Luminescence Probes in Bio-Applications: From Principle to Practice
Abstract
:1. Introduction
2. Principles of Luminescence Probes
2.1. FL Probes
2.2. BL Probes
2.3. CL Probes
2.4. Afterglow Probe
2.5. PA Probes
2.6. Cerenkov Luminescence Probe
3. Bio-Applications of Luminescence Probes
3.1. Metal Ions and Chemical Compounds Detection
3.1.1. Zinc Ions
3.1.2. Sodium Ions
3.1.3. Calcium Ions
3.1.4. Copper Ions
3.2. Small Molecular Detection
3.2.1. Gaseous Molecule Detection
3.2.2. ROS Detection
3.3. Secretion Detection
3.3.1. Detection in Sweat
3.3.2. Detection in Tears
3.3.3. Exhalation Products Detection
3.4. Imaging and Therapy
4. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FL | fluorescence |
BL | bioluminescence |
CL | chemiluminescence |
PA | photoacoustic |
CT | computed tomography |
MRI | magnetic resonance imaging |
SBR | signal-to-background |
TP | two-photon |
CCD | charge-coupled device |
FRET | fluorescence resonance energy transfer |
BRET | bioluminescence resonance energy transfer |
Ln-MOFs | lanthanide metal–organic frameworks |
FLIM | fluorescence lifetime imaging |
LOD | limit of detection |
RSD | relative standard deviations |
AFDS | aptamer-functionalized DNA fluorescent sensor |
CF | cystic fibrosis |
BODIPY | boron-dipyrromethene |
QD | quantum dot |
ConA | concanavalin A |
COPD | chronic obstructive pulmonary disease |
Tb | terbium |
CP | coordination polymer |
NP | nanoparticles |
MTX | methotrexate |
RCD | red carbon dot |
SO | singlet oxygen |
NIR | Near infrared |
References
- Yang, X.; Li, C.; Li, P.; Fu, Q. Ratiometric optical probes for biosensing. Theranostics 2023, 13, 2632–2656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 2021, 121, 13086–13131. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Kodaimati, M.S.; Yan, D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 2021, 50, 5564–5589. [Google Scholar] [CrossRef] [PubMed]
- Von Suskil, C.; Murray, M.J.; Sanap, D.B.; Neal, S.L. Photoluminescence probes in data-enabled sensing. Annu. Rev. Anal. Chem. 2023, 16, 353–377. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Ci, L.; Shi, J.; Fang, F.; Yan, B.; Liu, X.; Yao, X.; Zhang, M.; Yang, H.; Wang, Z.; et al. Bioluminescence imaging of mouse monocyte chemoattractant protein-1 expression in inflammatory processes. Acta Biochim. Biophys. Sin. 2022, 54, 1507–1517. [Google Scholar] [CrossRef]
- Yao, M.; Wang, L.; Fang, C. The chemiluminescence immunoassay for aflatoxin b1 based on functionalized magnetic nanoparticles with two strategies of antigen probe immobilization. Luminescence 2017, 32, 661–665. [Google Scholar] [CrossRef]
- Miranda, C.; Barkley, J.; Smith, B. Intrauterine photoacoustic and ultrasound imaging probe. J. Biomed. Opt. 2018, 23, 046008. [Google Scholar] [CrossRef]
- Lee, S.Y.; Oh, H.R.; Kim, Y.H.; Bae, S.H.; Lee, Y.; Lee, Y.-S.; Lee, B.C.; Cheon, G.J.; Kang, K.W.; Youn, H. Cerenkov luminescence imaging of interscapular brown adipose tissue using a tspo-targeting pet probe in the ucp1 thermomouse. Theranostics 2022, 12, 6380–6394. [Google Scholar] [CrossRef] [PubMed]
- Seipp, E.K.; Huang, R. Design and synthesis of a fluorescent probe to develop a fluorescence polarization assay for the e3 ligase fem1c. Bioorg. Med. Chem. 2023, 90, 117371. [Google Scholar] [CrossRef]
- Quan, K.; Yi, C.; Yang, X.; He, X.; Huang, J.; Wang, K. Fret-based nucleic acid probes: Basic designs and applications in bioimaging. TrAC Trends Anal. Chem. 2020, 124, 115784. [Google Scholar] [CrossRef]
- Carbery, W.P.; Pinto-Pacheco, B.; Buccella, D.; Turner, D.B. Resolving the fluorescence quenching mechanism of an oxazine dye using ultrabroadband two-dimensional electronic spectroscopy. J. Phys. Chem. A 2019, 123, 5072–5080. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Q.; Pan, X.; Zhang, J. Insight into fluorescence imaging and bioorthogonal reactions in biological analysis. Top. Curr. Chem. 2021, 379, 10. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef] [PubMed]
- Foucault-Collet, A.; Gogick, K.A.; White, K.A.; Villette, S.; Pallier, A.; Collet, G.; Kieda, C.; Li, T.; Geib, S.J.; Rosi, N.L.; et al. Lanthanide near infrared imaging in living cells with yb3+ nano metal organic frameworks. Proc. Natl. Acad. Sci. USA 2013, 110, 17199–17204. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Zhao, Z.; Tang, B.Z. Organic dots based on aiegens for two-photon fluorescence bioimaging. Small 2016, 12, 6430–6450. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods 2011, 8, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, B.; Zhang, H.; Zhang, F. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem. Sci. 2020, 12, 3448–3459. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef]
- Chu, B.; Chen, Z.; Shi, H.; Wu, X.; Wang, H.; Dong, F.; He, Y. Fluorescence, ultrasonic and photoacoustic imaging for analysis and diagnosis of diseases. Chem. Commun. 2023, 59, 2399–2412. [Google Scholar] [CrossRef]
- Chen, W.W.; Tang, W.; Hamerton, E.K.; Kuo, P.X.; Lemieux, G.A.; Ashrafi, K.; Cicerone, M.T. Identifying lipid particle sub-types in live caenorhabditis elegans with two-photon fluorescence lifetime imaging. Front. Chem. 2023, 11, 1161775. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, L.; Xu, Y.; Zeng, Z.; Wang, X.; Wang, H. A highly sensitively “off-on-off” fluorescence probe for detection of aluminum ion and water as well as application in chinese baijiu. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123013. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, X.; Zhang, Y.; Fan, X.; Cao, Y.; Li, Z.; Dong, C. Detection of oxytetracycline in milk using a novel carbon dots-based fluorescence probe via facile pyrolysis synthesis. Environ. Sci. Pollut. Res. 2023, 30, 84002–84010. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Wang, Z.; Cai, N.; Au, C. Nanomaterial-based dual-emission ratiometric fluorescent sensors for biosensing and cell imaging. Polymers 2021, 13, 2540. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 2013, 42, 622–661. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Sun, T.; Ding, J.; Xie, Z. Robust organic nanoparticles for noninvasive long-term fluorescence imaging. J. Mater. Chem. B 2019, 7, 6879–6889. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Jenkins, M.C.; Richardson, K.G.; Palui, S.; Islam, M.S.; Tripathy, J.; Finn, M.G.; Dickson, R.M. Sequential two-photon delayed fluorescence anisotropy for macromolecular size determination. J. Phys. Chem. B 2023, 127, 3861–3869. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Han, Y.; Zhang, Q.W.; Tian, Y. Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat. Commun. 2023, 14, 1419. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, J.; Huang, X.; Gao, X.; Zhou, Y.; Fu, L. Two-photon fluorescence imaging using a tunable spectral window based on fiber supercontinuum. Opt. Lett. 2023, 48, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Boguslawski, J.; Tomczewski, S.; Dabrowski, M.; Komar, K.; Milkiewicz, J.; Palczewska, G.; Palczewski, K.; Wojtkowski, M. In vivo imaging of the human retina using a two-photon excited fluorescence ophthalmoscope. Star Protoc. 2023, 4, 102225. [Google Scholar] [CrossRef]
