Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review
Abstract
:1. Introduction
2. Working Principle, Configurations and Detection Methods of SPR-Based Biodetection Systems
2.1. Working Principle of SPR-Based Biodetection Systems
2.2. SPR Configurations and Detection Methods
2.2.1. Prism Coupling (Kretschmann and Otto Configurations)
2.2.2. Optical Waveguides and Fiber-Optic SPR
2.2.3. Nanoarray-Based and Localized SPR (LSPR)
3. Key Components of SPR-Based Biodetection Systems
3.1. Metallic Layers
3.2. Surface Chemistry and Functionalization
3.3. Optical Setup and Instrumentation
3.4. Impact of Laser Wavelength on SPR Detection
4. Applications for SPR-Based Biodetection Systems
4.1. Biomedical Diagnostics
4.2. Pharmaceutical and Drug Discovery
4.3. Environmental Monitoring
4.4. Food Safety and Quality Control
4.5. Emerging Applications
Application | Key Features | Examples of Detection Targets | Benefits |
---|---|---|---|
Biomedical Diagnostics | High sensitivity, real-time monitoring, label-free detection [162] | Biomolecules (e.g., proteins, DNA, antibodies), disease biomarkers [163,164] | Rapid diagnosis, early detection, personalized medicine [165,166] |
Pharmaceutical and Drug Discovery | High-throughput screening, kinetic studies, quantitative binding analysis | Drug–target interactions, ligand–receptor binding, enzyme activity | Accelerates drug discovery, precise kinetic profiling, reduced reagent consumption |
Environmental Monitoring | Detection of pollutants, toxins, and pathogens in water, air, and soil | Heavy metals, pesticides, pathogens, harmful gases | Real-time monitoring, early warning systems, high specificity |
Food Safety and Quality Control | Assessment of contaminants, pathogens, and adulterants [167] | Foodborne pathogens (e.g., E. coli, Salmonella), toxins, allergens [168] | Ensures food safety, compliance with regulations, non-destructive testing [169,170,171,172] |
Emerging Applications | Innovations in wearable sensors, remote monitoring, and integration with IoT | Continuous glucose monitoring, pathogen detection in smart packaging | Versatility, integration with advanced technologies, enhanced accessibility and convenience |
5. Advancement in SPR Technology
5.1. LSPR
5.2. Hybrid and Multi-Modal Systems
5.3. Portable and Wearable SPR Devices
6. Challenges and Future Perspectives
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface Plasmon Based Plasmonic Sensors: A Review on Their Past, Present and Future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A Necessity in the Field of Sensing-A Review (Invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Li, J.-F.; Ling, X.Y. Introduction to Advances in Plasmonics and Its Applications. Nanoscale 2021, 13, 5935–5936. [Google Scholar] [CrossRef]
- Butt, M.A. Plasmonic Sensors Based on a Metal–Insulator–Metal Waveguide—What Do We Know So Far? Sensors 2024, 24, 7158. [Google Scholar] [CrossRef]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.-M.; Huttunen, M.J.; Boyd, R.W.; et al. Ultra-High-Q Resonances in Plasmonic Metasurfaces. Nat. Commun. 2021, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, P.I.; Beloglazov, A.A. A Multi-Purpose Sensor Based on Surface Plasmon Polariton Resonance in a Schottky Structure. Sens. Actuators A Phys. 1994, 42, 547–552. [Google Scholar] [CrossRef]
- Joseph, S.; Sarkar, S.; Joseph, J. Grating-Coupled Surface Plasmon-Polariton Sensing at a Flat Metal–Analyte Interface in a Hybrid-Configuration. ACS Appl. Mater. Interfaces 2020, 12, 46519–46529. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, C.; Guo, T.; Albert, J. Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Guo, J.; Xu, H.; Dai, X.; Xiang, Y. Ultrasensitive Biosensors Based on Long-Range Surface Plasmon Polariton and Dielectric Waveguide Modes. Photon. Res. 2016, 4, 262–266. [Google Scholar] [CrossRef]
- Kuang, K.; Wang, Q.; Chang, F.; Yang, Y.; Peng, W. Highly Sensitive Surface Plasmon Sensor With an Ultra-Narrow Linewidth. IEEE Photonics Technol. Lett. 2024, 36, 873–876. [Google Scholar] [CrossRef]
- Del Vecchio, K.; Stahelin, R.V. Using Surface Plasmon Resonance to Quantitatively Assess Lipid–Protein Interactions. In Lipid Signaling Protocols; Waugh, M.G., Ed.; Springer: New York, NY, USA, 2016; pp. 141–153. ISBN 978-1-4939-3170-5. [Google Scholar]
- Scarano, S.; Mascini, M.; Turner, A.P.F.; Minunni, M. Surface Plasmon Resonance Imaging for Affinity-Based Biosensors. Biosens. Bioelectron. 2010, 25, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L.; Xu, W. Surface Plasmon Polaritons: Physics and Applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Li, Q.; Yin, Y.; Chen, X.; Xu, K.D. A Frequency-Controlled Wide-Angle Scanning Antenna Based on Spoof Surface Plasmon Polariton. IEEE Photonics Technol. Lett. 2022, 34, 1300–1303. [Google Scholar] [CrossRef]
- Zheng, L.; Zywietz, U.; Evlyukhin, A.; Roth, B.; Overmeyer, L.; Reinhardt, C. Experimental Demonstration of Surface Plasmon Polaritons Reflection and Transmission Effects. Sensors 2019, 19, 4633. [Google Scholar] [CrossRef]
- Teh, H.F.; Peh, W.Y.; Su, X.; Thomsen, J.S. Characterization of Protein−DNA Interactions Using Surface Plasmon Resonance Spectroscopy with Various Assay Schemes. Biochemistry 2007, 46, 2127–2135. [Google Scholar] [CrossRef]
- Nedelkov, D.; Nelson, R.W. Surface Plasmon Resonance Mass Spectrometry: Recent Progress and Outlooks. TRENDS Biotechnol. 2003, 21, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Mi, J.; Dou, J.; Lu, H.; Dong, C.; Ren, L.; Zhao, R.; Shi, W.; Zhang, N.; Zhou, Y.; et al. Optical Tweezers Integrated Surface Plasmon Resonance Holographic Microscopy for Characterizing Cell-Substrate Interactions under Noninvasive Optical Force Stimuli. Biosens. Bioelectron. 2022, 206, 114131. [Google Scholar] [CrossRef] [PubMed]
- Foote, K.D. A Brief History of Machine Learning; DATAVERSITY: Los Angeles, CA, USA, 2021. [Google Scholar]
- Wood, R.W. XLII. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1902, 4, 396–402. [Google Scholar] [CrossRef]
- Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Z. Phys. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Für Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Biacore. Available online: https://biosensorcore.com/biacore-overview/surface-plasmon-resonance/ (accessed on 3 December 2024).
