Enhancing Heavy Metal Detection through Electrochemical Polishing of Carbon Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Morphological and Structural Characterization
2.3. Electrochemical Characterization
2.4. Nanocomposite Preparation and Surface Modification of cSPEs
2.5. SWASV Detection of Cd2+ and Pb2+
3. Results and Discussion
3.1. Effect of ECP’s Potential Scan Range on Electrochemical Properties
3.2. Effect of ECP’s Scan Rate and Number of Cycles on Electrochemical Properties
3.3. Effect of pH on SWASV Detection of Cd2+ and Pb2+
3.4. Effect of ECP Treatment on Cd2+ and Pb2+ Detection Sensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hubbard, A. Heavy Metals in the Environment: Origin, Interaction and Remediation, Heike, B. Bradl (Ed.), Elsevier/Academic Press, London (2005), 269 pp. J. Colloid Interface Sci. 2005, 291, 307. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace Elements in Agroecosystems and Impacts on the Environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- Struzyńska, L.; Dąbrowska-Bouta, B.; Koza, K.; Sulkowski, G. Inflammation-like Glial Response in Lead-Exposed Immature Rat Brain. Toxicol. Sci. 2007, 95, 156–162. [Google Scholar] [CrossRef]
- Dongre, N.N.; Suryakar, A.N.; Patil, A.J.; Ambekar, J.G.; Rathi, D.B. Biochemical Effects of Lead Exposure on Systolic & Diastolic Blood Pressure, Heme Biosynthesis and Hematological Parameters in Automobile Workers of North Karnataka (India). Indian J. Clin. Biochem. 2011, 26, 400–406. [Google Scholar] [CrossRef]
- Thévenod, F.; Chakraborty, P.K. The Role of Wnt/Beta-Catenin Signaling in Renal Carcinogenesis: Lessons from Cadmium Toxicity Studies. Curr. Mol. Med. 2010, 10, 387–404. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Zhu, G.; Nordberg, G.F.; Jin, T.; Ding, X. The Association between Cumulative Cadmium Intake and Osteoporosis and Risk of Fracture in a Chinese Population. J. Expo Sci. Environ. Epidemiol. 2019, 29, 435–443. [Google Scholar] [CrossRef]
- Johnston, J.E.; Valentiner, E.; Maxson, P.; Miranda, M.L.; Fry, R.C. Maternal Cadmium Levels during Pregnancy Associated with Lower Birth Weight in Infants in a North Carolina Cohort. PLoS ONE 2014, 9, e109661. [Google Scholar] [CrossRef]
- Zinia, S.S.; Yang, K.H.; Lee, E.J.; Lim, M.N.; Kim, J.; Kim, W.J.; Park, C.; Kim, H.J.; Jung, S.W.; Hong, S.; et al. Effects of Heavy Metal Exposure during Pregnancy on Birth Outcomes. Sci. Rep. 2023, 13, 18990. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Wang, D.; Jin, Y.; Chen, X.; Xu, Y. The Effects of Prenatal Exposure to Low-Level Cadmium, Lead and Selenium on Birth Outcomes. Chemosphere 2014, 108, 33–39. [Google Scholar] [CrossRef]
- Xie, X.; Ding, G.; Cui, C.; Chen, L.; Gao, Y.; Zhou, Y.; Shi, R.; Tian, Y. The Effects of Low-Level Prenatal Lead Exposure on Birth Outcomes. Environ. Pollut. 2013, 175, 30–34. [Google Scholar] [CrossRef]
- Liu, T.; Bolea-Fernandez, E.; Mangodt, C.; De Wever, O.; Vanhaecke, F. Single-Event Tandem ICP-Mass Spectrometry for the Quantification of Chemotherapeutic Drug-Derived Pt and Endogenous Elements in Individual Human Cells. Anal. Chim. Acta 2021, 1177, 338797. [Google Scholar] [CrossRef]