- Liu, D.; Sun, X.M.; Zhu, L.; Li, C.Y. Using time-shared scanning optical tweezers assisted two-photon fluorescence imaging to establish a versatile crispr/cas12a-mediated biosensor. Biosens. Bioelectron. 2023, 227, 115158. [Google Scholar] [CrossRef]
- Chao, J.J.; Zhang, H.; Wang, Z.Q.; Liu, Q.R.; Mao, G.J.; Chen, D.H.; Li, C.Y. A near-infrared fluorescent probe for monitoring abnormal mitochondrial viscosity in cancer and fatty-liver mice model. Anal. Chim. Acta 2023, 1242, 340813. [Google Scholar] [CrossRef] [PubMed]
- Garrigos, M.M.; Oliveira, F.A.; Nucci, M.P.; Mamani, J.B.; Dias, O.; Rego, G.N.A.; Junqueira, M.S.; Costa, C.J.S.; Silva, L.R.R.; Alves, A.H.; et al. Bioluminescence imaging and icp-ms associated with spion as a tool for hematopoietic stem and progenitor cells homing and engraftment evaluation. Pharmaceutics 2023, 15, 828. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.X.; Brennan, C.K.; Love, A.C.; Prescher, J.A. Caged luciferins enable rapid multicomponent bioluminescence imaging. Photochem. Photobiol. 2023, 100, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.; Shanks, N.; Longbottom, C.; Willins, M.; Vernon, B. Clinical validation of a novel bioluminescence imaging technology for aiding the assessment of carious lesion activity status. Clin. Exp. Dent. Res. 2021, 7, 772–785. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.A.; Welsh, D.K.; Davidson, A.J. Collection of mouse brain slices for bioluminescence imaging of circadian clock networks. Methods Mol. Biol. 2021, 2130, 287–294. [Google Scholar] [PubMed]
- Francisco, A.F.; Saade, U.; Jayawardhana, S.; Pottel, H.; Scandale, I.; Chatelain, E.; Liehl, P.; Kelly, J.M.; Zrein, M. Comparing in vivo bioluminescence imaging and the multi-cruzi immunoassay platform to develop improved chagas disease diagnostic procedures and biomarkers for monitoring parasitological cure. PLoS Neglect. Trop. Dis. 2022, 16, e0010827. [Google Scholar] [CrossRef]
- Endo, M.; Ozawa, T. Advanced bioluminescence system for in vivo imaging with brighter and red-shifted light emission. Int. J. Mol. Sci. 2020, 21, 6538. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.J.; Anderson, J.C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 2021, 50, 5668–5705. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, Y.; Ma, Z.; Jiang, T.; Zhou, X.; Li, Z.; Qin, X.; Huang, Y.; Du, L.; Li, M. Bioluminescence probe for gamma-glutamyl transpeptidase detection in vivo. Bioorg. Med. Chem. 2018, 26, 134–140. [Google Scholar] [CrossRef]
- Afshari, M.J.; Li, C.; Zeng, J.; Cui, J.; Wu, S.; Gao, M. Self-illuminating nir-ii bioluminescence imaging probe based on silver sulfide quantum dots. Acs Nano 2022, 16, 16824–16832. [Google Scholar] [CrossRef]
- Ke, B.; Chen, H.; Ma, L.; Zingales, S.; Gong, D.; Hu, D.; Du, L.; Li, M. Visualization of mercury(ii) accumulation in vivo using bioluminescence imaging with a highly selective probe. Org. Biomol. Chem. 2018, 16, 2388–2392. [Google Scholar] [CrossRef]
- Li, S.; Wang, K.; Wang, Z.; Zhang, W.; Liu, Z.; Cheng, Y.; Zhu, J.; Zhong, M.; Hu, S.; Zhang, Y. Application and trend of bioluminescence imaging in metabolic syndrome research. Front. Chem. 2022, 10, 1113546. [Google Scholar] [CrossRef] [PubMed]
- Love, A.C.; Caldwell, D.R.; Kolbaba-Kartchner, B.; Townsend, K.M.; Halbers, L.P.; Yao, Z.; Brennan, C.K.; Ivanic, J.; Hadjian, T.; Mills, J.H.; et al. Red-shifted coumarin luciferins for improved bioluminescence imaging. J. Am. Chem. Soc. 2023, 145, 3335–3345. [Google Scholar] [CrossRef]
- Javed, S.; Soukhtehzari, S.; Fernandes, N.; Williams, K.C. Longitudinal bioluminescence imaging to monitor breast tumor growth and treatment response using the chick chorioallantoic membrane model. Sci. Rep. 2022, 12, 17192. [Google Scholar] [CrossRef]
- Bausart, M.; Bozzato, E.; Joudiou, N.; Koutsoumpou, X.; Manshian, B.; Preat, V.; Gallez, B. Mismatch between bioluminescence imaging (bli) and mri when evaluating glioblastoma growth: Lessons from a study where bli suggested “regression” while mri showed “progression”. Cancers 2023, 15, 1919. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.K.; Yao, Z.; Ionkina, A.A.; Rathbun, C.M.; Sathishkumar, B.; Prescher, J.A. Multiplexed bioluminescence imaging with a substrate unmixing platform. Cell Chem. Biol. 2022, 29, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhu, M.; Zhao, X.; Si, L.; Dong, M.; Anirudhan, V.; Cui, Q.; Rong, L.; Du, R. Optimization and applications of an in vivo bioluminescence imaging model of influenza a virus infections. Virol. Sin. 2023, 38, 631. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, G.; Kitada, N.; Furuta, T.; Hirano, T.; Maki, S.A.; Kim, S.B. S-series coelenterazine-driven combinatorial bioluminescence imaging systems for mammalian cells. Int. J. Mol. Sci. 2023, 24, 1420. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Zhou, H.; Chen, J.; Li, Y.; Zhang, C.; Yu, C. Chemiluminescence detection of a protein through the aptamer-controlled catalysis of a porphyrin probe. Anal. Chem. 2015, 87, 8336–8341. [Google Scholar] [CrossRef]
- Liu, J.L.; Xue, Q.; Liu, C.G.; Bai, F.W.; Wada, S.; Wang, J.Y. Chemiluminescence imaging of uva induced reactive oxygen species in mouse skin using l-012 as a probe. Free Radic. Res. 2018, 52, 1424–1431. [Google Scholar] [CrossRef]
- Delnavaz, E.; Amjadi, M. A chemiluminescence probe enhanced by cobalt and nitrogen-doped carbon dots for the determination of a nitrosative stress biomarker. Microchim. Acta 2021, 188, 278. [Google Scholar] [CrossRef]
- Rink, S.; Duerkop, A.; Jacobi, V.W.A.; Seidel, M.; Baeumner, A.J. Next generation luminol derivative as powerful benchmark probe for chemiluminescence assays. Anal. Chim. Acta 2021, 1188, 339161. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Huang, J.; Fan, J.; Du, J.; Pu, K.; Peng, X. Chemiluminescence for bioimaging and therapeutics: Recent advances and challenges. Chem. Soc. Rev. 2020, 49, 6800–6815. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Wang, H.; Huo, T.; Li, X.; Fu, W.; Huang, R.; Cao, Z. A novel chemiluminescence probe for sensitive detection of fibroblast activation protein-alpha in vitro and in living systems. Anal. Chem. 2021, 93, 6501–6507. [Google Scholar] [CrossRef] [PubMed]