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-Enhanced Raman Spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Lochyński, P.; Szymańska, M.; Charazińska, S.; Poznańska, E.; Kubicz, J. Raman Spectroscopy and XRF Identification: First Step in Industrial Wastewater Management. Water Resour. Ind. 2023, 30, 100216. [Google Scholar] [CrossRef]
- Gao, M.; He, Y.; Chen, Y.; Shih, T.-M.; Yang, W.; Wang, J.; Zhao, F.; Li, M.-D.; Chen, H.; Yang, Z. Tunable Surface Plasmon Polaritons and Ultrafast Dynamics in 2D Nanohole Arrays. Nanoscale 2019, 11, 16428–16436. [Google Scholar] [CrossRef]
- Schepler, K.L.; Yessenov, M.; Zhiyenbayev, Y.; Abouraddy, A.F. Space–Time Surface Plasmon Polaritons: A New Propagation-Invariant Surface Wave Packet. ACS Photonics 2020, 7, 2966–2977. [Google Scholar] [CrossRef]
- Mcoyi, M.P.; Mpofu, K.T.; Sekhwama, M.; Mthunzi-Kufa, P. Developments in Localized Surface Plasmon Resonance. Plasmonics 2024, 1–40. [Google Scholar] [CrossRef]
- Hu, L.-X.; Hu, M.; Liu, S.-G. Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures. J. Electron. Sci. Technol. 2022, 20, 100148. [Google Scholar] [CrossRef]
- Butt, M.A. Insight into Plasmonics: Resurrection of Modern-Day Science (Invited). Comput. Opt. 2024, 48, 5–17. [Google Scholar] [CrossRef]
- Dutta, D.; Mendiratta, N.; Sarkar, A. Novel SSPP Based Highly Sensitive EM Biosensor for Noninvasive Measurement of Blood Glucose. In Proceedings of the 2024 IEEE Applied Sensing Conference (APSCON), Goa, India, 22–24 January 2024; Available online: https://ieeexplore.ieee.org/document/10466051 (accessed on 3 December 2024).
- Janith, G.I.; Herath, H.S.; Hendeniya, N.; Attygalle, D.; Amarasinghe, D.A.S.; Logeeshan, V.; Wickramasinghe, P.M.T.B.; Wijayasinghe, Y.S. Advances in Surface Plasmon Resonance Biosensors for Medical Diagnostics: An Overview of Recent Developments and Techniques. J. Pharm. Biomed. Anal. Open 2023, 2, 100019. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, B.-C.; Oh, B.-K.; Choi, J.-W. Highly Sensitive Localized Surface Plasmon Resonance Immunosensor for Label-Free Detection of HIV-1. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1018–1026. [Google Scholar] [CrossRef]
- Hossain, M.M.; Talukder, M.A. Graphene Surface Plasmon Sensor for Ultra-Low-Level SARS-CoV-2 Detection. PLoS ONE 2023, 18, e0284812. [Google Scholar] [CrossRef]
- Ma, T.-F.; Chen, Y.-P.; Shen, Y. Chapter Seven—Progress in the Applications of Surface Plasmon Resonance for Food Safety. In Comprehensive Analytical Chemistry; Chen, Y.-P., Ma, T.-F., Eds.; Surface Plasmon Resonance in Bioanalysis; Elsevier: Amsterdam, The Netherlands, 2021; Volume 95, pp. 237–275. [Google Scholar]
- Chegel, V.I.; Shirshov, Y.M.; Piletskaya, E.V.; Piletsky, S.A. Surface Plasmon Resonance Sensor for Pesticide Detection. Sens. Actuators B Chem. 1998, 48, 456–460. [Google Scholar] [CrossRef]
- Sadrolhosseini, A.R.; Ghasemi, E.; Pirkarimi, A.; Hamidi, S.M.; Taheri Ghahrizjani, R. Highly Sensitive Surface Plasmon Resonance Sensor for Detection of Methylene Blue and Methylene Orange Dyes Using NiCo-Layered Double Hydroxide. Opt. Commun. 2023, 529, 129057. [Google Scholar] [CrossRef]
- Malic, L.; Veres, T.; Tabrizian, M. Biochip Functionalization Using Electrowetting-on-Dielectric Digital Microfluidics for Surface Plasmon Resonance Imaging Detection of DNA Hybridization. Biosens. Bioelectron. 2009, 24, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Vinayak, M.V.; Cheng, S.; Hu, W. Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker Determination. Anal. Chem. 2021, 93, 11305–11311. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.C.; Kim, D.-Y.; Ahn, H.S.; Lee, C.O.; Hwang, N.M. Deposition Mechanism of Gold by Thermal Evaporation: Approach by Charged Cluster Model. J. Cryst. Growth 2000, 213, 83–92. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Chen, Y.; Zhang, J.; Hong, X. Highly Reproducible Fiber Optic Surface Plasmon Resonance Biosensors Modified by CS2 for Disposable Immunoassays. Sens. Actuators B Chem. 2023, 374, 132801. [Google Scholar] [CrossRef]
- Shpacovitch, V.; Hergenröder, R. Surface Plasmon Resonance (SPR)-Based Biosensors as Instruments with High Versatility and Sensitivity. Sensors 2020, 20, 3010. [Google Scholar] [CrossRef]
- Sehmi, H.S.; Langbein, W.; Muljarov, E.A. Optimizing the Drude-Lorentz Model for Material Permittivity: Method, Program, and Examples for Gold, Silver, and Copper. Phys. Rev. B 2017, 95, 115444. [Google Scholar] [CrossRef]
- Kheirandish, A.; Sepehri Javan, N.; Mohammadzadeh, H. Modified Drude Model for Small Gold Nanoparticles Surface Plasmon Resonance Based on the Role of Classical Confinement. Sci. Rep. 2020, 10, 6517. [Google Scholar] [CrossRef] [PubMed]