- Otero-Romaní, J.; Moreda-Piñeiro, A.; Bermejo-Barrera, P.; Martin-Esteban, A. Inductively Coupled Plasma–Optical Emission Spectrometry/Mass Spectrometry for the Determination of Cu, Ni, Pb and Zn in Seawater after Ionic Imprinted Polymer Based Solid Phase Extraction. Talanta 2009, 79, 723–729. [Google Scholar] [CrossRef]
- Soodan, R.K.; Pakade, Y.B.; Nagpal, A.; Katnoria, J.K. Analytical Techniques for Estimation of Heavy Metals in Soil Ecosystem: A Tabulated Review. Talanta 2014, 125, 405–410. [Google Scholar] [CrossRef]
- Okano, G.; Igarashi, S.; Yamamoto, Y.; Saito, S.; Takagai, Y.; Ohtomo, T.; Kimura, S.; Ohno, O.; Oka, Y. HPLC-Spectrophotometric Detection of Trace Heavy Metals via ‘Cascade’ Separation and Concentration. Int. J. Environ. Anal. Chem. 2015, 95, 135–144. [Google Scholar] [CrossRef]
- Yayintas, O.T.; Yılmaz, S.; Turkoglu, M.; Dilgin, Y. Determination of Heavy Metal Pollution with Environmental Physicochemical Parameters in Waste Water of Kocabas Stream (Biga, Canakkale, Turkey) by ICP-AES. Environ. Monit. Assess. 2007, 127, 389–397. [Google Scholar] [CrossRef]
- Butler, O.T.; Cook, J.M.; Harrington, C.F.; Hill, S.J.; Rieuwerts, J.; Miles, D.L. Atomic Spectrometry Update. Environmental Analysis. J. Anal. At. Spectrom. 2006, 21, 217–243. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, S.W.; Hanb, S.H. Laser-Induced Breakdown Spectroscopy (LIBS) of Heavy Metal Ions at the Sub-Parts per Million Level in Water. Appl. Spectrosc. 2012, 66, 1385–1396. [Google Scholar] [CrossRef]
- Korfmacher, K.S.; Dixon, S. Reliability of Spot Test Kits for Detecting Lead in Household Dust. Environ. Res. 2007, 104, 241–249. [Google Scholar] [CrossRef]
- Meucci, V.; Laschi, S.; Minunni, M.; Pretti, C.; Intorre, L.; Soldani, G.; Mascini, M. An Optimized Digestion Method Coupled to Electrochemical Sensor for the Determination of Cd, Cu, Pb and Hg in Fish by Square Wave Anodic Stripping Voltammetry. Talanta 2009, 77, 1143–1148. [Google Scholar] [CrossRef]
- Zhao, G.; Si, Y.; Wang, H.; Liu, G. A Portable Electrochemical Detection System Based on Graphene/Ionic Liquid Modified Screen-Printed Electrode for the Detection of Cadmium in Soil by Square Wave Anodic Stripping Voltammetry. Int. J. Electrochem. Sci. 2016, 11, 54–64. [Google Scholar] [CrossRef]
- Pandhi, T.; Cornwell, C.; Fujimoto, K.; Barnes, P.; Cox, J.; Xiong, H.; Davis, P.H.; Subbaraman, H.; Koehne, J.E.; Estrada, D. Fully Inkjet-Printed Multilayered Graphene-Based Flexible Electrodes for Repeatable Electrochemical Response. RSC Adv. 2020, 10, 38205–38219. [Google Scholar] [CrossRef]
- Mafa, P.J.; Idris, A.O.; Mabuba, N.; Arotiba, O.A. Electrochemical Co-Detection of As(III), Hg(II) and Pb(II) on a Bismuth Modified Exfoliated Graphite Electrode. Talanta 2016, 153, 99–106. [Google Scholar] [CrossRef]
- Baldrianova, L.; Agrafiotou, P.; Svancara, I.; Jannakoudakis, A.D.; Sotiropoulos, S. The Effect of Acetate Concentration, Solution PH and Conductivity on the Anodic Stripping Voltammetry of Lead and Cadmium Ions at in Situ Bismuth-Plated Carbon Microelectrodes. J. Electroanal. Chem. 2011, 660, 31–36. [Google Scholar] [CrossRef]
- Hwang, J.H.; Pathak, P.; Wang, X.; Rodriguez, K.L.; Cho, H.J.; Lee, W.H. A Novel Bismuth-Chitosan Nanocomposite Sensor for Simultaneous Detection of Pb(II), Cd(II) and Zn(II) in Wastewater. Micromachines 2019, 10, 511. [Google Scholar] [CrossRef]
