Correlative Raman Imaging: Development and Cancer Applications
Abstract
:1. Introduction
2. Discussions
2.1. Correlative Raman Microscopy and Confocal Fluorescence Microscopy
2.2. Correlative Raman and Atomic Force Microscopy
2.2.1. Identifying Cancer-Specific Alterations
2.2.2. Subcellular Analysis at High Resolution
2.2.3. Metastasis Studies and Biomarker Discovery
2.3. Correlative Raman and Digital Holography Microscopy
2.4. Correlative Raman and Mass Spectroscopy Imaging
3. Summary and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, W.; Du, Y.; Yang, M.; Pan, Y.; Li, H.; Cui, M. Single-Cell Analysis Technologies for Cancer Research: From Tumor-Specific Single Cell Discovery to Cancer Therapy. Front. Genet. 2023, 14, 1276959. [Google Scholar] [CrossRef] [PubMed]
- Stender, A.S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M.W.; Smith, E.A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J.-X.; et al. Single Cell Optical Imaging and Spectroscopy. Chem. Rev. 2013, 113, 2469–2527. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.J.; Henning, T.D.; Pichler, B.J.; Bremer, C.; Daldrup-Link, H.E. Cell Tracking with Optical Imaging. Eur. Radiol. 2008, 18, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Georgakoudi, I.; Quinn, K.P. Optical Imaging Using Endogenous Contrast to Assess Metabolic State. Annu. Rev. Biomed. Eng. 2012, 14, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Long, D.A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules; Wiley: Hoboken, NJ, USA, 2002; ISBN 9780471490289. [Google Scholar]
- Zanyar Movasaghi, S.R.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Schrader, B. Infrared and Raman Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9783527615421. [Google Scholar]
- Gardiner, D.J.; Graves, P.R. Practical Raman Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9783642740404. [Google Scholar]
- Li, Z.; Deen, M.J.; Kumar, S.; Selvaganapathy, P.R. Raman Spectroscopy for In-Line Water Quality Monitoring—Instrumentation and Potential. Sensors 2014, 14, 17275–17303. [Google Scholar] [CrossRef] [PubMed]
- Notingher, I. Raman Spectroscopy Cell-Based Biosensors. Sensors 2007, 7, 1343–1358. [Google Scholar] [CrossRef]
- Palonpon, A.F.; Sodeoka, M.; Fujita, K. Molecular Imaging of Live Cells by Raman Microscopy. Curr. Opin. Chem. Biol. 2013, 17, 708–715. [Google Scholar] [CrossRef]
- Elumalai, S.; Managó, S.; De Luca, A.C. Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors 2020, 20, 5525. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhang, S.; Yue, S. Raman Spectroscopy and Imaging for Cancer Diagnosis. J. Healthc. Eng. 2018, 2018, 8619342. [Google Scholar] [CrossRef] [PubMed]
- El-Mashtoly, S.F.; Petersen, D.; Yosef, H.K.; Mosig, A.; Reinacher-Schick, A.; Kötting, C.; Gerwert, K. Label-Free Imaging of Drug Distribution and Metabolism in Colon Cancer Cells by Raman Microscopy. Analyst 2014, 139, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Barroso, E.M.; Smits, R.W.H.; Schut, T.C.B.; Ten Hove, I.; Hardillo, J.A.; Wolvius, E.B.; Baatenburg De Jong, R.J.; Koljenović, S.; Puppels, G.J. Discrimination between Oral Cancer and Healthy Tissue Based on Water Content Determined by Raman Spectroscopy. Anal. Chem. 2015, 87, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Jermyn, M.; Mok, K.; Mercier, J.; Desroches, J.; Pichette, J.; Saint-Arnaud, K.; Bernstein, L.; Guiot, M.