- Gutkin, S.; Green, O.; Raviv, G.; Shabat, D.; Portnoy, O. Powerful chemiluminescence probe for rapid detection of prostate specific antigen proteolytic activity: Forensic identification of human semen. Bioconjug. Chem. 2020, 31, 2488–2493. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, S.; Yang, X.; Wang, Y.; Qi, H.; Gao, Q.; Zhang, C. Separation-free electrogenerated chemiluminescence immunoassay incorporating target assistant proximity hybridization and dynamically competitive hybridization of a DNA signal probe. Anal. Chem. 2020, 92, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Mao, Y.; Wang, H.; Cao, Z. An activatable chemiluminescence probe based on phenoxy-dioxetane scaffold for biothiol imaging in living systems. J. Pharm. Biomed. Anal. 2021, 204, 114266. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shi, P.; Song, W.; Bi, S. Chemiluminescence and bioluminescence imaging for biosensing and therapy: In vitro and in vivo perspectives. Theranostics 2019, 9, 4047–4065. [Google Scholar] [CrossRef]
- Dong, S.; Yuan, Z.; Zhang, L.; Lin, Y.; Lu, C. Rapid screening of oxygen states in carbon quantum dots by chemiluminescence probe. Anal. Chem. 2017, 89, 12520–12526. [Google Scholar] [CrossRef]
- Sun, M.; Deng, D.; Zhang, K.; Lu, T.; Su, Y.; Lv, Y. Silicon carbon nanoparticles-based chemiluminescence probe for hydroxyl radical in pm(2.5). Chem. Commun. 2016, 52, 11259–11262. [Google Scholar] [CrossRef]
- Roth-Konforti, M.E.; Bauer, C.R.; Shabat, D. Unprecedented sensitivity in a probe for monitoring cathepsin b: Chemiluminescence microscopy cell-imaging of a natively expressed enzyme. Angew. Chem.-Int. Ed. 2017, 56, 15633–15638. [Google Scholar] [CrossRef]
- Hananya, N.; Green, O.; Blau, R.; Satchi-Fainaro, R.; Shabat, D. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells. Angew. Chem.-Int. Ed. 2017, 56, 11793–11796. [Google Scholar] [CrossRef] [PubMed]
- Hananya, N.; Shabat, D. A glowing trajectory between bio- and chemiluminescence: From luciferin-based probes to triggerable dioxetanes. Angew. Chem.-Int. Ed. 2017, 56, 16454–16463. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Zhang, S.; Yuan, W.; Feng, W.; Li, F. Afterglow/fluorescence dual-emissive ratiometric oxygen probe for tumor hypoxia imaging. Anal. Chem. 2023, 95, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, M.; Su, X.; Yuan, W.; Feng, W.; Su, Q.; Li, F. Afterglow implant for arterial embolization and intraoperative imaging. Chem.-Eur. J. 2022, 28, e202103795. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, W.; Yao, D.; Bian, K.; Zeng, W.; Liu, K.; Wang, D.; Zhang, B. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem. Sci. 2020, 11, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, N.; Zhou, J.; Li, Y.; Zhang, Y.; Huang, L.; Huang, K.; Zhao, Y.; Kelmar, S.; Yang, J.; et al. Coloring afterglow nanoparticles for high-contrast time-gating-free multiplex luminescence imaging. Adv. Mater. 2020, 32, e2003881. [Google Scholar] [CrossRef]
- Huo, Z.; Cao, X.; Sun, D.; Xu, W.; Yang, B.; Xu, S. Carbonized polymer dot probe for two-photon fluorescence imaging of lipid droplets in living cells and tissues. ACS Sens. 2023, 8, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Meng, J.; Bao, W.; Liu, M.; Li, X.; Wang, Z.; Ma, Z.; Wang, X.; Tian, Z. Composite mesoporous silica nanoparticles with dual-color afterglow for cross-correlation-based living cell imaging. Chemphyschem 2023, 24, e202200716. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, K.; Lin, S.; Zhang, N.; Wang, X.; Li, Y.; Li, Z.; Han, G. Dye sensitization offers a brighter afterglow nanoparticle future for in vivo recharged luminescent imaging. Chem.-Eur. J. 2022, 28, e202104366. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Zhao, H.; Yue, W.; Zhang, K.; Jiang, X.; Li, K. Facile and controllable synthesis of the renal-clearable “luminous pearls” for in vivo afterglow/magnetic resonance imaging. ACS Nano 2022, 16, 462–472. [Google Scholar] [CrossRef]
- Wang, X.; Pu, K. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment. Chem. Soc. Rev. 2023, 52, 4549–4566. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wu, W.; Zheng, Y.; Ding, Y.; Xiang, Y.; Liu, B.; Tong, A. Organic nanoparticles with persistent luminescence for in vivo afterglow imaging-guided photodynamic therapy. Chem.-Eur. J. 2021, 27, 6911–6916. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, X.; Jiang, Z.; Zhang, C.; Liang, Z.; Chen, Y.; Liu, Z.; Guo, Z. A photoacoustic probe with blood-brain barrier crossing ability for imaging oxidative stress dynamics in the mouse brain. Angew. Chem.-Int. Ed. 2023, 62, e202214505. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.H.; Jiang, Z.Y.; Zhao, W.L.; Zhang, E.; Xia, L.; Xia, L.; Kong, R.-M.; Zhao, Y.; Kong, W.; Liu, X.; et al. Activatable near-infrared fluorescent and photoacoustic dual-modal probe for highly sensitive imaging of sulfatase in vivo. ACS Sens. 2023, 8, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Lin, W.K.; Kasputis, A.; Postiff, D.; Siddiqui, J.; Allaway, M.J.; Davenport, M.S.; Wei, J.T.; Guo, J.L.; Morgan, T.M.; et al. Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates ex-vivo. Photoacoustics 2022, 28, 100418. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Shi, W.; Liu, G.; Zhuang, W.; Wang, K.; Wang, Y.; Shou, K.; Wu, W.; Liu, X.; Fan, Q.; et al. Early diagnosis and treatment of osteoarthritis with a Au@PDA-WL np nano-probe by photoacoustic imaging. J. Mater. Chem. B 2023, 11, 5777–5785. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, D. A caspase-3 activatable photoacoustic probe for in vivo imaging of tumor apoptosis. Methods Enzymol. 2021, 657, 21–57. [Google Scholar]
- Song, Z.; Miao, J.; Miao, M.; Cheng, B.; Li, S.; Liu, Y.; Miao, Q.; Li, Q.; Gao, M. Cathepsin k-activated probe for fluoro-photoacoustic imaging of early osteolytic metastasis. Adv. Sci. 2023, 10, e2300217. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, Z.; Zhang, L.; Wang, S.; Zhao, S.; Pang, Q.; Liang, H. Mitochondria-targeted fluorescence/photoacoustic dual-modality imaging probe tailored for visual precise diagnosis of drug-induced liver injury. Anal. Chem. 2022, 94, 6251–6260. [Google Scholar] [CrossRef]
- Zha, M.; Ni, J.S.; Li, Y.; Li, K. Monitoring tumor growth with a novel nir-ii photoacoustic probe. Methods Enzymol. 2021, 657, 181–222. [Google Scholar]
- Yin, L.; Wang, A.; Shi, H.; Gao, M. Quantitatively visualizing the activity of mmp-2 enzyme in vivo using a ratiometric photoacoustic probe. Methods Enzymol. 2021, 657, 59–87. [Google Scholar] [PubMed]
- Zeng, L.; Ma, G.; Lin, J.; Huang, P. Photoacoustic probes for molecular detection: Recent advances and perspectives. Small 2018, 14, e1800782. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; Gong, X.; Zheng, R.; Bai, Y.; Xing, M.; Du, X.; Liu, X.; Zeng, J.; Lin, R.; et al. Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping. Biomed. Opt. Express 2018, 9, 1408–1422. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic clinical imaging. Photoacoustics 2019, 14, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Ikeno, T.; Hanaoka, K.; Urano, Y. Development of a small-molecule-based activatable photoacoustic probe. Methods Enzymol. 2021, 657, 1–19. [Google Scholar]