- Zhang, W.; Mou, Z.; Wang, Y.; Chen, Y.; Yang, E.; Guo, F.; Sun, D.; Wang, W. Molybdenum Disulfide Nanosheets Loaded with Chitosan and Silver Nanoparticles Effective Antifungal Activities: In Vitro and In Vivo. Mater. Sci. Eng. C 2019, 97, 486–497. [Google Scholar] [CrossRef]
- Arduini, F.; Calvo, J.Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-Modified Electrodes for Lead Detection. TrAC-Trends Anal. Chem. 2010, 29, 1295–1304. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Xing, W.; Zhou, K.; Song, L.; Hu, Y. Liquid-Exfoliated MoS2 by Chitosan and Enhanced Mechanical and Thermal Properties of Chitosan/MoS2 Composites. Compos. Sci. Technol. 2014, 93, 76–82. [Google Scholar] [CrossRef]
- Musameh, M.M.; Hickey, M.; Kyratzis, I.L. Carbon Nanotube-Based Extraction and Electrochemical Detection of Heavy Metals. Res. Chem. Intermed. 2011, 37, 675–689. [Google Scholar] [CrossRef]
- Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging Insights into the Use of Carbon-Based Nanomaterials for the Electrochemical Detection of Heavy Metal Ions. Coord. Chem. Rev. 2023, 476, 214920. [Google Scholar] [CrossRef]
- Zhao, G.; Tran, T.T.; Modha, S.; Sedki, M.; Myung, N.V.; Jassby, D.; Mulchandani, A. Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated with a 3D-Printed Flow Cell. Front. Chem. 2022, 10, 815805. [Google Scholar] [CrossRef]
- Liu, C.; Sun, C.; Gao, Y.; Lan, W.; Chen, S. Improving the Electrochemical Properties of Carbon Paper as Cathodes for Microfluidic Fuel Cells by the Electrochemical Activation in Different Solutions. ACS Omega 2021, 6, 19153–19161. [Google Scholar] [CrossRef]
- Siddiqui, S.; Arumugam, P.U.; Chen, H.; Li, J.; Meyyappan, M. Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: Effect of scaling down electrode size. ACS Nano 2010, 4, 955–961. [Google Scholar] [CrossRef]
- Steil, M.C.; Steil, M.C.; Thevenot, F.; Kleitzt, M. Densification of Yttria-Stabilized Zirconia Impedance Spectroscopy Analysis Densification of Yttria-Stabilized Zirconia Impedance Specfroscopy Analysis. J. Electrochem. Soc. 1997, 144, 390. [Google Scholar] [CrossRef]
- Amirudin, A.; Thieny, D. Application of Electrochemical Impedance Spectroscopy to Study the Degradation of Polymer-Coated Metals. Prog. Org. Coat. 1995, 26, 1–28. [Google Scholar] [CrossRef]
- De Florio, D.Z.; Muccillo, R. Sintering of Zirconia–Yttria Ceramics Studied by Impedance Spectroscopy. Solid State Ion. 1999, 123, 301–305. [Google Scholar] [CrossRef]
- Tan, C.; Dutta, G.; Yin, H.; Siddiqui, S.; Arumugam, P.U. Detection of Neurochemicals with Enhanced Sensitivity and Selectivity via Hybrid Multiwall Carbon Nanotube-Ultrananocrystalline Diamond Microelectrodes. Sens. Actuators B Chem. 2018, 258, 193–203. [Google Scholar] [CrossRef]
- Yin, H.; Tan, C.; Siddiqui, S.; Arumugam, P.U. Electrochemical Behavior of a Gold Nanoring Electrode Microfabricated on a Silicon Micropillar. Sens. Actuators B Chem. 2019, 281, 392–398. [Google Scholar] [CrossRef]
- Long, Y.T.; Li, C.Z.; Kraatz, H.B.; Lee, J.S. AC Impedance Spectroscopy of Native DNA and M-DNA. Biophys. J. 2003, 84, 3218–3225. [Google Scholar] [CrossRef]
- Ma, K.S.; Zhou, H.; Zoval, J.; Madou, M. DNA Hybridization Detection by Label Free versus Impedance Amplifying Label with Impedance Spectroscopy. Sens. Actuators B Chem. 2006, 114, 58–64. [Google Scholar] [CrossRef]