- Andalibi Miandoab, S.; Talebzadeh, R. Ultra-Sensitive and Selective 2D Hybrid Highly Doped Semiconductor-Graphene Biosensor Based on SPR and SEIRA Effects in the Wide Range of Infrared Spectral. Opt. Mater. 2022, 129, 112572. [Google Scholar] [CrossRef]
- Riswan, M.; Adrianto, N.; Yahya, I.M.; Istiqomah, N.I.; Panre, A.M.; Juharni; Wahyuni, S.; Arifin, M.; Santoso, I.; Suharyadi, E. Effect of Electric Field on Localized Surface Plasmon Resonance Properties of Fe3O4/Ag Composite Nanoparticles. Optik 2023, 293, 171404. [Google Scholar] [CrossRef]
- Mackay, T.G.; Faryad, M. On Surface-Plasmon-Polariton Waves Excited in the Turbadar–Otto Configuration. Plasmonics 2022, 17, 753–755. [Google Scholar] [CrossRef]
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.P.; Dorofeenko, A.V.; Pukhov, A.A.; Lisyansky, A.A. Exciting Surface Plasmon Polaritons in the Kretschmann Configuration by a Light Beam. Phys. Rev. B 2018, 97, 235407. [Google Scholar] [CrossRef]
- Khan, Q.; Sohrab, A.; Khan, M.A.; Khesro, A. Surface Plasmon Polariton Resonance Sensing at Metal-Dielectric Interface Based on Wavelength Interrogation. Plasmonics 2024, 1–8. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Najiminaini, M.; Singh, M.R.; Carson, J.J.L. A Study of Angle Dependent Surface Plasmon Polaritons in Nano-Hole Array Structures. J. Appl. Phys. 2016, 120, 034302. [Google Scholar] [CrossRef]
- Shen, Z.; Yu, H.; Zhang, L.; Chen, Y. Refractive Index Sensing Based on Surface Plasmon-Coupled Emission Excited by Reverse Kretschmann or Tamm Structure. Opt. Lett. 2022, 47, 5068–5071. [Google Scholar] [CrossRef] [PubMed]
- Vala, M.; Dostálek, J.; Homola, J. Diffraction Grating-Coupled Surface Plasmon Resonance Sensor Based on Spectroscopy of Long-Range and Short-Range Surface Plasmons. In Optical Sensing Technology and Applications; SPIE: Bellingham, WA, USA, 2007; Volume 6585, pp. 557–565. [Google Scholar]
- Motogaito, A.; Ito, Y. Excitation Mechanism of Surface Plasmon Polaritons for Surface Plasmon Sensor with 1D Metal Grating Structure for High Refractive Index Medium. Photonic Sens. 2019, 9, 11–18. [Google Scholar] [CrossRef]
- Hageneder, S.; Fossati, S.; Ferrer, N.-G.; Güngörmez, B.; Auer, S.K.; Dostalek, J. Multi-Diffractive Grating for Surface Plasmon Biosensors with Direct Back-Side Excitation. Opt. Express 2020, 28, 39770–39780. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Sun, Y.; Kong, Y.; Qian, W. The Sensitivity of Grating-Based SPR Sensors with Wavelength Interrogation. Sensors 2019, 19, 405. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Lin, Y.-C.; Yang, H.-C.; Barshilia, D.; Chen, P.-L.; Huang, F.-C.; Chau, L.-K.; Hsieh, W.-H.; Chang, G.-E. Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide. Sensors 2024, 24, 5536. [Google Scholar] [CrossRef]
- Green, R.J.; Frazier, R.A.; Shakesheff, K.M.; Davies, M.C.; Roberts, C.J.; Tendler, S.J.B. Surface Plasmon Resonance Analysis of Dynamic Biological Interactions with Biomaterials. Biomaterials 2000, 21, 1823–1835. [Google Scholar] [CrossRef]
- Xia, C.; Sun, J.; Wang, Q.; Chen, J.; Wang, T.; Xu, W.; Zhang, H.; Li, Y.; Chang, J.; Shi, Z.; et al. Label-Free Sensing of Biomolecular Adsorption and Desorption Dynamics by Interfacial Second Harmonic Generation. Biosensors 2022, 12, 1048. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Sim, S.; Llamas-Garro, I.; Kim, J. Air-Gap Interrogation of Surface Plasmon Resonance in Otto Configuration. Micromachines 2021, 12, 998. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Okamoto, T.; Yamaguchi, K.; Haraguchi, M. Determining the Optical Geometry of a Gold Semi-Shell under the Kretschmann Configuration. Photonics 2023, 10, 1228. [Google Scholar] [CrossRef]
- Odacı, C.; Aydemir, U. The Surface Plasmon Resonance-Based Fiber Optic Sensors: A Theoretical Comparative Study with 2D TMDC Materials. Results Opt. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Sharif, V.; Pakarzadeh, H. High-Performance Surface Plasmon Resonance Fiber Sensor Based on Cylindrical Vector Modes. Sci. Rep. 2023, 13, 4563. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Qian, Y.; Yin, X.; Wang, L.; Zhang, S.; Wang, Y. Research on Fiber Optic Surface Plasmon Resonance Biosensors: A Review. Photonic Sens. 2024, 14, 240201. [Google Scholar] [CrossRef]
- Lv, J.; Wang, J.; Yang, L.; Liu, W.; Haihao, F.; Chu, P.K.; Liu, C. Recent Advances of Optical Fiber Biosensors Based on Surface Plasmon Resonance: Sensing Principles, Structures, and Prospects. Sens. Diagn. 2024, 3, 1369–1391. [Google Scholar] [CrossRef]
