A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Insturments
2.1.1. Reagents
- Aptamer: 5′-SH-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3′;
- cDNA: 5′-NH2-TGT CCG ATG CTC-3′.
2.1.2. Instruments
2.2. Preparation of the HRP-AuNPs-Aptamer Nanoprobe
2.3. Synthesis of GO-PAMAM
2.4. Fabrication of the Aptasensor
2.5. Electrochemical Measurements
2.6. Sample Pretreatment
3. Results and Discussions
3.1. Functional Principle of the Electrochemical Aptasensor
3.2. Characterization of the HRP-AuNPs-Aptamer Nanoprobe
3.3. Characterization of GO-PAMAM
3.4. Characterization of the Modified Electrodes
3.5. Electrochemical Properties of Modified Electrodes
3.6. Optimization of the Assay Conditons for the Aptasensor
3.7. Performance of the Proposed Aptasensor
3.8. Specificity, Stability and Reproducibility of the Aptasensor
3.9. Detection of OTA in Red Wine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nameghi, M.A.; Danesh, N.M.; Ramezani, M.; Hassani, F.V.; Abnous, K.; Taghdisi, S.M. A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of ochratoxin A. Anal. Bioanal. Chem. 2016, 408, 5811–5818. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Lan, L.; Yao, Y.; Zhao, F.; Ping, J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends Anal. Chem. 2018, 102, 236–249. [Google Scholar] [CrossRef]
- Pagkali, V.; Petrou, P.S.; Salapatas, A.; Makarona, E.; Peters, J.; Haasnoot, W.; Jobst, G.; Economou, A.; Misiakos, K.; Raptis, I.; et al. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor. J. Hazard. Mater. 2017, 323 Pt A, 75–83. [Google Scholar] [CrossRef]
- European Union. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, 364, 5–24. [Google Scholar]
- Chen, R.; Sun, Y.; Huo, B.; Yuan, S.; Sun, X.; Zhang, M.; Yin, N.; Fan, L.; Yao, W.; Wang, J.; et al. Highly sensitive detection of ochratoxin A based on bio-barcode immunoassay and catalytic hairpin assembly signal amplification. Talanta 2020, 208, 120405. [Google Scholar] [CrossRef] [PubMed]
- Troestch, J.; Reyes, S.; Vega, A. Determination of mycotoxin contamination levels in rice and dietary exposure assessment. J. Toxicol. 2022, 2022, 3596768. [Google Scholar] [CrossRef]
- Juan, C.; Mañes, J.; Juan-García, A.; Moltó, J.C. Multimycotoxin analysis in oat, rice, almond and soy beverages by liquid chromatography-tandem mass spectrometry. Appl. Sci. 2022, 12, 3942. [Google Scholar] [CrossRef]
- Wang, L.; Ma, W.; Chen, W.; Liu, L.; Ma, W.; Zhu, Y.; Xu, L.; Kuang, H.; Xu, C. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens. Bioelectron. 2011, 26, 3059–3062. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Sheikh-Zeinoddin, M.; Soleimanian-Zad, S.; Li, P.; Zhang, Q.; Li, X.; Tang, X. Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 974, 147–154. [Google Scholar] [CrossRef]
- Hao, L.; Chen, J.; Chen, X.; Ma, T.; Cai, X.; Duan, H.; Leng, Y.; Huang, X.; Xiong, Y. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chem. 2021, 336, 127710. [Google Scholar] [CrossRef]
- Ren, Y.; Tian, R.; Wang, T.; Cao, J.; Li, J.; Deng, A. An extremely highly sensitive ELISA in pg mL−1 level based on a newly produced monoclonal antibody for the detection of ochratoxin A in food samples. Molecules 2023, 28, 5743. [Google Scholar] [CrossRef]
- Huang, X.; Aguilar, Z.P.; Xu, H.; Lai, W.; Xiong, Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron. 2016, 75, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life 2021, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Zhang, X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int. J. Nanomed. 2020, 15, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, D.; Sun, F.; Li, Z.; Wang, Y.; Qiu, C.; He, K.; Wang, J. Nanomaterial-based aptamer biosensors for ochratoxin A detection: A review. Anal. Bioanal. Chem. 2022, 414, 2953–2969. [Google Scholar] [CrossRef]
- Chen, W.; Yan, C.; Cheng, L.; Yao, L.; Xue, F.; Xu, J. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens. Bioelectron. 2018, 117, 845–851. [Google Scholar] [CrossRef]
- Hou, Y.; Long, N.; Xu, Q.; Li, Y.; Song, P.; Yang, M.; Wang, J.; Zhou, L.; Sheng, P.; Kong, W. Development of a Nafion-MWCNTs and in-situ generated Au nanopopcorns dual-amplification electrochemical aptasensor for ultrasensitive detection of OTA. Food Chem. 2023, 403, 134375. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M. Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue. Microchim. Acta 2017, 184, 1151–1159. [Google Scholar] [CrossRef]