-C.; Petrecca, K.; Leblond, F. Intraoperative Brain Cancer Detection with Raman Spectroscopy in Humans. Sci. Transl. Med. 2015, 7, 274ra19. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman Spectroscopy for Identification of Epithelial Cancers. Faraday Discuss. 2004, 126, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman Spectroscopy for Medical Diagnostics—From in-Vitro Biofluid Assays to in-Vivo Cancer Detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B. Raman Imaging in Biochemical and Biomedical Applications. Diagnosis and Treatment of Breast Cancer. Chem. Rev. 2013, 113, 5766–5781. [Google Scholar] [CrossRef]
- Mangini, M.; Limatola, N.; Ferrara, M.A.; Coppola, G.; Chun, J.T.; De Luca, A.C.; Santella, L. Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization. Zygote 2014, 32, 38–48. [Google Scholar] [CrossRef]
- Abramczyk, H.; Surmacki, J.; Kopeć, M.; Olejnik, A.K.; Lubecka-Pietruszewska, K.; Fabianowska-Majewska, K. The Role of Lipid Droplets and Adipocytes in Cancer. Raman Imaging of Cell Cultures: MCF10A, MCF7, and MDA-MB-231 Compared to Adipocytes in Cancerous Human Breast Tissue. Analyst 2015, 140, 2224–2235. [Google Scholar] [CrossRef]
- Draux, F.; Jeannesson, P.; Beljebbar, A.; Tfayli, A.; Fourre, N.; Manfait, M.; Sulé-Suso, J.; Sockalingum, G.D. Raman Spectral Imaging of Single Living Cancer Cells: A Preliminary Study. Analyst 2009, 134, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Managò, S.; Migliaccio, N.; Terracciano, M.; Napolitano, M.; Martucci, N.M.; De Stefano, L.; Rendina, I.; De Luca, A.C.; Lamberti, A.; Rea, I. Internalization Kinetics and Cytoplasmic Localization of Functionalized Diatomite Nanoparticles in Cancer Cells by Raman Imaging. J. Biophotonics 2018, 11, e201700207. [Google Scholar] [CrossRef] [PubMed]
- Mangini, M.; Ferrara, M.A.; Zito, G.; Managò, S.; Luini, A.; De Luca, A.C.; Coppola, G. Cancer Metabolic Features Allow Discrimination of Tumor from White Blood Cells by Label-Free Multimodal Optical Imaging. Front. Bioeng. Biotechnol. 2023, 11, 1057216. [Google Scholar] [CrossRef] [PubMed]
- Managò, S.; Zito, G.; De Luca, A.C. [INVITED] Raman Microscopy Based Sensing of Leukemia Cells: A Review. Opt. Laser Technol. 2018, 108, 7–16. [Google Scholar] [CrossRef]
- De Luca, A.C.; Managó, S.; Ferrara, M.A.; Rendina, I.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Ferraro, P.; Coppola, G. Non-Invasive Sex Assessment in Bovine Semen by Raman Spectroscopy. Laser Phys. Lett. 2014, 11, 055604. [Google Scholar] [CrossRef]
- De Angelis, A.; Managò, S.; Ferrara, M.A.; Napolitano, M.; Coppola, G.; De Luca, A.C. Combined Raman Spectroscopy and Digital Holographic Microscopy for Sperm Cell Quality Analysis. J. Spectrosc. 2017, 2017, 9876063. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Di Caprio, G.; Managò, S.; De Angelis, A.; Sirleto, L.; Coppola, G.; De Luca, A.C. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells. Biosensors 2015, 5, 141–157. [Google Scholar] [CrossRef]
- Antonio, K.A.; Schultz, Z.D. Advances in Biomedical Raman Microscopy. Anal. Chem. 2014, 86, 30–46. [Google Scholar] [CrossRef]
- Gomes da Costa, S.; Richter, A.; Schmidt, U.; Breuninger, S.; Hollricher, O. Confocal Raman Microscopy in Life Sciences. Morphologie 2019, 103, 11–16. [Google Scholar] [CrossRef]
- Uzunbajakava, N.; Otto, C. Combined Raman and Continuous-Wave-Excited Two-Photon Fluorescence Cell Imaging. Opt. Lett. 2003, 28, 2073–2075. [Google Scholar] [CrossRef]