- Teng, C.; Li, X.; Chen, M.; Deng, S.; Deng, H.; Xue, M.; Yuan, L.; Min, R.; Fu, X.; Hu, X. Cascaded Plastic Optical Fiber Based SPR Sensor for Simultaneous Measurement of Refractive Index and Temperature. Biomed. Opt. Express 2024, 15, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Salah, N.H.; Kaur, B.; Rasul, H.M.; Vasimalla, Y.; Kumar, S. Optical Fiber-Based SPR Sensor for Chemical and Biological Samples Detection Using 2-D Materials. IEEE Sens. J. 2024, 24, 25644–25651. [Google Scholar] [CrossRef]
- Teng, C.; Wang, Y.; Yuan, L. Polymer Optical Fibers Based Surface Plasmon Resonance Sensors and Their Applications: A Review. Opt. Fiber Technol. 2023, 77, 103256. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Shafi, M.; Liu, R.; Zha, Z.; Feng, D.; Liu, M.; Du, X.; Yue, W.; Jiang, S. Optical Fiber SPR Biosensor Complying with a 3D Composite Hyperbolic Metamaterial and a Graphene Film. Photon. Res. 2021, 9, 379–388. [Google Scholar] [CrossRef]
- Meng, G.; Luan, N.; He, H.; Lei, F.; Liu, J. Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection. Sensors 2024, 24, 4335. [Google Scholar] [CrossRef]
- Calatayud-Sanchez, A.; Ortega-Gomez, A.; Barroso, J.; Zubia, J.; Benito-Lopez, F.; Villatoro, J.; Basabe-Desmonts, L. A Method for the Controllable Fabrication of Optical Fiber-Based Localized Surface Plasmon Resonance Sensors. Sci. Rep. 2022, 12, 9566. [Google Scholar] [CrossRef]
- Harris, R.D.; Wilkinson, J.S. Waveguide Surface Plasmon Resonance Sensors. Sens. Actuators B Chem. 1995, 29, 261–267. [Google Scholar] [CrossRef]
- Walter, J.-G.; Eilers, A.; Alwis, L.S.M.; Roth, B.W.; Bremer, K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors 2020, 20, 2889. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-J.; Yim, H.-D.; Lee, S.-G.; O, B.-H. Tiny Surface Plasmon Resonance Sensor Integrated on Silicon Waveguide Based on Vertical Coupling into Finite Metal-Insulator-Metal Plasmonic Waveguide. Opt. Express 2011, 19, 19895–19900. [Google Scholar] [CrossRef] [PubMed]
- Bremer, K.; Walter, J.-G.; Roth, B. Optical Waveguide Based Surface Plasmon Resonance Sensor System for Smartphones. In Applied Industrial Optics: Spectroscopy, Imaging and Metrology; Optica Publishing Group: Rochester, NY, USA, 2016; p. AIW2B.1. [Google Scholar]
- Feiler, M.; Ziman, M.; Kovac, J.; Kuzma, A.; Uherek, F. Design of Optimal SPR-Based Multimode Waveguide Sensor for a Wide Range of Liquid Analytes. Photonics 2023, 10, 618. [Google Scholar] [CrossRef]
- Walter, J.-G.; Alwis, L.S.M.; Roth, B.; Bremer, K. All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D. Sensors 2020, 20, 6771. [Google Scholar] [CrossRef]
- Kim, D.M.; Park, J.S.; Jung, S.-W.; Yeom, J.; Yoo, S.M. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. Sensors 2021, 21, 3191. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Angelomé, P.C.; Lechuga, L.M.; Liz-Marzán, L.M. LSPR-Based Nanobiosensors. Nano Today 2009, 4, 244–251. [Google Scholar] [CrossRef]
- Li, R.; Fan, H.; Chen, Y.; Huang, J.; Liu, G.L.; Huang, L. Application of Nanoplasmonic Biosensors Based on Nanoarrays in Biological and Chemical Detection. Opt. Express 2023, 31, 21586–21613. [Google Scholar] [CrossRef] [PubMed]
- Bonyár, A. Label-Free Nucleic Acid Biosensing Using Nanomaterial-Based Localized Surface Plasmon Resonance Imaging: A Review. ACS Appl. Nano Mater. 2020, 3, 8506–8521. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Wang, T.-Q.; Zhao, W.-M.; Yin, X.-Y.; Jiang, J.-X.; Zhang, S.-S. Plasmonic Crescent Nanoarray-Based Surface Lattice Resonance Sensor with a High Figure of Merit. Nanoscale 2022, 14, 6144–6151. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Li, S.; Ding, F.; Li, N.; Meng, S.; Li, R.; Qi, J.; Liu, Q.; Liu, G.L. Plasmonic Nano-Arrays for Ultrasensitive Bio-Sensing. Nanophotonics 2018, 7, 1517–1531. [Google Scholar] [CrossRef]
- Yang, Y.; Murray, J.; Haverstick, J.; Tripp, R.A.; Zhao, Y. Silver Nanotriangle Array Based LSPR Sensor for Rapid Coronavirus Detection. Sens. Actuators B Chem. 2022, 359, 131604. [Google Scholar] [CrossRef]
- Dang, T.; Hu, W.; Zhang, W.; Song, Z.; Wang, Y.; Chen, M.; Xu, H.; Liu, G.L. Protein Binding Kinetics Quantification via Coupled Plasmonic-Photonic Resonance Nanosensors in Generic Microplate Reader. Biosens. Bioelectron. 2019, 142, 111494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dang, T.; Li, Y.; Liang, J.; Xu, H.; Liu, G.L.; Hu, W. Digital Plasmonic Immunosorbent Assay for Dynamic Imaging Detection of Protein Binding. Sens. Actuators B Chem. 2021, 348, 130711. [Google Scholar] [CrossRef]
- de Bruijn, H.E.; Kooyman, R.P.H.; Greve, J. Choice of Metal and Wavelength for Surface-Plasmon Resonance Sensors: Some Considerations. Appl. Opt. 1992, 31, 440_1–442. [Google Scholar] [CrossRef]
- Hasanuzzaman, G.K.M.; Sakib, T.M.; Paul, A.K. Gold Coated Surface Plasmon Resonance Based Biosensor: An Hexagonal Photonic Crystal Fiber Platform. Sens. Bio-Sens. Res. 2023, 42, 100582. [Google Scholar] [CrossRef]
