MeNPs-PEDOT Composite-Based Detection Platforms for Epinephrine and Quercetin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Preparation of the Sensing Platforms
2.3. Analytical Applications
3. Results and Discussion
3.1. Preparation and Characterization of the Sensing Platforms
3.1.1. AgNPs-Based Sensing Platform
3.1.2. AuNPs-Based Sensing Platform
3.2. Analytical Applications of the Sensing Platforms
3.2.1. Determination of Quercetin Using AgNPs-Based Sensing Platform
3.2.2. Determination of Epinephrine Using AuNPs-Based Sensing Platform
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, X.; Yang, X.; Ge, Z.; Ma, H.; Wang, R.; Tian, F.; Teng, P.; Gao, S.; Li, K.; Zhang, B.; et al. Self-powered optical fiber biosensor integrated with enzymes for non-invasive glucose sensing. Biosens. Bioelectron. 2024, 253, 116191. [Google Scholar] [CrossRef]
- Ding, L.; Guo, J.; Chen, S.; Wang, Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024, 273, 125937. [Google Scholar] [CrossRef] [PubMed]
- Mohanapriya, D.; Satija, J.; Senthilkumar, S.; Kumar Ponnusamy, V.; Thenmozhi, K. Design and engineering of 2D MXenes for point-of-care electrochemical detection of bioactive analytes and environmental pollutants. Coord. Chem. Rev. 2024, 507, 215746. [Google Scholar] [CrossRef]
- Argoubi, W.; Algethami, F.K.; Raouafi, N. Enhanced sensitivity in electrochemical detection of ochratoxin A within food samples using ferrocene- and aptamer-tethered gold nanoparticles on disposable electrodes. RSC Adv. 2024, 14, 8007–8015. [Google Scholar] [CrossRef]
- Ramesh Gawali, C.; Daweshar, E.; Kolhe, A.; Kumar, S. Recent advances in nanostructured conducting polymer electrospun for application in electrochemical biosensors. Microchem. J. 2024, 200, 110326. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Camurlu, P. Review-Functional platforms for (bio)sensing: Thiophene-pyrrole hybrid polymers. J. Electrochem. Soc. 2020, 167, 037557. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Xu, K.; Hui, N.; Wang, D. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Microchim. Acta 2022, 189, 395. [Google Scholar] [CrossRef]
- Patri, S.B.; Karekuladh, S.M.; Malingappa, P. ZIF-8/CNFs/PANI composite as an electrochemical platform in trace-level nitrite sensing. Carbon Lett. 2024, 34, 421–435. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, J.; Zhu, X.; Lu, L.; Duan, X.; Hu, D.; Dong, L.; Sun, H.; Gao, Y.; Wu, Y. Poly(3,4-ethylenedioxythiophene) nanorods grown on graphene oxide sheets as electrochemical sensing platform for rutin. J. Electroanal. Chem. 2015, 739, 66–72. [Google Scholar] [CrossRef]
- Li, Y.; Hsieh, C.-H.; Lai, C.-W.; Chang, C.-W.; Chan, H.-Y.; Tsai, C.-F.; Ho, J.-A.A.; Wu, L.-C. Tyramine detection using PEDOT:PSS/AuNPs/1-methyl-4-mercaptopyridine modified screen-printed carbon electrode with molecularly imprinted polymer solid phase extraction. Biosens. Bioelectron. 2017, 87, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019, 8, 137. [Google Scholar] [CrossRef]
- Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules 2022, 27, 6545. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Carvalho, D.; Jesus, Â.; Pinho, C.; Oliveira, R.F.; Moreira, F.; Oliveira, A.I. Validation of an HPLC-DAD method for quercetin quantification in nanoparticles. Pharmaceuticals 2023, 16, 1736. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, C.; Negut, C.C.; Gugoasa, L.A.D.; Van Staden, J.K.F. Gold nanoparticle-graphene quantum dots nanozyme for the wide range and sensitive electrochemical determination of quercetin in plasma droplets. Microchim. Acta 2020, 187, 611. [Google Scholar] [CrossRef]
