Faradaic Impedimetric Detection of Heavy Metal Ions via a Hybrid Nanoparticle-DNAzyme Biosensor" Biosensors 14, no. 7: 321. https://doi.org/10.3390/bios14070321
APA StylePanagopoulou, C., Skotadis, E., Aslanidis, E., Tzourmana, G., Rapesi, A., Tsioustas, C., Kainourgiaki, M., Kleitsiotis, G., Tsekenis, G., & Tsoukalas, D. (2024). Non-Faradaic Impedimetric Detection of Heavy Metal Ions via a Hybrid Nanoparticle-DNAzyme Biosensor. Biosensors, 14(7), 321. https://doi.org/10.3390/bios14070321