- Divya, J.; Selvendran, S. Surface Plasmon Resonance-Based Gold-Coated Hollow-Core Negative Curvature Optical Fiber Sensor. Biosensors 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Sayed, F.A.; Elsayed, H.A.; Al-Dossari, M.; Eissa, M.F.; Mehaney, A.; Aly, A.H. Angular Surface Plasmon Resonance-Based Sensor with a Silver Nanocomposite Layer for Effective Water Pollution Detection. Sci. Rep. 2023, 13, 21793. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; Yan, S.; Yang, W. Nanostructured Surface Plasmon Resonance Sensors: Toward Narrow Linewidths. Heliyon 2023, 9, e16598. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Song, H.; Choi, J.; Kim, K. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches. Sensors 2018, 18, 98. [Google Scholar] [CrossRef]
- D’Agata, R.; Bellassai, N.; Spoto, G. Exploiting the Design of Surface Plasmon Resonance Interfaces for Better Diagnostics: A Perspective Review. Talanta 2024, 266, 125033. [Google Scholar] [CrossRef]
- Li, W.; Ren, K.; Zhou, J. Aluminum-Based Localized Surface Plasmon Resonance for Biosensing. TrAC Trends Anal. Chem. 2016, 80, 486–494. [Google Scholar] [CrossRef]
- Barchiesi, D.; Gharbi, T.; Cakir, D.; Anglaret, E.; Fréty, N.; Kessentini, S.; Maâlej, R. Performance of Surface Plasmon Resonance Sensors Using Copper/Copper Oxide Films: Influence of Thicknesses and Optical Properties. Photonics 2022, 9, 104. [Google Scholar] [CrossRef]
- Nesterenko, D.V.; Saif-ur-Rehman; Sekkat, Z. Surface Plasmon Sensing with Different Metals in Single and Double Layer Configurations. Appl. Opt. 2012, 51, 6673–6682. [Google Scholar] [CrossRef]
- Vasudevan Pillai Radha, S.; Santhakumari Amma Ravindran Nair, S.K.; Sankaranarayana Iyer, S. Surface Plasmon Resonance-Based Fiber-Optic Metallic Multilayer Biosensors. ACS Omega 2021, 6, 15068–15077. [Google Scholar] [CrossRef] [PubMed]
- Oliverio, M.; Perotto, S.; Messina, G.C.; Lovato, L.; De Angelis, F. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Appl. Mater. Interfaces 2017, 9, 29394–29411. [Google Scholar] [CrossRef] [PubMed]
- Armini, S.; Vandelaer, Y.; Lesniewska, A.; Cherman, V.; Preter, I.D.; Inoue, F.; Derakhshandeh, J.; Vakanas, G.; Beyne, E. Thiol-Based Self-Assembled Monolayers (SAMs) as an Alternative Surface Finish for 3D Cu Microbumps. In TMS 2015 144 th Annual Meeting & Exhibition: Supplemental Proceedings; Springer International Publishing: Cham, Switzerland, 2016; pp. 1355–1360. [Google Scholar]
- Tewari, A.; Björkström, K.; Ghafari, A.M.; Macchia, E.; Torsi, L.; Österbacka, R. Stability of Thiol-Based Self-Assembled Monolayer Functionalized Electrodes in EG-OFET-Based Applications. FlatChem 2023, 42, 100553. [Google Scholar] [CrossRef]
- Homola, J.; Vaisocherová, H.; Dostálek, J.; Piliarik, M. Multi-Analyte Surface Plasmon Resonance Biosensing. Methods 2005, 37, 26–36. [Google Scholar] [CrossRef]
- Ahmed, K.; Amin, R.; Bui, F.M.; Chen, L.; Mohammadd, N.; Al-Zahrani, F.A.; Kumar, S. Design and Analysis of Multi-Analyte Detection Based Biosensor in the Visible to Near-Infrared (VNIR) Region. IEEE Trans. NanoBiosci. 2024, 23, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Mehand, M.S.; Srinivasan, B.; De Crescenzo, G. Optimizing Multiple Analyte Injections in Surface Plasmon Resonance Biosensors with Analytes Having Different Refractive Index Increments. Sci. Rep. 2015, 5, 15855. [Google Scholar] [CrossRef]
- Otupiri, R.; Akowuah, E.K.; Haxha, S. Multi-Channel SPR Biosensor Based on PCF for Multi-Analyte Sensing Applications. Opt. Express 2015, 23, 15716–15727. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A. Plasmonic Sensor System Embedded with Orthogonal Mode Couplers for Simultaneous Monitoring of Temperature and Refractive Index. Plasmonics 2024, 1–11. [Google Scholar] [CrossRef]
- Vala, M.; Chadt, K.; Piliarik, M.; Homola, J. High-Performance Compact SPR Sensor for Multi-Analyte Sensing. Sens. Actuators B Chem. 2010, 148, 544–549. [Google Scholar] [CrossRef]
- Haider, F.; Aoni, R.A.; Ahmed, R.; Mahdiraji, G.A.; Azman, M.F.; Adikan, F.R.M. Mode-Multiplex Plasmonic Sensor for Multi-Analyte Detection. Opt. Lett. 2020, 45, 3945–3948. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Shen, F.; Gurgel, P.V.; Rojas, O.J.; Carbonell, R.G. Dynamic and Equilibrium Performance of Sensors Based on Short Peptide Ligands for Affinity Adsorption of Human IgG Using Surface Plasmon Resonance. Biosens. Bioelectron. 2014, 58, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Zeni, L.; Perri, C.; Cennamo, N.; Arcadio, F.; D’Agostino, G.; Salmona, M.; Beeg, M.; Gobbi, M. A Portable Optical-Fibre-Based Surface Plasmon Resonance Biosensor for the Detection of Therapeutic Antibodies in Human Serum. Sci. Rep. 2020, 10, 11154. [Google Scholar] [CrossRef]