- Harz, M.; Kiehntopf, M.; Stöckel, S.; Rösch, P.; Deufel, T.; Popp, J. Analysis of Single Blood Cells for CSF Diagnostics via a Combination of Fluorescence Staining and Micro-Raman Spectroscopy. Analyst 2008, 133, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Abramczyk, H.; Imiela, A.; Brozek-Pluska, B.; Kopec, M. Advances in Raman Imaging Combined with AFM and Fluorescence Microscopy Are Beneficial for Oncology and Cancer Research. Nanomedicine 2019, 14, 1873–1888. [Google Scholar] [CrossRef]
- Voros, C.; Bauer, D.; Migh, E.; Grexa, I.; Végh, A.G.; Szalontai, B.; Castellani, G.; Danka, T.; Dzeroski, S.; Koos, K.; et al. Correlative Fluorescence and Raman Microscopy to Define Mitotic Stages at the Single-Cell Level: Opportunities and Limitations in the AI Era. Biosensors 2023, 13, 187. [Google Scholar] [CrossRef]
- Lin, J.; Graziotto, M.E.; Lay, P.A.; New, E.J. A Bimodal Fluorescence-Raman Probe for Cellular Imaging. Cells 2021, 10, 1699. [Google Scholar] [CrossRef] [PubMed]
- de Pablo, J.; Chisholm, D.R.; Steffen, A.; Nelson, A.K.; Mahler, C.; Marder, T.B.; Peyman, S.A.; Girkin, J.M.; Ambler, C.A.; Whiting, A.; et al. Tandem Fluorescence and Raman (FluoRaman) Characterisation of a Novel Photosensitiser in Colorectal Cancer Cell Line SW480. Analyst 2018, 143, 6113–6120. [Google Scholar] [CrossRef]
- Kong, K.; Rowlands, C.J.; Varma, S.; Perkins, W.; Leach, I.H.; Koloydenko, A.A.; Williams, H.C.; Notingher, I. Diagnosis of Tumors during Tissue-Conserving Surgery with Integrated Autofluorescence and Raman Scattering Microscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 15189–15194. [Google Scholar] [CrossRef]
- Cosgrave, L.; Devocelle, M.; Forster, R.J.; Keyes, T.E. Multimodal Cell Imaging by Ruthenium Polypyridyl Labelled Cell Penetrating Peptides. Chem. Commun. 2010, 46, 103–105. [Google Scholar] [CrossRef]
- Pelc, R.; Mašek, V.; Llopis-Torregrosa, V.; Bouř, P.; Wu, T. Spectral Counterstaining in Luminescence-Enhanced Biological Raman Microscopy. Chem. Commun. 2019, 55, 8329–8332. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; Gerber, C.; Müller, D.J. Imaging Modes of Atomic Force Microscopy for Application in Molecular and Cell Biology. Nat. Nanotechnol. 2017, 12, 295–307. [Google Scholar] [CrossRef]
- Müller, D.J.; Dufrêne, Y.F. Atomic Force Microscopy: A Nanoscopic Window on the Cell Surface. Trends Cell Biol. 2011, 21, 461–469. [Google Scholar] [CrossRef]
- Kuznetsova, T.G.; Starodubtseva, M.N.; Yegorenkov, N.I.; Chizhik, S.A.; Zhdanov, R.I. Atomic Force Microscopy Probing of Cell Elasticity. Micron 2007, 38, 824–833. [Google Scholar] [CrossRef]
- Cross, S.E.; Jin, Y.-S.; Tondre, J.; Wong, R.; Rao, J.; Gimzewski, J.K. AFM-Based Analysis of Human Metastatic Cancer Cells. Nanotechnology 2008, 19, 384003. [Google Scholar] [CrossRef]
- Haase, K.; Pelling, A.E. Investigating Cell Mechanics with Atomic Force Microscopy. J. R. Soc. Interface 2015, 12, 20140970. [Google Scholar] [CrossRef]
- Beton, K.; Brożek-Płuska, B. Biochemistry and Nanomechanical Properties of Human Colon Cells upon Simvastatin, Lovastatin, and Mevastatin Supplementations: Raman Imaging and AFM Studies. J. Phys. Chem. B 2022, 126, 7088–7103. [Google Scholar] [CrossRef]
- Beton-Mysur, K.; Brożek-Płuska, B. A New Modality for Cholesterol Impact Tracking in Colon Cancer Development—Raman Imaging, Fluorescence and AFM Studies Combined with Chemometric Analysis. Anal. Methods 2023, 15, 5199–5217. [Google Scholar] [CrossRef]