- Hosseinaee, Z.; Le, M.; Bell, K.; Reza, P.H. Towards non-contact photoacoustic imaging [review]. Photoacoustics 2020, 20, 100207. [Google Scholar] [CrossRef]
- Mony, U.; Veeraraghavan, V.P. Cerenkov luminescence imaging: A future nuclear imaging modality of head and neck oncology patients in low-income countries? Oral Oncol. 2022, 130, 105923. [Google Scholar] [CrossRef]
- Spinelli, A.E.; Schiariti, M.P.; Grana, C.M.; Ferrari, M.; Cremonesi, M.; Boschi, F. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery. J. Biomed. Opt. 2016, 21, 50502. [Google Scholar] [CrossRef]
- Das, S.; Thorek, D.L.; Grimm, J. Cerenkov imaging. Adv. Cancer Res. 2014, 124, 213–234. [Google Scholar]
- Ciarrocch, E.i; Vanhove, C.; Descamps, B.; De Lombaerde, S.; Vandenberghe, S.; Belcari, N. Performance evaluation of the lightpath imaging system for intra-operative cerenkov luminescence imaging. Phys. Medica 2018, 52, 122–128. [Google Scholar] [CrossRef]
- Habte, F.; Natarajan, A.; Paik, D.S.; Gambhir, S.S. Quantification of cerenkov luminescence imaging (cli) comparable with 3-d pet standard measurements. Mol. Imaging 2018, 17, 1330247139. [Google Scholar] [CrossRef]
- Mc, L.B.; Skubal, M.; Grimm, J. A review of recent and emerging approaches for the clinical application of cerenkov luminescence imaging. Front. Phys. 2021, 9, 684196. [Google Scholar]
- Tamura, R.; Pratt, E.C.; Grimm, J. Innovations in nuclear imaging instrumentation: Cerenkov imaging. Semin. Nucl. Med. 2018, 48, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhu, S.; Huang, Y.; Liang, J.; Chen, X. Removal of random-valued impulse noise from cerenkov luminescence images. Med. Biol. Eng. Comput. 2020, 58, 131–141. [Google Scholar] [CrossRef]
- Costa, M.I.; Sarmento-Ribeiro, A.B.; Goncalves, A.C. Zinc: From biological functions to therapeutic potential. Int. J. Mol. Sci. 2023, 24, 4822. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem.-Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Scavo, S.; Oliveri, V. Zinc ionophores: Chemistry and biological applications. J. Inorg. Biochem. 2022, 228, 111691. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef]
- Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, N.; Yang, Z. Revealing the role of zinc ions in atherosclerosis therapy via an engineered three-dimensional pathological model. Adv. Sci. 2023, 10, e2300475. [Google Scholar] [CrossRef] [PubMed]
- Westin, G.; Schaffner, W. Heavy metal ions in transcription factors from hela cells: Sp1, but not octamer transcription factor requires zinc for dna binding and for activator function. Nucleic Acids Res. 1988, 16, 5771–5781. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Gao, G.; Lian, G.; Gong, J.; Luo, L.; Liu, J.; Chen, W.; Xu, C.; Wang, H.; Xie, L. Zinc promotes cell proliferation via regulating metal-regulatory transcription factor 1 expression and transcriptional activity in pulmonary arterial hypertension. Cell Cycle 2023, 22, 1284–1301. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Fan, Y.G.; Zhao, L.X.; Zhang, Q.; Wang, Z.Y. The metal ion hypothesis of alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg. Chem. 2023, 131, 106301. [Google Scholar] [CrossRef]
- Hong, D.K.; Kho, A.R.; Lee, S.H.; Kang, B.S.; Park, M.K.; Choi, B.Y.; Suh, S.W. Pathophysiological roles of transient receptor potential (trp) channels and zinc toxicity in brain disease. Int. J. Mol. Sci. 2023, 24, 6665. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Sun, H.; Yan, N.; Zhao, P.; Xu, H.; Zheng, W.; Zhang, X.; Wang, T.; Guo, C.; Zhong, M. Atp13a2 declines zinc-induced accumulation of alpha-synuclein in a parkinson’s disease model. Int. J. Mol. Sci. 2022, 23, 8035. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Lippard, S.J. Illuminating mobile zinc with fluorescence from cuvettes to live cells and tissues. Methods Enzymol. 2012, 505, 445–468. [Google Scholar]
- Chen, M.; Zhang, S.; Xing, Y.; Li, X.; He, Y.; Wang, Y.; Oberholzer, J.; Ai, H.-W. Genetically encoded, photostable indicators to image dynamic zn(2+) secretion of pancreatic islets. Anal. Chem. 2019, 91, 12212–12219. [Google Scholar] [CrossRef]
- Chen, Z.; Ai, H.W. Single fluorescent protein-based indicators for zinc ion (zn(2+)). Anal. Chem. 2016, 88, 9029–9036. [Google Scholar] [CrossRef]
- Qin, Y.; Sammond, D.W.; Braselmann, E.; Carpenter, M.C.; Palmer, A.E. Development of an optical zn(2+) probe based on a single fluorescent protein. ACS Chem. Biol. 2016, 11, 2744–2751. [Google Scholar] [CrossRef]
- Hessels, A.M.; Chabosseau, P.; Bakker, M.H.; Engelen, W.; Rutter, G.A.; Taylor, K.M.; Merkx, M. Ezinch-2: A versatile, genetically encoded fret sensor for cytosolic and intraorganelle zn(2+) imaging. ACS Chem. Biol. 2015, 10, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, C.; van Aalen, E.A.; Merkx, M. Ratiometric bioluminescent zinc sensor proteins to quantify serum and intracellular free zn(2). ACS Chem. Biol. 2022, 17, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Aper, S.J.; Dierickx, P.; Merkx, M. Dual readout bret/fret sensors for measuring intracellular zinc. ACS Chem. Biol. 2016, 11, 2854–2864. [Google Scholar] [CrossRef] [PubMed]
- Dischler, A.M.; Maslar, D.; Zhang, C.; Qin, Y. Development and characterization of a red fluorescent protein-based sensor rznp1 for the detection of cytosolic zn(2). ACS Sens. 2022, 7, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Huang, Y.; Lu, A.; Wang, Z.; Li, H. A highly selective and sensitive sequential recognition probe zn(2+) and h(2)po(4)(-) based on chiral thiourea schiff base. Molecules 2023, 28, 4166. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Chen, L.; Sun, X.; Yang, Z.; Gu, W. A novel dehydroabietic acid-based multifunctional fluorescent probe for the detection and bioimaging of cu(2+)/zn(2+)/clo(). Analyst 2023, 148, 1867–1876. [Google Scholar] [CrossRef]
- Sha, H.; Yan, B. Terbium-based metal-organic frameworks through energy transfer modulation for visual logical sensing zinc and fluorine ions. Talanta 2023, 257, 124326. [Google Scholar] [CrossRef] [PubMed]
- Lopina, O.D.; Fedorov, D.A.; Sidorenko, S.V.; Bukach, O.V.; Klimanova, E.A. Sodium ions as regulators of transcription in mammalian cells. Biochemistry 2022, 87, 789–799. [Google Scholar] [CrossRef]
- Zhai, J.; Sun, X.; Zhao, F.; Pan, B.; Li, H.; Lv, Z.; Cao, M.; Zhao, J.; Mo, H.; Ma, F.; et al. Serum sodium ions and chloride ions associated with taxane-induced peripheral neuropathy in chinese patients with early-stage breast cancer: A nation-wide multicenter study. Breast 2023, 67, 36–45. [Google Scholar] [CrossRef]