- Sun, A.L.; Zhang, Y.F.; Sun, G.P.; Wang, X.N.; Tang, D. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens. Bioelectron. 2017, 89 Pt 1, 659–665. [Google Scholar] [CrossRef]
- Lv, L.; Hu, J.; Chen, Q.; Xu, M.; Jing, C.; Wang, X. A switchable electrochemical hairpin-aptasensor for ochratoxin A detection based on the double signal amplification effect of gold nanospheres. New J. Chem. 2022, 46, 4126–4133. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, Q.; Li, Y.; Long, N.; Li, P.; Wang, J.; Zhou, L.; Sheng, P.; Kong, W. Ultrasensitive electrochemical aptasensor with Nafion-stabilized f-MWCNTs as signal enhancers for OTA detection. Bioelectrochemistry 2023, 151, 108399. [Google Scholar] [CrossRef] [PubMed]
- Mejri-Omrani, N.; Miodek, A.; Zribi, B.; Marrakchi, M.; Hamdi, M.; Marty, J.L.; Korri-Youssoufi, H. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal. Chim. Acta 2016, 920, 37–46. [Google Scholar] [CrossRef]
- Shen, G.; Xu, H.; Gurung, A.S.; Yang, Y.; Liu, G. Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer. Anal. Sci. 2013, 29, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron. 2017, 91, 504–514. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Srivastava, S.; Ali, M.A.; Singh, C. Nanomaterial-based biosensors for food toxin detection. Appl. Biochem. Biotechnol. 2014, 174, 880–896. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.K.; Poh, H.L. Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 2010, 29, 954–965. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef]
- Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold Nanoparticles: Synthesis and Applications in Drug Delivery. Trop. J. Pharm. Res. 2014, 13, 1169–1177. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, Y.; Chen, Z.; Liu, Y.; Li, Z.; Li, J. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem. 2014, 86, 4278–4286. [Google Scholar] [CrossRef]
- Wang, X.; Shan, Y.; Gong, M.; Jin, X.; Jiang, M.; Xu, J. A novel electrochemical sensor for ochratoxin A based on the hairpin aptamer and double report DNA via multiple signal amplification strategy. Sens. Actuators B Chem. 2019, 281, 595–601. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Ma, Y.; Deng, Y.; Hu, R.; Yang, Y. Preparation of an OTA aptasensor based on a metal–organic framework. Anal. Methods 2018, 10, 3273–3279. [Google Scholar] [CrossRef]
Nanomaterials | Linear Range (ng L−1) | LOD (ng L−1) | References |
---|---|---|---|
AuNPs | 1–5 × 105 | 1 | [16] |
Au nanopopcorns, Nafion-MWCNTs | 1–104 | 1 | [17] |
SWCNTs | 80.6–1.81 × 104 | 21 | [18] |
GO | 0.01–5 × 104 | 5.6 | [19] |
GNSs, MWCNTs | 2–103 | 1 | [20] |
f-MWCNTs | 5–104 | 1 | [21] |
PPy, PAMAM | 2–6000 | 2 | [22] |
AuNPs | 1–103 | 0.5 | [31] |
AuNPs, MOF, MoS2 | 50–105 | 10 | [32] |
AuNPs, GO | 5–105 | 0.31 | This work |
Group | Added Level (μg L−1) | The Proposed Electrochemical Aptasensor | HPLC -FLD | ||
---|---|---|---|---|---|
Found Level (μg L−1) | Recovery Rate (%) | RSD (%) | Found Level (μg L−1) | ||
1 | 0.1 | 0.106 | 106 | 2.6 | 0.107 |
2 | 10 | 10.123 | 101.23 | 1.09 | 10.498 |
3 | 100 | 94.15 | 94.15 | 0.8 | 103.409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gao, D.; Chen, J.; Wang, X.; Peng, C.; Gao, H.; Wang, Y.; Li, Z.; Niu, H. A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A. Biosensors 2023, 13, 955. https://doi.org/10.3390/bios13110955
Chen X, Gao D, Chen J, Wang X, Peng C, Gao H, Wang Y, Li Z, Niu H. A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A. Biosensors. 2023; 13(11):955. https://doi.org/10.3390/bios13110955
Chicago/Turabian StyleChen, Xiujin, Dong Gao, Jiaqi Chen, Xueqing Wang, Chifang Peng, Hongli Gao, Yao Wang, Zhaozhou Li, and Huawei Niu. 2023. "A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A" Biosensors 13, no. 11: 955. https://doi.org/10.3390/bios13110955
APA StyleChen, X., Gao, D., Chen, J., Wang, X., Peng, C., Gao, H., Wang, Y., Li, Z., & Niu, H. (2023). A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A. Biosensors, 13(11), 955. https://doi.org/10.3390/bios13110955