- Abramczyk, H.; Surmacki, J.; Kopeć, M.; Olejnik, A.K.; Kaufman-Szymczyk, A.; Fabianowska-Majewska, K. Epigenetic Changes in Cancer by Raman Imaging, Fluorescence Imaging, AFM and Scanning near-Field Optical Microscopy (SNOM). Acetylation in Normal and Human Cancer Breast Cells MCF10A, MCF7 and MDA-MB-231. Analyst 2016, 141, 5646–5658. [Google Scholar] [CrossRef]
- Canetta, E.; Riches, A.; Borger, E.; Herrington, S.; Dholakia, K.; Adya, A.K. Discrimination of Bladder Cancer Cells from Normal Urothelial Cells with High Specificity and Sensitivity: Combined Application of Atomic Force Microscopy and Modulated Raman Spectroscopy. Acta Biomater. 2014, 10, 2043–2055. [Google Scholar] [CrossRef]
- Xiao, L.; Tang, M.; Li, Q.; Zhou, A. Non-Invasive Detection of Biomechanical and Biochemical Responses of Human Lung Cells to Short Time Chemotherapy Exposure Using AFM and Confocal Raman Spectroscopy. Anal. Methods 2013, 5, 874–879. [Google Scholar] [CrossRef]
- Calzado-Martín, A.; Encinar, M.; Tamayo, J.; Calleja, M.; San Paulo, A. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy. ACS Nano 2016, 10, 3365–3374. [Google Scholar] [CrossRef] [PubMed]
- Levental, K.R.; Yu, H.; Kass, L.; Lakins, J.N.; Egeblad, M.; Erler, J.T.; Fong, S.F.T.; Csiszar, K.; Giaccia, A.; Weninger, W.; et al. Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell 2009, 139, 891–906. [Google Scholar] [CrossRef] [PubMed]
- Spaziani, S.; Quero, G.; Managò, S.; Zito, G.; Terracciano, D.; Macchia, P.E.; Galeotti, F.; Pisco, M.; De Luca, A.C.; Cusano, A. SERS Assisted Sandwich Immunoassay Platforms for Ultrasensitive and Selective Detection of Human Thyroglobulin. Biosens. Bioelectron. 2023, 233, 115322. [Google Scholar] [CrossRef]
- Gibson, K.F.; Correia-Ledo, D.; Couture, M.; Graham, D.; Masson, J.-F. Correlated AFM and SERS Imaging of the Transition from Nanotriangle to Nanohole Arrays. Chem. Commun. 2011, 47, 3404–3406. [Google Scholar] [CrossRef]
- Bondžić, A.M.; Leskovac, A.R.; Petrović, S.Ž.; Vasić Anićijević, D.D.; Luce, M.; Massai, L.; Generosi, A.; Paci, B.; Cricenti, A.; Messori, L.; et al. Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue. Int. J. Mol. Sci. 2019, 20, 6306. [Google Scholar] [CrossRef]
- Miletić, M.; Aškrabić, S.; Rüger, J.; Vasić, B.; Koricánac, L.; Mondol, A.S.; Dellith, J.; Popp, J.; Schie, I.W.; Dohčević-Mitrović, Z. Combined Raman and AFM Detection of Changes in HeLa Cervical Cancer Cells Induced by CeO2 nanoparticles-Molecular and Morphological Perspectives. Analyst 2020, 145, 3983–3995. [Google Scholar] [CrossRef]
- Beton-Mysur, K.; Surmacki, J.; Brożek-Płuska, B. Raman-AFM-Fluorescence-Guided Impact of Linoleic and Eicosapentaenoic Acids on Subcellular Structure and Chemical Composition of Normal and Cancer Human Colon Cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 315, 124242. [Google Scholar] [CrossRef]
- Cruz, A.L.S.; Barreto, E.d.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid Droplets: Platforms with Multiple Functions in Cancer Hallmarks. Cell Death Dis. 2020, 11, 105. [Google Scholar] [CrossRef]
- Beton, K.; Wysocki, P.; Brozek-Pluska, B. Mevastatin in Colon Cancer by Spectroscopic and Microscopic Methods—Raman Imaging and AFM Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120726. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, L.; Li, Q.; Qi, X.; Zhou, A. Microfluidic Chip for Non-Invasive Analysis of Tumor Cells Interaction with Anti-Cancer Drug Doxorubicin by AFM and Raman Spectroscopy. Biomicrofluidics 2018, 12, 024119. [Google Scholar] [CrossRef]