- Ghoorchian, A.; Kamalabadi, M.; Moradi, M.; Madrakian, T.; Afkhami, A.; Bagheri, H.; Ahmadi, M.; Khoshsafar, H. Wearable potentiometric sensor based on na(0.44)mno(2) for non-invasive monitoring of sodium ions in sweat. Anal. Chem. 2022, 94, 2263–2270. [Google Scholar] [CrossRef]
- Zhu, K.; Yan, T.; Qin, C.; Pan, Y.; Li, J.; Lai, H.; Xu, D.; Wang, C.; Hu, N. Three-dimensional cardiomyocyte-nanobiosensing system for specific recognition of drug subgroups. ACS Sens. 2023, 8, 2197–2206. [Google Scholar] [CrossRef]
- Sterlini, B.; Franchi, F.; Morinelli, L.; Corradi, B.; Parodi, C.; Albini, M.; Bianchi, A.; Marte, A.; Baldelli, P.; Alberini, G.; et al. Missense mutations in the membrane domain of prrt2 affect its interaction with nav1.2 voltage-gated sodium channels. Neurobiol. Dis. 2023, 183, 106177. [Google Scholar] [CrossRef] [PubMed]
- Marchal, G.A.; Galjart, N.; Portero, V.; Remme, C.A. Microtubule plus-end tracking proteins: Novel modulators of cardiac sodium channels and arrhythmogenesis. Cardiovasc. Res. 2023, 119, 1461–1479. [Google Scholar] [CrossRef]
- Lu, J.; Qi, Z.; Liu, J.; Liu, P.; Li, T.; Duan, M.; Li, A. Nomogram prediction model of serum chloride and sodium ions on the risk of acute kidney injury in critically ill patients. Infect. Drug Resist. 2022, 15, 4785–4798. [Google Scholar] [CrossRef]
- Selvarajah, V.; Connolly, K.; Mceniery, C.; Wilkinson, I. Skin sodium and hypertension: A paradigm shift? Curr. Hypertens. Rep. 2018, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Sattar, N. A review of current key guidelines for managing high-risk patients with diabetes and heart failure and future prospects. Diabetes Obes. Metab. 2023, 25, 33–47. [Google Scholar] [CrossRef]
- Juvekar, V.; Cho, M.K.; Lee, H.W.; Lee, D.J.; Kang, H.; Song, J.M.; Je, J.T.; Kim, H.M. A red-emissive two-photon fluorescent probe for mitochondrial sodium ions in live tissue. Chem. Commun. 2021, 57, 8929–8932. [Google Scholar] [CrossRef]
- Schwarze, T.; Riemer, J.; Muller, H.; John, L.; Holdt, H.J.; Wessig, P. Na(+) selective fluorescent tools based on fluorescence intensity enhancements, lifetime changes, and on a ratiometric response. Chem.-Eur. J. 2019, 25, 12412–12422. [Google Scholar] [CrossRef] [PubMed]
- Iamshanova, O.; Mariot, P.; Lehen, V.; Prevarskaya, N. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines. Eur. Biophys. J. Biophys. Lett. 2016, 45, 765–777. [Google Scholar] [CrossRef]
- Meyer, J.; Gerkau, N.J.; Kafitz, K.W.; Patting, M.; Jolmes, F.; Henneberger, C.; Rose, C.R. Rapid fluorescence lifetime imaging reveals that trpv4 channels promote dysregulation of neuronal na(+) in ischemia. J. Neurosci. 2022, 42, 552–566. [Google Scholar] [CrossRef]
- Eisner, D.; Neher, E.; Taschenberger, H.; Smith, G. Physiology of intracellular calcium buffering. Physiol. Rev. 2023, 103, 2767–2845. [Google Scholar] [CrossRef]
- Loh, K.; Liu, C.; Soong, T.W.; Hu, Z. Beta subunits of voltage-gated calcium channels in cardiovascular diseases. Front. Cardiovasc. Med. 2023, 10, 1119729. [Google Scholar] [CrossRef]
- Chang, X.; Liu, R.; Li, R.; Peng, Y.; Zhu, P.; Zhou, H. Molecular mechanisms of mitochondrial quality control in ischemic cardiomyopathy. Int. J. Biol. Sci. 2023, 19, 426–448. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Rotariu, M.; Turnea, M.; Ionescu, A.M.; Popescu, C.; Spinu, A.; Ionescu, E.V.; Oprea, C.; Țucmeanu, R.E.; Tătăranu, L.G.; et al. Main cations and cellular biology of traumatic spinal cord injury. Cells 2022, 11, 2503. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, N.; Vitto, V.; Pinton, P.; Galluzzi, L.; Marchi, S. Ca(2+) signaling and cell death. Cell Calcium 2023, 113, 102759. [Google Scholar] [CrossRef]
- Miller, A.; Ozbakir, H.F.; Mukherjee, A. Calcium-responsive contrast agents for functional magnetic resonance imaging. Chem. Phys. Rev. 2021, 2, 21301. [Google Scholar] [CrossRef] [PubMed]
- Roopa, N.; Kumar, N.; Kumar, M.; Bhalla, V. Design and applications of small molecular probes for calcium detection. Chem.-Asian J. 2019, 14, 4493–4505. [Google Scholar] [CrossRef]
- Dey, N. An anthraimidazoledione-based charge transfer probe for dual mode sensing of calcium ions: Role of the counter ion in signal improvement. J. Mater. Chem. B 2023, 11, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Salek-Maghsoodi, M.; Golsanamlu, Z.; Sadeghi-Mohammadi, S.; Gazizadeh, M.; Soleymani, J.; Safaralizadeh, R. Simple fluorescence chemosensor for the detection of calcium ions in water samples and its application in bio-imaging of cancer cells. RSC Adv. 2022, 12, 31535–31545. [Google Scholar] [CrossRef]
- Azimi, S.; Farahani, A.; Docoslis, A.; Vahdatifar, S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal. Bioanal. Chem. 2021, 413, 1441–1452. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Xu, Z.; Guo, X.; Yang, W.; Zhang, X.; Liao, Y.; Fan, M.; Zhang, D. A portable smartphone-based system for the detection of blood calcium using ratiometric fluorescent probes. Biosensors 2022, 12, 917. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, C.; Cao, J.; Liu, Z.; Zhu, Z.; Yan, C.; Zhao, W.; Zhu, W.-H.; Wang, Q. An aie-active probe for monitoring calcium-rich biological environment with high signal-to-noise and long-term retention in situ. Biomaterials 2022, 289, 121778. [Google Scholar] [CrossRef]
- Vaneev, A.N.; Timoshenko, R.V.; Gorelkin, P.V.; Klyachko, N.L.; Erofeev, A.S. Recent advances in nanopore technology for copper detection and their potential applications. Nanomaterials 2023, 13, 1573. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Song, Y.; Hu, Y.; Chen, H.; Yang, D.; Song, X. Multifaceted roles of copper ions in anticancer nanomedicine. Adv. Healthc. Mater. 2023, 12, e2300410. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Peng, G.; Lu, Y.; Wang, K.; Ju, Q.; Ju, Y.; Ouyang, M. Relationship between copper and immunity: The potential role of copper in tumor immunity. Front. Oncol. 2022, 12, 1019153. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflug. Arch. 2020, 472, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Namikuchi, E.A.; Gaspar, R.; Raimundo, I.J.; Mazali, I.O. A fluorescent magnetic core-shell nanosensor for detection of copper ions in natural waters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 300, 122915. [Google Scholar] [CrossRef]
- Hanmeng, O.; Chailek, N.; Charoenpanich, A.; Phuekvilai, P.; Yookongkaew, N.; Sanmanee, N.; Sirirak, J.; Swanglap, P.; Wanichacheva, N. Cu(2+)-selective nir fluorescence sensor based on heptamethine cyanine in aqueous media and its application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118606. [Google Scholar] [CrossRef]
