Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Preparation of S-TiO2
2.3. SPR Chip Modification Using S-TiO2 and the Development of the THI-Imprinted S-TiO2/SPR Chip
2.4. THI Removal from MIP/S-TiO2/SPR and the Analysis Process
2.5. Sample Preparation
3. Results and Discussion
3.1. Characterization of S-TiO2
3.2. FTIR and AFM Characterizations of THI-Imprinted Film on S-TiO2/SPR Chips
3.3. Electrochemical Characterizations of Modified Electrodes with S-TiO2 and Undoped TiO2 Nanomaterials
3.4. pH Effect on THI-Imprinted SPR Chips
3.5. Linearity Range of MIP/S-TiO2/SPR Chips
3.6. Recovery
3.7. Selectivity, Repeatability, and Reusability of MIP/S-TiO2/SPR Chips
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages 2017, 3, 54. [Google Scholar] [CrossRef]
- Deveci, H.A.; Karapehlivan, M. Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pestic. Biochem. Physiol. 2018, 144, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Filipe, O.M.S.; Costa, C.A.E.; Vidal, M.M.; Santos, E.B.H. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Chemosphere 2013, 90, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ding, Y.; Chen, J.; Xu, W.; Wang, W.; Xu, S. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121644. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.G.; Faraji, M.; Momeni, M.M.; Ershad, S. An innovative electrochemical approach for voltammetric determination of levodopa using gold nanoparticles doped on titanium dioxide nanotubes. Microchim. Acta 2011, 172, 103–108. [Google Scholar] [CrossRef]
- Nguyen, P.K.Q.; Lunsford, S.K. Square wave anodic stripping voltammetric analysis of lead and cadmium utilizing titanium dioxide/zirconium dioxide carbon paste composite electrode. J. Electroanal. Chem. 2013, 711, 45–52. [Google Scholar] [CrossRef]
- Ramacharyulu, P.V.R.K.; Praveen Kumar, J.; Prasad, G.K.; Sreedhar, B. Sulphur doped nano TiO2: Synthesis, characterization and photocatalytic degradation of a toxic chemical in presence of sunlight. Mater. Chem. Phys. 2014, 148, 692–698. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81, 454–456. [Google Scholar] [CrossRef]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2. Chem. Lett. 2003, 32, 330–331. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Yamamoto, S.; Miyashita, A.; Tanaka, S.; Sumita, T.; Asai, K. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. J. Appl. Phys. 2003, 93, 5156–5160. [Google Scholar] [CrossRef]
- Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A Gen. 2004, 265, 115–121. [Google Scholar] [CrossRef]
- Ho, W.; Yu, J.C.; Lee, S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem. 2006, 179, 1171–1176. [Google Scholar] [CrossRef]
- Zamruddin, N.M.; Herman, H.; Rijai, L.; Hasanah, A.N. Factors Affecting the Analytical Performance of Magnetic Molecularly Imprinted Polymers. Polymers 2022, 14, 3008. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Synthesis and application of molecularly imprinted polymers using sol-gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem. J. 2020, 157, 104965. [Google Scholar] [CrossRef]
- Üzek, R.; Şenel, S.; Denizli, A. Investigation of Thermodynamic, Kinetic, and Isothermal Parameters for the Selective Adsorption of Bisphenol A. ACS Omega 2022, 7, 18940–18952. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abdullah, O.G.; Rasheed, M.A. A novel polymer composite with a small optical band gap: New approaches for photonics and optoelectronics. J. Appl. Polym. Sci. 2017, 134, 44847. [Google Scholar] [CrossRef]
- Özdemir, N.; Karslıoğlu, B.; Yola, B.B.; Atar, N.; Yola, M.L. A novel molecularly imprinted quartz crystal microbalance sensor based on erbium molybdate incorporating sulfur-doped graphitic carbon nitride for dimethoate determination in apple juice samples. Foods 2024, 13, 810. [Google Scholar] [CrossRef]
- Demir, B.; Yola, B.B.; Bekerecioğlu, S.; Polat, İ.; Yola, M.L. A nivalenol imprinted quartz crystal microbalance sensor based on sulphur-incorporating cobalt ferrite and its application to rice samples. Anal. Methods 2024, 16, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Kadirsoy, S.; Atar, N.; Yola, M.L. Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J. Chem. 2020, 44, 6524–6532. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N.; Erdem, A. Oxytocin imprinted polymer based surface plasmon resonance sensor and its application to milk sample. Sens. Actuators B Chem. 2015, 221, 842–848. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Qi, F.; Lin, F.R.; Jen, A.K.Y. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem. Rev. 2024, 124, 2138–2204. [Google Scholar] [CrossRef]