- Mrđenović, D.; Tang, Z.X.; Pandey, Y.; Su, W.; Zhang, Y.; Kumar, N.; Zenobi, R. Regioselective Tip-Enhanced Raman Spectroscopy of Lipid Membranes with Sub-Nanometer Axial Resolution. Nano Lett. 2023, 23, 3939–3946. [Google Scholar] [CrossRef]
- Mrđenović, D.; Ge, W.; Kumar, N.; Zenobi, R. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip-Enhanced Raman Spectroscopy. Angew. Chem. 2022, 61, e202210288. [Google Scholar] [CrossRef]
- Wu, Y.; McEwen, G.D.; Harihar, S.; Baker, S.M.; DeWald, D.B.; Zhou, A. BRMS1 Expression Alters the Ultrastructural, Biomechanical and Biochemical Properties of MDA-MB-435 Human Breast Carcinoma Cells: An AFM and Raman Microspectroscopy Study. Cancer Lett. 2010, 293, 82–91. [Google Scholar] [CrossRef]
- McEwen, G.D.; Wu, Y.; Tang, M.; Qi, X.; Xiao, Z.; Baker, S.M.; Yu, T.; Gilbertson, T.A.; DeWald, D.B.; Zhou, A. Subcellular Spectroscopic Markers, Topography and Nanomechanics of Human Lung Cancer and Breast Cancer Cells Examined by Combined Confocal Raman Microspectroscopy and Atomic Force Microscopy. Analyst 2013, 138, 787–797. [Google Scholar] [CrossRef]
- Paul, D.; Roy, A.; Nandy, A.; Datta, B.; Borar, P.; Pal, S.K.; Senapati, D.; Rakshit, T. Identification of Biomarker Hyaluronan on Colon Cancer Extracellular Vesicles Using Correlative AFM and Spectroscopy. J. Phys. Chem. Lett. 2020, 11, 5569–5576. [Google Scholar] [CrossRef]
- Beekman, P.; Enciso-Martinez, A.; Rho, H.S.; Pujari, S.P.; Lenferink, A.; Zuilhof, H.; Terstappen, L.W.M.M.; Otto, C.; Le Gac, S. Immuno-Capture of Extracellular Vesicles for Individual Multi-Modal Characterization Using AFM, SEM and Raman Spectroscopy. Lab Chip 2019, 19, 2526–2536. [Google Scholar] [CrossRef]
- Park, Y.K.; Depeursinge, C.; Popescu, G. Quantitative Phase Imaging in Biomedicine. Nat. Photonics 2018, 12, 578–589. [Google Scholar] [CrossRef]
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef]
- De Angelis, A.; Ferrara, M.A.; Coppola, G.; Di Matteo, L.; Siani, L.; Dale, B.; Coppola, G.; De Luca, A.C. Combined Raman and Polarization Sensitive Holographic Imaging for a Multimodal Label-Free Assessment of Human Sperm Function. Sci. Rep. 2019, 9, 4823. [Google Scholar] [CrossRef]
- Gupta, R.K.; Chen, M.; Malcolm, G.P.A.; Hempler, N.; Dholakia, K.; Powis, S.J. Label-Free Optical Hemogram of Granulocytes Enhanced by Artificial Neural Networks. Opt. Express 2019, 27, 13706. [Google Scholar] [CrossRef] [PubMed]
- McReynolds, N.; Cooke, F.G.M.; Chen, M.; Powis, S.J.; Dholakia, K. Multimodal Discrimination of Immune Cells Using a Combination of Raman Spectroscopy and Digital Holographic Microscopy. Sci. Rep. 2017, 7, 43631. [Google Scholar] [CrossRef]
- Khmaladze, A. Examining Live Cell Cultures during Apoptosis by Digital Holographic Phase Imaging and Raman Spectroscopy. In Proceedings of the Journal of Physics: Conference Series; Institute of Physics Publishing: Bristol, UK, 2017; Volume 909. [Google Scholar]
- D’Brant, L.Y.; Desta, H.; Khoo, T.C.; Sharikova, A.V.; Mahajan, S.D.; Khmaladze, A. Methamphetamine-Induced Apoptosis in Glial Cells Examined under Marker-Free Imaging Modalities. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef]
- Toporski, J.; Dieing, T.; Hollricher, O. Confocal Raman Microscopy; Springer: Berlin/Heidelberg, Germany, 2018; Volume 66. [Google Scholar]