- Xiao, C.; Ross, G.; Nielen, M.W.F.; Eriksson, J.; Salentijn, G.I.J.; Mak, W.C. A Portable Smartphone-Based Imaging Surface Plasmon Resonance Biosensor for Allergen Detection in Plant-Based Milks. Talanta 2023, 257, 124366. [Google Scholar] [CrossRef] [PubMed]
- Le, D.; Ranta-Lassila, A.; Sipola, T.; Karppinen, M.; Petäjä, J.; Kehusmaa, M.; Aikio, S.; Guo, T.-L.; Roussey, M.; Hiltunen, J.; et al. High-Performance Portable Grating-Based Surface Plasmon Resonance Sensor Using a Tunable Laser at Normal Incidence. Photon. Res. 2024, 12, 947–958. [Google Scholar] [CrossRef]
- Pandey, P.S.; Raghuwanshi, S.K.; Shadab, A.; Ansari, M.T.I.; Tiwari, U.K.; Kumar, S. SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review. IEEE Sens. J. 2022, 22, 13800–13810. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.S.; Raghuwanshi, S.K.; Singh, R.; Kumar, S. Surface Plasmon Resonance Biosensor Chip for Human Blood Groups Identification Assisted with Silver-Chromium-Hafnium Oxide. Magnetochemistry 2023, 9, 21. [Google Scholar] [CrossRef]
- Yoo, H.; Shin, J.; Sim, J.; Cho, H.; Hong, S. Reusable Surface Plasmon Resonance Biosensor Chip for the Detection of H1N1 Influenza Virus. Biosens. Bioelectron. 2020, 168, 112561. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, J.; Yang, H.-M.; Liu, H.-S.; Wei, Y.; Yuan, B.-L.; Li, J.; Zhao, K. Research on Tunable Distributed SPR Sensor Based on Bimetal Film. Appl. Opt. 2018, 57, 7591–7599. [Google Scholar] [CrossRef]
- Ji, J.; Li, Z.; Sun, W.; Wang, H. Surface Plasmon Resonance Tuning in Gold Film on Silver Nanospheres through Optical Absorption. Sens. Bio-Sens. Res. 2020, 30, 100374. [Google Scholar] [CrossRef]
- De, A.; Kalita, D. Bio-Fabricated Gold and Silver Nanoparticle Based Plasmonic Sensors for Detection of Environmental Pollutants: An Overview. Crit. Rev. Anal. Chem. 2023, 53, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Laha, R.; Dantham, V.R. Wavelength-Dependent Angular Shift and Figure of Merit of Silver-Based Surface Plasmon Resonance Biosensor. Sens. Actuators A Phys. 2020, 315, 112289. [Google Scholar] [CrossRef]
- Beusink, J.B.; Lokate, A.M.C.; Besselink, G.A.J.; Pruijn, G.J.M.; Schasfoort, R.B.M. Angle-Scanning SPR Imaging for Detection of Biomolecular Interactions on Microarrays. Biosens. Bioelectron. 2008, 23, 839–844. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Khan, S.A.; Li, F.; Shen, J.; Duan, Q.; Liu, X.; Zhu, J. Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. Sensors 2022, 22, 133. [Google Scholar] [CrossRef]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging Applications of Label-Free Optical Biosensors. Nanophotonics 2017, 6, 627–645. [Google Scholar] [CrossRef]
- Masson, J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017, 2, 16–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Ling, H.; Zhang, J.; Li, K.; Yuan, C.; Ma, H.; Huang, W.; Wang, Q.; Su, X. Label-Free Diagnosis of Ovarian Cancer Using Spoof Surface Plasmon Polariton Resonant Biosensor. Sens. Actuators B Chem. 2022, 352, 130996. [Google Scholar] [CrossRef]
- Acharya, B.; Behera, A.; Behera, S. Optimizing Drug Discovery: Surface Plasmon Resonance Techniques and Their Multifaceted Applications. Chem. Phys. Impact 2024, 8, 100414. [Google Scholar] [CrossRef]
- Schneider, C.S.; Bhargav, A.G.; Perez, J.G.; Wadajkar, A.S.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Surface Plasmon Resonance as a High Throughput Method to Evaluate Specific and Non-Specific Binding of Nanotherapeutics. J. Control Release 2015, 219, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Buzavaite-Verteliene, E.; Plikusiene, I.; Tolenis, T.; Valavicius, A.; Anulyte, J.; Ramanavicius, A.; Balevicius, Z. Hybrid Tamm-Surface Plasmon Polariton Mode for Highly Sensitive Detection of Protein Interactions. Opt. Express 2020, 28, 29033–29043. [Google Scholar] [CrossRef] [PubMed]
- Patching, S.G. Surface Plasmon Resonance Spectroscopy for Characterisation of Membrane Protein–Ligand Interactions and Its Potential for Drug Discovery. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Singh, S.; Chawla, V.; Chawla, P.A.; Bhatia, R. Surface Plasmon Resonance as a Fascinating Approach in Target-Based Drug Discovery and Development. TrAC Trends Anal. Chem. 2024, 171, 117501. [Google Scholar] [CrossRef]
- Chain, C.Y.; Daza Millone, M.A.; Cisneros, J.S.; Ramirez, E.A.; Vela, M.E. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front. Chem. 2021, 8, 605307. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The Current Landscape of Nucleic Acid Therapeutics. Nat. Nanotechnol. 2021, 16, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Kushwaha, K.; Gupta, J. Emerging Nano-Strategies against Tumour Microenvironment (TME): A Review. OpenNano 2023, 9, 100112. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, C.Y.; Gao, J.; Wang, Z. Targeting of Nanotherapeutics to Infection Sites for Antimicrobial Therapy. Adv. Ther. 2019, 2, 1900095. [Google Scholar] [CrossRef] [PubMed]