- Enache, T.A.; Enculescu, M.; Bunea, M.C.; Zubillaga, E.A.; Tellechea, E.; Aresti, M.; Lasheras, M.; Asensio, A.C.; Diculescu, V.C. Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids. Int. J. Mol. Sci. 2023, 24, 1129. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef]
- Castaño-Guerrero, Y.; Romaguera-Barcelay, Y.; Moreira, F.T.C.; Brito, W.R.; Fortunato, E.; Sales, M.G.F. Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. Chemosensors 2022, 10, 92. [Google Scholar] [CrossRef]
- Rizwen, M.; Rahman, U. Electrochemical Detection of Low-Concentration Lead (II) Ions from Water. Master’s Thesis, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2017. [Google Scholar]
- Hong, Y.; Wu, M.; Chan, G.; Dai, Z.; Zhang, Y.; Chen, G.; Dong, X. 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2016, 8, 32940–32947. [Google Scholar] [CrossRef]
- Pandey, S.K.; Sachan, S.; Singh, S.K. Ultra-Trace Sensing of Cadmium and Lead by Square Wave Anodic Stripping Voltammetry Using Ionic Liquid Modified Graphene Oxide. Mater. Sci. Energy Technol. 2019, 2, 667–675. [Google Scholar] [CrossRef]
- Fernández, L.L.; Bastos-Arrieta, J.; Palet, C.; Baeza, M. Composite Electrodes Based on Carbon Materials Decorated with Hg Nanoparticles for the Simultaneous Detection of Cd(II), Pb(II) and Cu(II). Chemosensors 2022, 10, 148. [Google Scholar] [CrossRef]
ECP Potential Window (V) | Δ(Δipf) (%) | Δ(ΔEp) (%) | ΔRct (%) | Δ(Y0) (%) | ΔC (%) |
---|---|---|---|---|---|
−0.5 V to +0.5 | 7 ± 0.1 | −3 ± 0.1 | +13 ± 2 | −24 ± 5 | — |
−1 V to +1 | 6 ± 0.4 | −3 ± 0.1 | +51 ± 4 | +58 ± 7 | — |
−1.5 V to +1.5 | 22 ± 1.4 | −32 ± 1.6 | −85 ± 3 | — | +350 ± 11 |
−2 V to +2 | 23 ± 1.4 | −38 ± 1.5 | −88 ± 2 | — | + 945 ± 18 |
ECP Condition | Δ(Δipf) (%) | Δ(ΔEp) (%) | ΔRct | ΔC | ΔW |
---|---|---|---|---|---|
20 mV/s; 10 cycles | 23 ± 1.5 | −38 ± 1.4 | ~7.5-fold decrease | ~6.0-fold increase | ~15.0-fold increase |
20 mV/s; 20 cycles | 24 ± 0.5 | −38 ± 1.9 | ~10.0-fold decrease | ~15.5-fold increase | ~19.0-fold increase |
20 mV/s; 30 cycles | 35 ± 1.2 | −48 ± 1.6 | ~10.0-fold decrease | ~15.5-fold increase | ~19.0-fold increase |
40 mV/s; 10 cycles | 41 ± 1.2 | −42 ± 2.0 | ~8.5-fold decrease | ~2.0-fold increase | ~9.5-fold increase |
40 mV/s; 20 cycles | 23 ± 0.6 | −36 ± 3.0 | ~8.5-fold decrease | ~11.0-fold increase | ~12.0-fold increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billa, S.; Boddu, R.; Siddiqui, S.; Arumugam, P.U. Enhancing Heavy Metal Detection through Electrochemical Polishing of Carbon Electrodes. Biosensors 2024, 14, 412. https://doi.org/10.3390/bios14090412
Billa S, Boddu R, Siddiqui S, Arumugam PU. Enhancing Heavy Metal Detection through Electrochemical Polishing of Carbon Electrodes. Biosensors. 2024; 14(9):412. https://doi.org/10.3390/bios14090412
Chicago/Turabian StyleBilla, Sanjeev, Rohit Boddu, Shabnam Siddiqui, and Prabhu U. Arumugam. 2024. "Enhancing Heavy Metal Detection through Electrochemical Polishing of Carbon Electrodes" Biosensors 14, no. 9: 412. https://doi.org/10.3390/bios14090412
APA StyleBilla, S., Boddu, R., Siddiqui, S., & Arumugam, P. U. (2024). Enhancing Heavy Metal Detection through Electrochemical Polishing of Carbon Electrodes. Biosensors, 14(9), 412. https://doi.org/10.3390/bios14090412