- Ohno, T.; Mitsui, T.; Matsumura, M. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett. 2003, 32, 364–365. [Google Scholar] [CrossRef]
- Ohno, T. Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities. Water Sci. Technol. 2004, 49, 159–163. [Google Scholar] [CrossRef]
- Yola, M.L.; Uzun, L.; Ozaltin, N.; Denizli, A. Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta 2014, 120, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Mazloum-Ardakani, M.; Rajabi, H.; Beitollahi, H.; Mirjalili, B.B.F.; Taghavinia, N.; Akbari, A. Voltammetric Determination of Dopamine at the Surface of TiO2 Nanoparticles Modified Carbon Paste Electrode. Int. J. Electrochem. Sci. 2010, 5, 147–157. [Google Scholar] [CrossRef]
- Mashhadizadeh, M.H.; Afshar, E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta 2013, 87, 816–823. [Google Scholar] [CrossRef]
- Madhusudan Reddy, K.; Baruwati, B.; Jayalakshmi, M.; Mohan Rao, M.; Manorama, S.V. S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. J. Solid State Chem. 2005, 178, 3352–3358. [Google Scholar] [CrossRef]
- Çapar, N.; Yola, B.B.; Polat, İ.; Bekerecioğlu, S.; Atar, N.; Yola, M.L. A zearalenone detection based on molecularly imprinted surface plasmon resonance sensor including sulfur-doped g-C3N4/Bi2S3 nanocomposite. Microchem. J. 2023, 193, 109141. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Kushwaha, A.S.; Kumar, A.; Kumar, R.; Srivastava, S.K. A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics Nanostruct. Fundam. Appl. 2018, 31, 99–106. [Google Scholar] [CrossRef]
- Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.-P.; Boukherroub, R.; Szunerits, S. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 2011, 15, 208–224. [Google Scholar] [CrossRef]
- Moslemi, A.; Sansone, L.; Esposito, F.; Campopiano, S.; Giordano, M.; Iadicicco, A. Optical fiber probe based on LSPR for the detection of pesticide Thiram. Opt. Laser Technol. 2024, 175, 110882. [Google Scholar] [CrossRef]
- Geng, L.; Sun, X.; Wang, L.; Liu, F.; Hu, S.; Zhao, S.; Ye, F. Analyte-induced laccase-mimicking activity inhibition and conductivity enhancement of electroactive nanozymes for ratiometric electrochemical detection of thiram. J. Hazard. Mater. 2024, 463, 132936. [Google Scholar] [CrossRef]
- Martins, N.C.T.; Fateixa, S.; Nogueira, H.I.S.; Trindade, T. Surface-enhanced Raman scattering detection of thiram and ciprofloxacin using chitosan-silver coated paper substrates. Analyst 2024, 149, 244–253. [Google Scholar] [CrossRef]
- Xue, W.; Fu, J.; Zhang, Y.; Ren, S.; Liu, G. A core-shell structured AuNPs@ZnCo-MOF SERS substrate for sensitive and selective detection of thiram. Anal. Methods 2024, 16, 1811–1820. [Google Scholar] [CrossRef]
- Yusoff, N.N.; Nor Azmi, F.S.; Abu Bakar, N.; Tengku Abdul Aziz, T.H.; Shapter, J.G. Titanium carbide MXene/silver nanostars composite as SERS substrate for thiram pesticide detection. Chem. Pap. 2024, 78, 2855–2865. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, L.; Ning, K.; Wu, Y.; Liang, J. A fluorescence sensor for thiram detection based on DNA-templated silver nanoclusters without metal ion-mediator. Food Chem. 2023, 413, 135428. [Google Scholar] [CrossRef] [PubMed]
Method | Linear Range (M) | LOD (M) | Ref. |
---|---|---|---|
Optical fiber probe based on AuNP | 1.0 × 10−7–10.0 × 10−4 | 5.0 × 10−10 | [36] |
Ratiometric electrochemical method | 1.0 × 10−8–3.0 × 10−6 | 1.5 × 10−10 | [37] |
AgNPs/CH/office paper | 1.0 × 10−5–1.0 × 10−8 | 1.0 × 10−7 | [38] |
AuNPs@ZnCo-MOF SERS | 1.0 × 10−7–1.0 × 10−4 | 1.0 × 10−7 | [39] |
MXene/AgNs SERS | 1.0 × 10−2–1.0 × 10−8 | 2.1 × 10−8 | [40] |
Fluorescence-DNA-AgNCs | 1.2 × 10−8–2.0 × 10−7 | 1.0 × 10−8 | [41] |
MIP/S-TiO2/SPR chip | 1.0 × 10−9–1.0 × 10−7 | 3.3 × 10−10 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmankaya, S.; Deveci, H.A.; Harmankaya, A.; Gül, F.H.; Atar, N.; Yola, M.L. Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide. Biosensors 2024, 14, 329. https://doi.org/10.3390/bios14070329
Harmankaya S, Deveci HA, Harmankaya A, Gül FH, Atar N, Yola ML. Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide. Biosensors. 2024; 14(7):329. https://doi.org/10.3390/bios14070329
Chicago/Turabian StyleHarmankaya, Sezen, Hacı Ahmet Deveci, Ahmet Harmankaya, Fatma Hazan Gül, Necip Atar, and Mehmet Lütfi Yola. 2024. "Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide" Biosensors 14, no. 7: 329. https://doi.org/10.3390/bios14070329
APA StyleHarmankaya, S., Deveci, H. A., Harmankaya, A., Gül, F. H., Atar, N., & Yola, M. L. (2024). Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide. Biosensors, 14(7), 329. https://doi.org/10.3390/bios14070329