- Nabil, G.; Bhise, K.; Sau, S.; Atef, M.; El-Banna, H.A.; Iyer, A.K. Nano-Engineered Delivery Systems for Cancer Imaging and Therapy: Recent Advances, Future Direction and Patent Evaluation. Drug Discov. Today 2019, 24, 462–491. [Google Scholar] [CrossRef] [PubMed]
- Kamal Eddin, F.B.; Fen, Y.W. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020, 25, 2769. [Google Scholar] [CrossRef]
- Libánská, A.; Špringer, T.; Peštová, L.; Kotalík, K.; Konefał, R.; Šimonová, A.; Křížek, T.; Homola, J.; Randárová, E.; Etrych, T. Using Surface Plasmon Resonance, Capillary Electrophoresis and Diffusion-Ordered NMR Spectroscopy to Study Drug Release Kinetics. Commun. Chem. 2023, 6, 180. [Google Scholar] [CrossRef] [PubMed]
- Khokhlova, A.; Zolotovskii, I.; Sokolovski, S.; Saenko, Y.; Rafailov, E.; Stoliarov, D.; Pogodina, E.; Svetukhin, V.; Sibirny, V.; Fotiadi, A. The Light-Oxygen Effect in Biological Cells Enhanced by Highly Localized Surface Plasmon-Polaritons. Sci. Rep. 2019, 9, 18435. [Google Scholar] [CrossRef]
- Jung, S.O.; Ro, H.-S.; Kho, B.H.; Shin, Y.-B.; Kim, M.G.; Chung, B.H. Surface Plasmon Resonance Imaging-Based Protein Arrays for High-Throughput Screening of Protein-Protein Interaction Inhibitors. Proteomics 2005, 5, 4427–4431. [Google Scholar] [CrossRef] [PubMed]
- Güler, K.Ç.; Göktürk, I.; Yılmaz, F.; Araz, A.; Denizli, A. Plasmonic Nanosensors for Environmental Pollutants Sensing: Recent Advances and Perspectives. Essent. Chem. 2024, 1, 1–19. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Borges, J.; Lopes, C.; Pereira, R.M.; Vasilevskiy, M.I.; Vaz, F. Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Appl. Sci. 2021, 11, 5388. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Verma, A.; Prajapati, Y.K. Enhanced No2 Gas Sensing Using Surface Plasmon Resonance Sensor Based on MXene and Black Phosphorus. IEEE Trans. Plasma Sci. 2023, 51, 1427–1433. [Google Scholar] [CrossRef]
- Yang, W.; Ang, L.K.; Zhang, W.; Han, J.; Xu, Y. High Sensitivity Gas Sensor Based on Surface Exciton Polariton Enhanced Photonic Spin Hall Effect. Opt. Express 2023, 31, 27041–27053. [Google Scholar] [CrossRef] [PubMed]
- Proença, M.; Lednický, T.; Meira, D.I.; Rodrigues, M.S.; Vaz, F.; Borges, J.; Bonyár, A. New Parameter for Benchmarking Plasmonic Gas Sensors Demonstrated with Densely Packed Au Nanoparticle Layers. ACS Appl. Mater. Interfaces 2024, 16, 57832–57842. [Google Scholar] [CrossRef]
- Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic Biosensors for Food Control. Trends Food Sci. Technol. 2021, 111, 128–140. [Google Scholar] [CrossRef]
- Ansari, M.T.I.; Raghuwanshi, S.K.; Kumar, S. Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection—A Review. IEEE Trans. NanoBiosci. 2023, 22, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface Plasmon Resonance Biosensors for Food Safety. In Optical Sensors; Springer: Berlin/Heidelberg, Germany, 2004; pp. 145–172. ISBN 978-3-662-09111-1. [Google Scholar]
- Vasimalla, Y.; Salah, N.H.; Santhosh, C.; Balaji, R.; Rasul, H.M.; Srither, S.R.; Kumar, S. SMF-based SPR sensors utilizing thallium bromide immobilization for detection of various bacterial cells. Microchem. J. 2025, 208, 112312. [Google Scholar] [CrossRef]
- Podunavac, I.; Radonic, V.; Bengin, V.; Jankovic, N. Microwave Spoof Surface Plasmon Polariton-Based Sensor for Ultrasensitive Detection of Liquid Analyte Dielectric Constant. Sensors 2021, 21, 5477. [Google Scholar] [CrossRef]
- Tseng, S.-Y.; Li, S.-Y.; Yi, S.-Y.; Sun, A.Y.; Gao, D.-Y.; Wan, D. Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Appl. Mater. Interfaces 2017, 9, 17306–17316. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Verma, P.; Jindal, P. Machine Learning Approach to Surface Plasmon Resonance Sensor Based on MXene Coated PCF for Malaria Disease Detection in RBCs. Optik 2023, 274, 170549. [Google Scholar] [CrossRef]
- Ehyaee, A.; Rahmati, A.; Bosaghzadeh, A.; Olyaee, S. Machine Learning-Enhanced Surface Plasmon Resonance Based Photonic Crystal Fiber Sensor. Opt. Express 2024, 32, 13369–13383. [Google Scholar] [CrossRef]
