Weak Value Amplification Based Optical Sensor for High Throughput Real-Time Immunoassay of SARS-CoV-2 Spike Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. High-Throughput Immunoassay
3.2. Characterization of the Binding of Spike Protein of Mutants to Antibody
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RBD | Receptor-binding domain |
ACE2 | Angiotensin-converting enzyme II |
SERS | Surface-enhanced Raman Scattering |
BLI | Bio-Layer Interferometry |
SPR | Surface plasmon resonance |
LOD | Limit of detection |
PBS | Phosphate buffered solution |
SLD | Superluminescent diode |
CMOS | Complementary Metal Oxide Semiconductor |
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020; WHO: Geneva, Switzerland, 2020.
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/?mapFilter=deaths (accessed on 21 June 2023).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Hart, W.S.; Maini, P.K.; Thompson, R.N. High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing. eLife 2021, 10, e65534. [Google Scholar] [CrossRef] [PubMed]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Xu, T.L.; Ao, M.Y.; Zhou, X.; Zhu, W.F.; Nie, H.Y.; Fang, J.H.; Sun, X.; Zheng, B.; Chen, X.F. China’s practice to prevent and control COVID-19 in the context of large population movement. Infect. Dis. Poverty 2020, 9, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.; Meijers, B.; Gansevoort, R.T.; Covic, A.; Duivenvoorden, R.; Hilbrands, L.B.; Hemmelder, M.H.; Jager, K.J.; Mjoen, G.; Nistor, I.; et al. Strategies to prevent SARS-CoV-2 transmission in hemodialysis centres across Europe—Lessons for the future. Clin. Kidney J. 2023, 16, 662–675. [Google Scholar] [CrossRef] [PubMed]
- WHO Director-General’s Opening Remarks at the Media Briefing. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing---5-may-2023 (accessed on 5 May 2023).
- Lee, M.; Major, M.; Hong, H. Distinct Conformations of SARS-CoV-2 Omicron Spike Protein and Its Interaction with ACE2 and Antibody. Int. J. Mol. Sci. 2023, 24, 3774. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Zhang, M.; Chang, T.L. ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022, 14, 2535. [Google Scholar] [CrossRef]
- Sharma, P.; Gupta, E.; Basu, S.; Agarwal, R.; Mishra, S.; Kale, P.; Mundeja, N.; Charan, B.; Singh, G.K.; Singh, M. Neutralizing antibody responses to SARS-CoV-2: A population based seroepidemiological analysis. Indian J. Med. Microbiol. 2022, 40, 585–587. [Google Scholar] [CrossRef]
- Razonable, R.R.; Chen, P. Editorial: Neutralizing Antibodies in the Prevention and Treatment of COVID-19. Front. Immunol. 2022, 13, 938069. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, S.; Adachi, Y.; Sato, T.; Tonouchi, K.; Sun, L.; Fukushi, S.; Yamada, S.; Kinoshita, H.; Nojima, K.; Kanno, T.; et al. Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity 2021, 54, 1841–1852.e4. [Google Scholar] [CrossRef]
- Favorskaya, I.A.; Shcheblyakov, D.V.; Esmagambetov, I.B.; Dolzhikova, I.V.; Alekseeva, I.A.; Korobkova, A.I.; Voronina, D.V.; Ryabova, E.I.; Derkaev, A.A.; Kovyrshina, A.V.; et al. Single-Domain Antibodies Efficiently Neutralize SARS-CoV-2 Variants of Concern. Front. Immunol. 2022, 13, 822159. [Google Scholar] [CrossRef] [PubMed]
- Carnell, G.W.; Billmeier, M.; Vishwanath, S.; Suau Sans, M.; Wein, H.; George, C.L.; Neckermann, P.; Del Rosario, J.M.M.; Sampson, A.T.; Einhauser, S.; et al. Glycan masking of a non-neutralising epitope enhances neutralising antibodies targeting the RBD of SARS-CoV-2 and its variants. Front. Immunol. 2023, 14, 1118523. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Goodling, A.E.; Nagelberg, S.; Kaehr, B.; Meredith, C.H.; Cheon, S.I.; Saunders, A.P.; Kolle, M.; Zarzar, L.D. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 2019, 566, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.L. Strategies using bio-layer interferometry biosensor technology for vaccine research and development. Biosensors 2017, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y.; Wang, S.; Nagaraj, V.J.; Liu, Q.; Wu, J.; Tao, N. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat. Chem. 2012, 4, 846–853. [Google Scholar] [CrossRef]
- Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-free, single-molecule detection with optical microcavities. Science 2007, 317, 783–787. [Google Scholar] [CrossRef]
- Ma, G.; Wan, Z.; Yang, Y.; Zhang, P.; Wang, S.; Tao, N. Optical imaging of single-protein size, charge, mobility, and binding. Nat. Commun. 2020, 11, 4768. [Google Scholar] [CrossRef]
- Smith, E.A.; Thomas, W.D.; Kiessling, L.L.; Corn, R.M. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J. Am. Chem. Soc. 2003, 125, 6140–6148. [Google Scholar] [CrossRef] [PubMed]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, N.; Story, J.G.; Hulet, R.G. Realization of a measurement of a “weak value”. Phys. Rev. Lett. 1991, 66, 1107. [Google Scholar] [CrossRef] [PubMed]
- Hosten, O.; Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Brunner, N.; Simon, C. Measuring small longitudinal phase shifts: Weak measurements or standard interferometry? Phys. Rev. Lett. 2010, 105, 010405. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, L.; Guan, T.; Guo, C.; Li, D.; Yang, Y.; Wang, X.; Xie, L.; He, Y.; Xie, W. Optimization of a quantum weak measurement system with its working areas. Opt. Express 2018, 26, 21119–21131. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, C.; Shi, L.; Zhang, X.; Guan, T.; Guo, C.; Li, Z.; Xing, X.; Ji, Y.; Liu, L.; et al. Imaging sensor for the detection of the flow battery via weak value amplification. Anal. Chem. 2021, 93, 12914–12920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, Q.; Zhang, X.; Zeng, Z.; Zhang, H.; Guan, T.; Xu, Y.; Zhou, C.; Meng, L.; Liang, G.; et al. Ultra-precise weak measurement-based interfacial biosensors. Talanta 2023, 257, 124217. [Google Scholar] [CrossRef]
- Shaw, R.; McNeill, M.; Gatehouse, T.; Douch, P. Quantification of total sheep IgE concentration using anti-ovine IgE monoclonal antibodies in an enzyme immunoassay. Vet. Immunol. Immunopathol. 1997, 57, 253–265. [Google Scholar] [CrossRef]
- BinaxNOW COVID-19 Antigen Self Test-Healthcare Provider Instructions for Use. Available online: https://www.fda.gov/media/147254/download (accessed on 15 November 2023).