- Borlan, R.; Soritau, O.; Maniu, D.; Hada, A.M.; Florea, A.; Astilean, S.; Focsan, M. Albumin nanoparticles with tunable ultraviolet-to-red autofluorescence for label-free cell imaging and selective biosensing of copper ion. Int. J. Biol. Macromol. 2023, 242, 125129. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, S.; Huang, Y.; Gu, B.; Li, J.; Wu, C.; Yin, P.; Zhang, Y.; Li, H. Simultaneous visualization and quantification of copper (ii) ions in alzheimer’s disease by a near-infrared fluorescence probe. Biosens. Bioelectron. 2022, 198, 113858. [Google Scholar] [CrossRef]
- Lee, K.W.; Chen, H.; Wan, Y.; Zhang, Z.; Huang, Z.; Li, S.; Lee, C.S. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022, 289, 121753. [Google Scholar] [CrossRef]
- Pramanik, S.; Bhalla, V.; Kim, H.M.; Singh, H.; Lee, H.W.; Kumar, M. A hexaphenylbenzene based aiee active two photon probe for the detection of hydrogen sulfide with tunable self-assembly in aqueous media and application in live cell imaging. Chem. Commun. 2015, 51, 15570–15573. [Google Scholar] [CrossRef]
- Cai, Y.; Li, L.; Wang, Z.; Sun, J.Z.; Qin, A.; Tang, B.Z. A sensitivity tuneable tetraphenylethene-based fluorescent probe for directly indicating the concentration of hydrogen sulfide. Chem. Commun. 2014, 50, 8892–8895. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, L.; Fang, Y.; Zeng, F.; Wu, S. Refashioning benzothiadiazole dye as an activatable nanoprobe for biomarker detection with nir-ii fluorescence/optoacoustic imaging. Cell Rep. Phys. Sci. 2022, 3, 100570. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Chen, Q.; Li, H.; Zhou, L.; Jiang, X.; Shi, M.; Zhang, P.; Jiang, G.; Tang, B.Z. An easily available ratiometric reaction-based aie probe for carbon monoxide light-up imaging. Anal. Chem. 2019, 91, 9388–9392. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Khaja, S.; Velasquez-Castano, J.C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W.R.; Murthy, N. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 2007, 6, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, W.; Zhang, B. Ros-responsive probes for low-background optical imaging: A review. Biomed. Mater. 2021, 16, 22002. [Google Scholar] [CrossRef]
- Ganesan, S.; Ramajayam, K.; Kokulnathan, T.; Palaniappan, A. Recent advances in two-dimensional mxene-based electrochemical biosensors for sweat analysis. Molecules 2023, 28, 4617. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, S.; Qin, Y.; Xia, X.; Sun, Y.; Han, G.; Shu, T.; Hu, L.; Zhang, Q. Flexible and wearable biosensors for monitoring health conditions. Biosensors 2023, 13, 630. [Google Scholar] [CrossRef]
- Greyling, C.F.; Ganguly, A.; Sardesai, A.U.; Churcher, N.; Lin, K.C.; Muthukumar, S.; Prasad, S. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling “detect to treat” opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 16, e1912. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramirez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Gou, G.Y.; Fang, Z.; Sun, J.; Chen, J.; Cheng, J.; Han, M.; Ma, T.; Liu, C.; et al. Recent advancements in physiological, biochemical, and multimodal sensors based on flexible substrates: Strategies, technologies, and integrations. ACS Appl. Mater. Interfaces 2023, 15, 21721–21745. [Google Scholar] [CrossRef]
- Min, J.; Tu, J.; Xu, C.; Lukas, H.; Shin, S.; Yang, Y.; Solomon, S.A.; Mukasa, D.; Gao, W. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 2023, 123, 5049–5138. [Google Scholar] [CrossRef]
- Legrys, V.A.; Moon, T.C.; Laux, J.; Accurso, F.; Martiniano, S.A. A multicenter evaluation of sweat chloride concentration and variation in infants with cystic fibrosis. J. Cyst. Fibros. 2019, 18, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; White, T.B.; Howenstine, M.S.; Munck, A.; Parad, R.B.; Rosenfeld, M.; Sommerburg, O.; Accurso, F.J.; Davies, J.C.; Rock, M.J.; et al. Diagnosis of cystic fibrosis in screened populations. J. Pediatr. 2017, 181, S33–S44. [Google Scholar] [CrossRef]
- Mishra, A.; Greaves, R.; Massie, J. The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era. Clin. Biochem. Rev. 2005, 26, 135–153. [Google Scholar]
- Hammond, K.B.; Turcios, N.L.; Gibson, L.E. Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis. J. Pediatr. 1994, 124, 255–260. [Google Scholar] [CrossRef]
- Farrell, P.M.; Sommerburg, O. Toward quality improvement in cystic fibrosis newborn screening: Progress and continuing challenges. J. Cyst. Fibros. 2016, 15, 267–269. [Google Scholar] [CrossRef]
- Legrys, V.A.; Mccolley, S.A.; Li, Z.; Farrell, P.M. The need for quality improvement in sweat testing infants after newborn screening for cystic fibrosis. J. Pediatr. 2010, 157, 1035–1037. [Google Scholar] [CrossRef]
- Yang, W.; Zhai, J.; Li, J.; Qin, Y.; Wu, Y.; Zhang, Y.; Xie, X. Colorimetric and fluorescent turn-on detection of chloride ions with ionophore and bodipy: Evaluation with nanospheres and cellulose paper. Anal. Chim. Acta 2021, 1175, 338752. [Google Scholar] [CrossRef]
- Vallejos, S.; Hernando, E.; Trigo, M.; Garcia, F.C.; Garcia-Valverde, M.; Iturbe, D.; Cabero, M.J.; Quesada, R.; García, J.M. Polymeric chemosensor for the detection and quantification of chloride in human sweat. Application to the diagnosis of cystic fibrosis. J. Mater. Chem. B 2018, 6, 3735–3741. [Google Scholar] [CrossRef]
- Zhang, C.; Kim, J.P.; Creer, M.; Yang, J.; Liu, Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens. Bioelectron. 2017, 97, 164–168. [Google Scholar] [CrossRef]
- Lee, I.; Probst, D.; Klonoff, D.; Sode, K. Continuous glucose monitoring systems—Current status and future perspectives of the flagship technologies in biosensor research. Biosens. Bioelectron. 2021, 181, 113054. [Google Scholar] [CrossRef]
- Gupta, A.K.; Krasnoslobodtsev, A.V. Dna-templated silver nanoclusters as dual-mode sensitive probes for self-powered biosensor fueled by glucose. Nanomaterials 2023, 13, 1299. [Google Scholar] [CrossRef]
- Zheng, X.T.; Choi, Y.; Phua, D.; Tan, Y.N. Noncovalent fluorescent biodot-protein conjugates with well-preserved native functions for improved sweat glucose detection. Bioconjug. Chem. 2020, 31, 754–763. [Google Scholar] [CrossRef]
- Ardalan, S.; Hosseinifard, M.; Vosough, M.; Golmohammadi, H. Towards smart personalized perspiration analysis: An iot-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens. Bioelectron. 2020, 168, 112450. [Google Scholar] [CrossRef]
- Cui, Y.; Duan, W.; Jin, Y.; Wo, F.; Xi, F.; Wu, J. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose. ACS Sens. 2020, 5, 2096–2105. [Google Scholar] [CrossRef]
- Cai, M.; Wan, J.; Cai, K.; Song, H.; Wang, Y.; Sun, W.; Hu, J. Understanding the contribution of lactate metabolism in cancer progress: A perspective from isomers. Cancers 2022, 15, 87. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yan, B. Visual ratiometric fluorescence sensing of l-lactate in sweat by eu-mof and the design of logic devices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 297, 122764. [Google Scholar] [CrossRef]
- Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn, S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.-J.; et al. Metabolomics of exhaled breath in critically ill covid-19 patients: A pilot study. Ebiomedicine 2021, 63, 103154. [Google Scholar] [CrossRef]
- Berna, A.Z.; Akaho, E.H.; Harris, R.M.; Congdon, M.; Korn, E.; Neher, S.; M’Farrej, M.; Burns, J.; John, A.R.O. Reproducible breath metabolite changes in children with SARS-CoV-2 infection. ACS Infect. Dis. 2021, 7, 2596–2603. [Google Scholar] [CrossRef] [PubMed]
- Thaveesangsakulthai, I.; Jongkhumkrong, J.; Chatdarong, K.; Torvorapanit, P.; Sukbangnop, W.; Sooksimuang, T.; Kulsing, C.; Tomapatanaget, B. A fluorescence-based sweat test sensor in a proof-of-concept clinical study for COVID-19 screening diagnosis. Analyst 2023, 148, 2956–2964. [Google Scholar] [CrossRef]
- Tonelli, D.; Gualandi, I.; Scavetta, E.; Mariani, F. Focus review on nanomaterial-based electrochemical sensing of glucose for health applications. Nanomaterials 2023, 13, 1883. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wu, L.; Yuan, J.; Xu, G.; Wu, Y. Self-powered biosensors for monitoring human physiological changes. Biosensors 2023, 13, 236. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, X.; Shuai, Y.; Lu, Y.; Liu, Q. The development of wearable technologies and their potential for measuring nutrient intake: Towards precision nutrition. Nutr. Bull. 2022, 47, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.; Barhoum, A.; Sehit, E.; Gewaid, H.; Mostafa, E.; Omran, M.M.; Abdalla, M.S.; Abdel-Haleem, F.M.; Altintas, Z.; Forster, R.J. Current trends in COVID-19 diagnosis and its new variants in physiological fluids: Surface antigens, antibodies, nucleic acids, and rna sequencing. TrAC-Trends Anal. Chem. 2022, 157, 116750. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Fluorescence sensing technologies for ophthalmic diagnosis. ACS Sens. 2022, 7, 1615–1633. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. J. Fluoresc. 2003, 13, 371–374. [Google Scholar] [CrossRef]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 2004, 76, 610–618. [Google Scholar] [CrossRef]
- Badugu, R.; Reece, E.A.; Lakowicz, J.R. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring. J. Biomed. Opt. 2018, 23, 057005. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Chen, L.; Li, J.; Luzak, K. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose. J. Diabetes Sci. Technol. 2013, 7, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tse, W.H.; Chen, Y.; Mcdonald, M.W.; Melling, J.; Zhang, J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens. Bioelectron. 2017, 91, 393–399. [Google Scholar] [CrossRef] [PubMed]
- March, W.; Lazzaro, D.; Rastogi, S. Fluorescent measurement in the non-invasive contact lens glucose sensor. Diabetes Technol. Ther. 2006, 8, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ederra, J.; Levin, M.H.; Verkman, A.S. In situ fluorescence measurement of tear film [na+], [k+], [cl-], and ph in mice shows marked hypertonicity in aquaporin-5 deficiency. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2132–2138. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Jeng, B.H.; Reece, E.A.; Lakowicz, J.R. Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal. Biochem. 2018, 542, 84–94. [Google Scholar] [CrossRef]
- Badugu, R.; Szmacinski, H.; Reece, E.A.; Jeng, B.H.; Lakowicz, J.R. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal. Biochem. 2020, 608, 113902. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Jiang, N.; Tamayol, A.; Ruiz-Esparza, G.U.; Zhang, Y.S.; Medina-Pando, S.; Gupta, A.; Wolffsohn, J.S.; Butt, H.; Khademhosseini, A.; et al. Paper-based microfluidic system for tear electrolyte analysis. Lab Chip 2017, 17, 1137–1148. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Jiang, N.; Castaneda, G.C.; Erenoglu, Z.I.; Dong, J.; Dong, X.; Stößer, S.; Brischwein, M.; Butt, H.; Cordeiro, M.F.; et al. Scleral lens sensor for ocular electrolyte analysis. Adv. Mater. 2020, 32, e1906762. [Google Scholar] [CrossRef]
- Pathak, A.K.; Swargiary, K.; Kongsawang, N.; Jitpratak, P.; Ajchareeyasoontorn, N.; Udomkittivorakul, J.; Viphavakit, C. Recent advances in sensing materials targeting clinical volatile organic compound (voc) biomarkers: A review. Biosensors 2023, 13, 114. [Google Scholar] [CrossRef]
- Haripriya, P.; Rangarajan, M.; Pandya, H.J. Breath voc analysis and machine learning approaches for disease screening: A review. J. Breath Res. 2023, 17, 024001. [Google Scholar]
- Patsiris, S.; Papanikolaou, I.; Stelios, G.; Exarchos, T.P.; Vlamos, P. Exhaled breath condensate and dyspnea in copd. Adv. Exp. Med. Biol. 2021, 1337, 339–344. [Google Scholar]
- Lindsley, W.G.; Blachere, F.M.; Derk, R.C.; Boots, T.; Duling, M.G.; Boutin, B.; Beezhold, D.H.; Noti, J.D. Constant vs. Cyclic flow when testing face masks and respirators as source control devices for simulated respiratory aerosols. Aerosol Sci. Technol. 2023, 57, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Kienhorst, S.; van Aarle, M.; Jobsis, Q.; Bannier, M.; Kersten, E.; Damoiseaux, J.; van Schayck, O.C.P.; Merkus, P.J.F.M.; Koppelman, G.H.; van Schooten, F.-J.; et al. The adem2 project: Early pathogenic mechanisms of preschool wheeze and a randomised controlled trial assessing the gain in health and cost-effectiveness by application of the breath test for the diagnosis of asthma in wheezing preschool children. BMC Public Health 2023, 23, 629. [Google Scholar] [CrossRef]
- Ding, X.; Lin, G.; Wang, P.; Chen, H.; Li, N.; Yang, Z.; Qiu, M. Diagnosis of primary lung cancer and benign pulmonary nodules: A comparison of the breath test and 18f-fdg pet-ct. Front. Oncol. 2023, 13, 1204435. [Google Scholar] [CrossRef]
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C.P.; Mwakikunga, B. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 2018, 8, 12. [Google Scholar] [CrossRef]
- Mokhtari, M.; Rahimpour, E.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Hosseini, M.; Jouyban, A. Development a coordination polymer based nanosensor for phenobarbital determination in exhaled breath condensate. J. Pharm. Biomed. Anal. 2022, 215, 114761. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, A.; Jouyban, A.; Hasanzadeh, M.; Shafiei-Irannejad, V.; Soleymani, J. Ultrasensitive fluorescence detection of antitumor drug methotrexate based on a terbium-doped silica dendritic probe. Anal. Methods 2021, 13, 4280–4289. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, E.; Khoubnasabjafari, M.; Hosseini, M.B.; Jouyban, A. Copper nanocluster-based sensor for determination of vancomycin in exhaled breath condensate: A synchronous fluorescence spectroscopy. J. Pharm. Biomed. Anal. 2021, 196, 113906. [Google Scholar] [CrossRef] [PubMed]