- Masyuko, R.; Lanni, E.J.; Sweedler, J.V.; Bohn, P.W. Correlated Imaging—A Grand Challenge in Chemical Analysis. Analyst 2013, 138, 1924–1939. [Google Scholar] [CrossRef] [PubMed]
- Lanni, E.J.; Masyuko, R.N.; Driscoll, C.M.; Dunham, S.J.B.; Shrout, J.D.; Bohn, P.W.; Sweedler, J. V Correlated Imaging with C60-SIMS and Confocal Raman Microscopy: Visualization of Cell-Scale Molecular Distributions in Bacterial Biofilms. Anal. Chem. 2014, 86, 10885–10891. [Google Scholar] [CrossRef] [PubMed]
- Francese, S.; Dani, F.R.; Traldi, P.; Mastrobuoni, G.; Pieraccini, G.; Moneti, G. MALDI Mass Spectrometry Imaging, from Its Origins up to Today: The State of the Art. Comb. Chem. High Throughput Screen. 2009, 12, 156–174. [Google Scholar] [CrossRef] [PubMed]
- Bocklitz, T.; Bräutigam, K.; Urbanek, A.; Hoffmann, F.; von Eggeling, F.; Ernst, G.; Schmitt, M.; Schubert, U.; Guntinas-Lichius, O.; Popp, J. Novel Workflow for Combining Raman Spectroscopy and MALDI-MSI for Tissue Based Studies. Anal. Bioanal. Chem. 2015, 407, 7865–7873. [Google Scholar] [CrossRef] [PubMed]
- Ahlf, D.R.; Masyuko, R.N.; Hummon, A.B.; Bohn, P.W. Correlated Mass Spectrometry Imaging and Confocal Raman Microscopy for Studies of Three-Dimensional Cell Culture Sections. Analyst 2014, 139, 4578–4585. [Google Scholar] [CrossRef] [PubMed]
- Iakab, S.A.; Sementé, L.; García-Altares, M.; Correig, X.; Ràfols, P. Raman2imzML Converts Raman Imaging Data into the Standard Mass Spectrometry Imaging Format. BMC Bioinform. 2020, 21, 448. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Kim, J.H.; Tressler, C.M.; Shen, X.E.; Brown, D.R.; Johnson, C.C.; Hahm, T.-H.; Barman, I.; Glunde, K. RaMALDI: Enabling Simultaneous Raman and MALDI Imaging of the Same Tissue Section. Biosens. Bioelectron. 2023, 239, 115597. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, D.L.; Shi, Y.-C.; Schmidt, U. Confocal Raman and AFM Imaging of Individual Granules of Octenyl Succinate Modified and Natural Waxy Maize Starch. Vib. Spectrosc. 2010, 53, 173–177. [Google Scholar] [CrossRef]
- Weber, A.; Vivanco, M.D.; Toca-Herrera, J.L. Application of Self-Organizing Maps to AFM-Based Viscoelastic Characterization of Breast Cancer Cell Mechanics. Sci. Rep. 2023, 13, 3087. [Google Scholar] [CrossRef]
- Xu, J.; Chen, D.; Wu, W.; Ji, X.; Dou, X.; Gao, X.; Li, J.; Zhang, X.; Huang, W.E.; Xiong, D. A Metabolic Map and Artificial Intelligence-Aided Identification of Nasopharyngeal Carcinoma via a Single-Cell Raman Platform. Br. J. Cancer 2024, 130, 1635–1646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadem, H.; Mangini, M.; Farazpour, S.; De Luca, A.C. Correlative Raman Imaging: Development and Cancer Applications. Biosensors 2024, 14, 324. https://doi.org/10.3390/bios14070324
Khadem H, Mangini M, Farazpour S, De Luca AC. Correlative Raman Imaging: Development and Cancer Applications. Biosensors. 2024; 14(7):324. https://doi.org/10.3390/bios14070324
Chicago/Turabian StyleKhadem, Hossein, Maria Mangini, Somayeh Farazpour, and Anna Chiara De Luca. 2024. "Correlative Raman Imaging: Development and Cancer Applications" Biosensors 14, no. 7: 324. https://doi.org/10.3390/bios14070324
APA StyleKhadem, H., Mangini, M., Farazpour, S., & De Luca, A. C. (2024). Correlative Raman Imaging: Development and Cancer Applications. Biosensors, 14(7), 324. https://doi.org/10.3390/bios14070324