- Description of Novel Coronavirus (2019-nCoV) Antigen Detection Kit (Colloidal Gold Method). Available online: http://www.amonmed.com/upload/file/202203/20220329174214_51851.pdf (accessed on 18 March 2022).
- Fu, Z.; Zeng, W.; Cai, S.; Li, H.; Ding, J.; Wang, C.; Chen, Y.; Han, N.; Yang, R. Porous Au@Pt nanoparticles with superior peroxidase-like activity for colorimetric detection of spike protein of SARS-CoV-2. J. Colloid Interface Sci. 2021, 604, 113–121. [Google Scholar] [CrossRef]
- Tepeli Büyüksünetçi, Y.; Çitil, B.E.; Anık, Ü. An impedimetric approach for COVID-19 detection. Analyst 2022, 147, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Anshori, I.; Nugroho, A.E.; Solihin, A.; Jessika, J.; Yusuf, M.; Hartati, Y.W.; Sari, S.P.; Tohari, T.R.; Yuliarto, B.; Gumilar, G.; et al. Single-Chained Fragment Variable (scFv) Recombinant as a Potential Receptor for SARS-CoV-2 Biosensor Based on Surface Plasmon Resonance (SPR). In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Hobson, P.; Hatipoglu, E.; Ngai, Y.; et al. Neutralising antibody activity against SARS-CoV-2 VOCs B. 1.617. 2 and B. 1.351 by BNT162b2 vaccination. Lancet 2021, 397, 2331–2333. [Google Scholar] [CrossRef]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Song, W.; Wang, L.; Jian, F.; Chen, X.; Gao, F.; Shen, Z.; Wang, Y.; Wang, X.; Cao, Y. ACE2 binding and antibody evasion in enhanced transmissibility of XBB. 1.5. Lancet Infect. Dis. 2023, 23, 278–280. [Google Scholar] [CrossRef] [PubMed]
Method | Analyte | LOD | Ref. |
---|---|---|---|
BinaxNOW COVID-19 Antigen Self-Test | Nucleocapsid protein | 140.6 TCID50/mL | [33] |
2019-nCoV Antigen Detection Kit (Colloidal gold method) | Nucleocapsid protein | 600 TCID50/mL | [34] |
Colorimetric biosensor | Spike protein | 11 ng/mL | [35] |
Electrochemical Immunosensor | Spike protein | 299.30 ng/mL (for ACE2), 38.99 ng/mL (for CD147) | [36] |
Surface Plasmon Resonance biosensor | Spike protein | 8.34 ng/mL | [37] |
This work | Spike protein | 0.85 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, L.; Li, H.; Xu, Y.; Meng, L.; Liang, G.; Wang, B.; Liu, L.; Guan, T.; Guo, C.; et al. Weak Value Amplification Based Optical Sensor for High Throughput Real-Time Immunoassay of SARS-CoV-2 Spike Protein. Biosensors 2024, 14, 332. https://doi.org/10.3390/bios14070332
Zhang X, Zhang L, Li H, Xu Y, Meng L, Liang G, Wang B, Liu L, Guan T, Guo C, et al. Weak Value Amplification Based Optical Sensor for High Throughput Real-Time Immunoassay of SARS-CoV-2 Spike Protein. Biosensors. 2024; 14(7):332. https://doi.org/10.3390/bios14070332
Chicago/Turabian StyleZhang, Xiaonan, Lizhong Zhang, Han Li, Yang Xu, Lingqin Meng, Gengyu Liang, Bei Wang, Le Liu, Tian Guan, Cuixia Guo, and et al. 2024. "Weak Value Amplification Based Optical Sensor for High Throughput Real-Time Immunoassay of SARS-CoV-2 Spike Protein" Biosensors 14, no. 7: 332. https://doi.org/10.3390/bios14070332
APA StyleZhang, X., Zhang, L., Li, H., Xu, Y., Meng, L., Liang, G., Wang, B., Liu, L., Guan, T., Guo, C., & He, Y. (2024). Weak Value Amplification Based Optical Sensor for High Throughput Real-Time Immunoassay of SARS-CoV-2 Spike Protein. Biosensors, 14(7), 332. https://doi.org/10.3390/bios14070332