- Bharathi, P.; Wang, S.F. Synchronous activation of praseodymium vanadate/graphitic carbon nitride nanocomposite: A promising electrode material for detection of flavonoids-quercetin. Food Chem. 2024, 441, 138405. [Google Scholar] [CrossRef]
- Xu, X.; Zuo, Y.; Chen, S.; Hatami, A.; Gu, H. Advancements in brain research: The in vivo/in vitro electrochemical detection of neurochemicals. Biosensors 2024, 14, 125. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Fernandes, P.M.V.; Pereira, C.M.; Silva, F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016, 160, 653–679. [Google Scholar] [CrossRef]
- Liu, R.; Feng, Z.Y.; Li, D.; Jin, B.; Lan, Y.; Meng, L.Y. Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: A review. Trend. Anal. Chem. 2022, 148, 116541. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Jiang, N.; Yetisen, A.K. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens. Bioelectron. 2024, 256, 116242. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.-M.; Lin, L.-A.; Ding, H.-Y.; Her, J.-L.; Pang, S.-T. A simple and highly sensitive flexible sensor with extended-gate field-effect transistor for epinephrine detection utilizing InZnSnO sensing films. Talanta 2024, 275, 126178. [Google Scholar] [CrossRef]
- Leau, S.A.; Lete, C.; Matei, C.; Lupu, S. Electrochemical sensing platform based on metal nanoparticles for epinephrine and serotonin. Biosensors 2023, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Lete, C.; Berger, D.; Matei, C.; Lupu, S. Electrochemical and microgravimetric studies of poly [3,4-ethylenedioxythiophene]-tyrosinase biocomposite material electrodeposited onto gold electrodes by a sinusoidal voltages method. J. Solid State Electrochem. 2016, 20, 3043–3051. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Sakthivel, R.; Chen, S.M.; Kim, T.H. Facile design of wolframite type CoWO4 nanoparticles: A selective and simultaneous electrochemical detection of quercetin and rutin. J. Electroanal. Chem. 2022, 922, 116774. [Google Scholar] [CrossRef]
- Ruspika, S.; Alagarsamy, S.; Chen, S.-M.; Balaji, R.; Shanlee, S.S.R. Rational design of praseodymium ferrite decorated on reduced graphene oxide for the electrochemical detection of quercetin. J. Electroanal. Chem. 2023, 951, 117946. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Curtiss, L.A.; McGrath, M.P.; Blaudeau, J.-P.; Davis, N.E.; Binning, R.C., Jr.; Radom, L. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr. J. Chem. Phys. 1995, 103, 6104–6113. [Google Scholar] [CrossRef]
- Domagała, S.; Munshi, P.; Ahmed, M.; Guillot, B.; Jelsch, C. Structural analysis and multipole modelling of quercetin monohydrate— a quantitative and comparative study. Acta Cryst. 2011, B67, 63–78. [Google Scholar] [CrossRef]
- Saritha, D.; Koirala, A.R.; Venu, M.; Dinneswara Reddy, G.; Vijaya Bhaskar Reddy, A.; Sitaram, B.; Madhavi, G.; Aruna, K. A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode. Electrochim. Acta 2019, 313, 523–531. [Google Scholar] [CrossRef]
- Xie, D.; Guo, X.; Li, P.; Zhang, W.; Shao, Y.; Qu, Y.; Zhai, Y. Electrochemical sensors based on Fe@Fe2O3 nanowires, N-doped ZnO and Au nanoparticles for quercetin determination. Int. J. Electrochem. Sci. 2022, 17, 221147. [Google Scholar] [CrossRef]
- Yadav, S.; Sadique, M.A.; Singhai, S.; Khan, R. Rapid electrochemical detection of epinephrine in human serum based on polydopamine-wrapped cerium oxide nanocomposite. Hybrid Adv. 2023, 4, 100108. [Google Scholar] [CrossRef]