- Hatefi, A.; Rahimpour, E.; Khoubnasabjafari, M.; Edalat, M.; Jouyban-Gharamaleki, V.; Alvani-Alamdari, S.; Nokhodchi, A.; Pournaghi-Azar, M.H.; Jouyban, A. A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Microchim. Acta 2019, 186, 194. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Akarapipad, P.; Nguyen, B.T.; Breshears, L.E.; Sosnowski, K.; Baker, J.; Uhrlaub, J.L.; Nikolich-Žugich, J.; Yoon, J.-Y. Direct capture and smartphone quantification of airborne SARS-CoV-2 on a paper microfluidic chip. Biosens. Bioelectron. 2022, 200, 113912. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yang, L.; Xu, L.; Guo, W.; Pan, L.; Zhang, C.; Xu, S.; Zhang, N.; Yang, L.; Jiang, C. 3d-printed smartphone-based device for fluorimetric diagnosis of ketosis by acetone-responsive dye marker and red emissive carbon dots. Microchim. Acta 2021, 188, 306. [Google Scholar] [CrossRef] [PubMed]
- Iitani, K.; Hayakawa, Y.; Toma, K.; Arakawa, T.; Mitsubayashi, K. Switchable sniff-cam (gas-imaging system) based on redox reactions of alcohol dehydrogenase for ethanol and acetaldehyde in exhaled breath. Talanta 2019, 197, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.J.; Suzuki, T.; Ye, M.; Toma, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Ultra-sensitive isopropanol biochemical gas sensor (bio-sniffer) for monitoring of human volatiles. Sensors 2020, 20, 6827. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Yuan, L.; Xie, W.; Ying, Y.; Li, C.; Yu, Y.; Pan, Y.; Qu, W.; Hao, H.; et al. Recent progress of emitting long-wavelength carbon dots and their merits for visualization tracking, target delivery and theranostics. Theranostics 2023, 13, 3064–3102. [Google Scholar] [CrossRef] [PubMed]
- Belkin, S.; Cheng, J.Y. Miniaturized bioluminescent whole-cell sensor systems. Curr. Opin. Biotechnol. 2023, 82, 102952. [Google Scholar] [CrossRef]
- Gupta, J.; Hassan, P.A.; Barick, K.C. Multifunctional zno nanostructures: A next generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology 2023, 34, 282003. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kim, J.H.; Chen, W.; Li, L.; Lee, J.; Xue, J.; Liu, Y.; Chen, G.; Tang, B.; Tao, W.; et al. Cancer cell-specific fluorescent prodrug delivery platforms. Adv. Sci. 2023, 10, e2207768. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Liu, J.; O’Connor, H.M.; Gunnlaugsson, T.; James, T.D.; Zhang, H. Photoinduced electron transfer (pet) based fluorescent probes for cellular imaging and disease therapy. Chem. Soc. Rev. 2023, 52, 2322–2357. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, C.; Liu, J.; Huang, F.; Zhang, Y.; Liang, X.J.; Liu, J. Icg-conjugated and (125) i-labeled polymeric micelles with high biosafety for multimodality imaging-guided photothermal therapy of tumors. Adv. Healthc. Mater. 2020, 9, e1901616. [Google Scholar] [CrossRef]
- Yeroslavsky, G.; Umezawa, M.; Okubo, K.; Nigoghossian, K.; Thi, K.D.D.; Miyat, K.; Kamimura, M.; Soga, K. Stabilization of indocyanine green dye in polymeric micelles for nir-ii fluorescence imaging and cancer treatment. Biomater. Sci. 2020, 8, 2245–2254. [Google Scholar] [CrossRef] [PubMed]
- Metternich, J.T.; Wartmann, J.; Sistemich, L.; Nissler, R.; Herbertz, S.; Kruss, S. Near-infrared fluorescent biosensors based on covalent dna anchors. J. Am. Chem. Soc. 2023, 145, 14776–14783. [Google Scholar] [CrossRef]
- Kim, M.; Chen, C.; Yaari, Z.; Frederiksen, R.; Randall, E.; Wollowitz, J.; Cupo, C.; Wu, X.; Shah, J.; Worroll, D.; et al. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. 2023, 19, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ouyang, N.; Zhao, R.; Guo, Z.; Yang, J.; Sun, M.; Miao, P. Black phosphorus nanosheets grafted with gold nanorods and carbon nanodots for synergistic antitumor therapy. ACS Appl. Mater. Interfaces 2023, 15, 26241–26251. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, B.; Ding, S.; Fan, Y.; Wang, S.; Sun, C.; Zhao, M.; Zhao, C.-X.; Zhang, F. Nir-ii bioluminescence for in vivo high contrast imaging and in situ atp-mediated metastases tracing. Nat. Commun. 2020, 11, 4192. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Xu, S.; Xiong, M.; Huan, S.Y.; Yuan, L.; Zhang, X.B. Molecular engineering of organic-based agents for in situ bioimaging and phototherapeutics. Chem. Soc. Rev. 2021, 50, 11766–11784. [Google Scholar]
- Kaiser, T.E.; Stepanenko, V.; Wurthner, F. Fluorescent j-aggregates of core-substituted perylene bisimides: Studies on structure-property relationship, nucleation-elongation mechanism, and sergeants-and-soldiers principle. J. Am. Chem. Soc. 2009, 131, 6719–6732. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, X.; Wang, M.; Xu, K.; Xu, C. Robust colloidal nanoparticles of pyrrolopyrrole cyanine j-aggregates with bright near-infrared fluorescence in aqueous media: From spectral tailoring to bioimaging applications. Chem.-Eur. J. 2017, 23, 4310–4319. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Liu, G.J.; Zhou, W.; Feng, G.L.; Ma, Q.Y.; Zhang, Y.; Xing, G.W. In situ self-assembled j-aggregate nanofibers of glycosylated aza-bodipy for synergetic cell membrane disruption and type i photodynamic therapy. Angew. Chem.-Int. Ed. 2023, 62, e202309786. [Google Scholar] [CrossRef]
- Cheng, K.; Qi, J.; Zhang, J.; Li, H.; Ren, X.; Wei, W.; Meng, L.; Li, J.; Li, Q.; Zhang, H.; et al. Self-assembled nano-photosensitizer for targeted, activatable, and biosafe cancer phototheranostics. Biomaterials 2022, 291, 121916. [Google Scholar] [CrossRef]
- Dong, C.; Zhu, T.; Sun, J.; Dong, X.; Sun, L.; Gu, X.; Zhao, C. Self-assembled activatable probes to monitor interactive dynamics of intracellular nitric oxide and hydrogen sulfide. Anal. Chem. 2024, 96, 1259–1267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Weng, F.; Ming, Y.; Zhu, S.; Zhu, M.; Wang, C.; Guo, C.; Zhu, K. Luminescence Probes in Bio-Applications: From Principle to Practice. Biosensors 2024, 14, 333. https://doi.org/10.3390/bios14070333
Yan T, Weng F, Ming Y, Zhu S, Zhu M, Wang C, Guo C, Zhu K. Luminescence Probes in Bio-Applications: From Principle to Practice. Biosensors. 2024; 14(7):333. https://doi.org/10.3390/bios14070333
Chicago/Turabian StyleYan, Tao, Fan Weng, Yang Ming, Shijie Zhu, Miao Zhu, Chunsheng Wang, Changfa Guo, and Kai Zhu. 2024. "Luminescence Probes in Bio-Applications: From Principle to Practice" Biosensors 14, no. 7: 333. https://doi.org/10.3390/bios14070333
APA StyleYan, T., Weng, F., Ming, Y., Zhu, S., Zhu, M., Wang, C., Guo, C., & Zhu, K. (2024). Luminescence Probes in Bio-Applications: From Principle to Practice. Biosensors, 14(7), 333. https://doi.org/10.3390/bios14070333