- Sipuka, D.S.; Sebokolodi, T.I.; Olorundare, F.O.G.; Muzenda, C.; Nkwachukwu, O.V.; Nkosi, D.; Arotiba, O.A. Electrochemical sensing of epinephrine on a carbon nanofibers and gold nanoparticle-modified electrode. Electrocatalysis 2023, 14, 9–17. [Google Scholar] [CrossRef]
- Orzari, L.O.; Silva, L.R.G.e.; de Freitas, R.C.; Brazaca, L.C.; Janegitz, B.C. Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson’s disease diagnostics. Microchim. Acta 2024, 191, 76. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, S.; Singh, A.K.; Gautam, R.K.; Tiwari, I. Voltammetric analysis of epinephrine using glassy carbon electrode modified with nanocomposite prepared from co-nd bimetallic nanoparticles, alumina nanoparticles and functionalized multiwalled carbon nanotubes. Environ. Sci. Pollut. Res. Int. 2023, 30, 124866–124883. [Google Scholar] [CrossRef]
- Uwaya, G.E.; Wen, Y.; Bisetty, K. A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J. Electroanal. Chem. 2022, 911, 116204. [Google Scholar] [CrossRef]
Sample | Added (µM) | Found (µM) | Recovery Value (%) | RSD (%) |
---|---|---|---|---|
Grape must sample | 20 | 21.36 | 106.81 | 6.48 |
25 | 26.81 | 107.27 | 3.53 | |
30 | 28.93 | 96.46 | 8.44 |
Electrochemical Sensor | Detection Technique | Limit of Detection (µM) | Linear Response Range (µM) | Sensitivity (µA µM−1) | Sample (Matrix) | Ref. |
---|---|---|---|---|---|---|
Quercetin | ||||||
PrVO4@g-CN | DPV | 0.002 | 0.05–252 | - | 0.1 M PBS (pH = 7.1) | [16] |
CWO/SPCE | DPV | 0.022 | 0.02–521 | 0.135 | 0.1 M PBS (pH = 7) | [24] |
PFO/RGO/GCE | DPV | 0.026 | 0.01–257 | - | 0.1 M PBS (pH = 7) | [25] |
ZnO/CNS/CPE | DPV | 0.04 | 0.17–3.63 | - | 0.1 M PBS (pH = 7) | [29] |
Fe@Fe2O3/AuNPs/N-ZnO/ITO | CV | 59 | 10–1000 | - | 0.1 M PBS (pH = 7) | [30] |
PEDOT-AgNPs | CV | 2.8 | 1–40 | 0.20 | 0.1 M ABS (pH = 5) | This work |
Epinephrine | ||||||
GCE-PEDOT-AuNPs | CV | 1.4 | 10–640 | 2.1 × 10−2 | 0.1 M PBS (pH = 7) | [22] |
PDA@CeO2/GCE | DPV | 8.37 | 10–200 | - | 0.1 M PBS (pH = 7.4) | [31] |
GCE-CNF-AuNPs | SWV | 1.7 | 50–1000 | - | 0.1 M PBS (pH = 6) | [32] |
Pd/CB-PVA | DPV | 0.051 | 0.75–100 | 5.48 × 10−3 | 0.1 M PBS (pH = 6.5) | [33] |
Co-Nd/Al2O3@fMWCNTs/GCE | DPV | 0.015 | 0.2–4000 | 3.23 × 10−3 | 0.1 M PBS (pH = 7) | [34] |
GCE/PANI/NiO | SWV | 0.05 | 47–354 | 6.3 × 10−3 | 0.1 M PBS (pH = 7) | [35] |
PEDOT-AuNPs | CV | 0.5 | 1–100 | 6.0 × 10−2 | 0.1 M PBS (pH = 7) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leau, S.A.; Marin, M.; Toader, A.M.; Anastasescu, M.; Matei, C.; Lete, C.; Lupu, S. MeNPs-PEDOT Composite-Based Detection Platforms for Epinephrine and Quercetin. Biosensors 2024, 14, 320. https://doi.org/10.3390/bios14070320
Leau SA, Marin M, Toader AM, Anastasescu M, Matei C, Lete C, Lupu S. MeNPs-PEDOT Composite-Based Detection Platforms for Epinephrine and Quercetin. Biosensors. 2024; 14(7):320. https://doi.org/10.3390/bios14070320
Chicago/Turabian StyleLeau, Sorina Alexandra, Mariana Marin, Ana Maria Toader, Mihai Anastasescu, Cristian Matei, Cecilia Lete, and Stelian Lupu. 2024. "MeNPs-PEDOT Composite-Based Detection Platforms for Epinephrine and Quercetin" Biosensors 14, no. 7: 320. https://doi.org/10.3390/bios14070320
APA StyleLeau, S. A., Marin, M., Toader, A. M., Anastasescu, M., Matei, C., Lete, C., & Lupu, S. (2024). MeNPs-PEDOT Composite-Based Detection Platforms for Epinephrine and Quercetin. Biosensors, 14(7), 320. https://doi.org/10.3390/bios14070320