- Jafrasteh, F.; Farmani, A.; Mohamadi, J. Meticulous Research for Design of Plasmonics Sensors for Cancer Detection and Food Contaminants Analysis via Machine Learning and Artificial Intelligence. Sci. Rep. 2023, 13, 15349. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Qin, Y.; Li, Y.; Liu, G.L.; Hu, W. Applying Machine Learning with Localized Surface Plasmon Resonance Sensors to Detect SARS-CoV-2 Particles. Biosensors 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Das, C.M.; Yang, F.; Yang, Z.; Liu, X.; Hoang, Q.T.; Xu, Z.; Neermunda, S.; Kong, K.V.; Ho, H.-P.; Ju, L.A.; et al. Computational Modeling for Intelligent Surface Plasmon Resonance Sensor Design and Experimental Schemes for Real-Time Plasmonic Biosensing: A Review. Adv. Theory Simul. 2023, 6, 2200886. [Google Scholar] [CrossRef]
- Kaziz, S.; Echouchene, F.; Gazzah, M.H. Optimizing PCF-SPR Sensor Design through Taguchi Approach, Machine Learning, and Genetic Algorithms. Sci. Rep. 2024, 14, 7837. [Google Scholar] [CrossRef]
- Singh, G.P.; Sardana, N. Smartphone-Based Surface Plasmon Resonance Sensors: A Review. Plasmonics 2022, 17, 1869–1888. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, W. Fiber-Optic Surface Plasmon Resonance Sensors and Biochemical Applications: A Review. J. Light. Technol. 2021, 39, 3781–3791. [Google Scholar] [CrossRef]
- Mohseni-Dargah, M.; Falahati, Z.; Dabirmanesh, B.; Nasrollahi, P.; Khajeh, K. Chapter 12—Machine Learning in Surface Plasmon Resonance for Environmental Monitoring. In Artificial Intelligence and Data Science in Environmental Sensing; Asadnia, M., Razmjou, A., Beheshti, A., Eds.; Cognitive Data Science in Sustainable Computing; Academic Press: Cambridge, MA, USA, 2022; pp. 269–298. ISBN 978-0-323-90508-4. [Google Scholar]
- Gomes, J.C.M.; Souza, L.C.; Oliveira, L.C. SmartSPR Sensor: Machine Learning Approaches to Create Intelligent Surface Plasmon Based Sensors. Biosens. Bioelectron. 2021, 172, 112760. [Google Scholar] [CrossRef] [PubMed]
- Thadson, K.; Sasivimolkul, S.; Suvarnaphaet, P.; Visitsattapongse, S.; Pechprasarn, S. Measurement Precision Enhancement of Surface Plasmon Resonance Based Angular Scanning Detection Using Deep Learning. Sci. Rep. 2022, 12, 2052. [Google Scholar] [CrossRef]
- Xu, Y.; Song, Y.; Hao, H.; Zhao, Z.; Jin, Y.; Wang, Q. Sensitivity-Enhanced Plasmonic Sensor Modified with ZIF-8. Opt. Laser Technol. 2025, 181, 111885. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.; Yang, F.; Yang, G.; Wu, Y.; Li, Z.; Liu, Y.; Yang, X.; Yao, J. Tapered Optical Fiber LRSPR Biosensor Based on Gold Nanoparticle Amplification for Label-Free BSA Detection. Sens. Actuators B Chem. 2025, 426, 136986. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Z.; Jing, X.; Hu, L.; Li, S.; Li, J. Near-Infrared SPR Biosensor Based on Photonic Crystal Fiber for DNA Hybridization Detection. Anal. Chim. Acta 2025, 1333, 343385. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.M.; Nair, N.; Das, M.K.; Ram, S.K. Strategic Approaches to Enhance Efficiency and Commercial Feasibility of Copper-Based Surface Plasmon Resonance Sensing. Next Mater. 2025, 7, 100377. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Zhang, W.; Wu, J.; Koh, K.; Chen, H. MoS2-Mediated Gap-Mode Surface Plasmon Enhancement: Construction of SPR Biosensor for Direct Detection of LECT2. Sens. Actuators B Chem. 2025, 425, 136938. [Google Scholar] [CrossRef]
- Chithravel, A.; Murugan, D.; Shekhawat, A.S.; Diwan, A.; Srivastava, T.; Munjal, S.; Lakkakula, S.; Saxena, S.K.; Shrivastav, A.M. 2D Material Assisted Prism Based Surface Plasmon Resonance Sensors: A Comprehensive Survey. Opt. Lasers Eng. 2024, 182, 108452. [Google Scholar] [CrossRef]
- Ying, Y.; Shang, T.; Gao, Z.; Si, G. Refractive Index Sensing Characteristics of PCF-SPR Based on Dual-Plasmon Materials. J. Opt. 2024, 26, 125101. [Google Scholar] [CrossRef]
- Das, A.; Huraiya, M.A.; Raj, R.V.; Tabata, H.; Ramaraj, S.G. Ultra-Sensitive Refractive Index Detection with Gold-Coated PCF-Based SPR Sensor. Talanta Open 2024, 10, 100384. [Google Scholar] [CrossRef]
- Praharaj, C.; Nara, S. Nanotechnology Driven Biorecognition Element and Label Free Sensing of Pesticides. J. Environ. Chem. Eng. 2024, 12, 114218. [Google Scholar] [CrossRef]
- Rutirawut, T.; Joonmasa, K.; Rasritat, A.; Chitaree, R.; Meemon, P.; Ismaeel, R.; Sangtawesin, S.; Talataisong, W. Optical Fiber-Coupled Kretschmann SPR Sensor with Re-Attachable Gold Nano-Thin Film Sensing Chip. Opt. Express 2024, 32, 39924–39937. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Li, X.; Zhou, X.; Wang, F.; Zhang, Y.; Zhao, Y. Ammonia-Trapping Multilayer Polymer Urease Film Amplifier Coated Surface Plasmon Resonance Sensor for Ultra-Sensitive Urea Detection. Sens. Actuators B Chem. 2024, 414, 135929. [Google Scholar] [CrossRef]
- Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, X.; Li, X.; Gong, P.; Zhang, Y.; Zhao, Y. Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects. Biosensors 2023, 13, 405. [Google Scholar] [CrossRef]
- Hao, X.; St-Pierre, J.-P.; Zou, S.; Cao, X. Localized Surface Plasmon Resonance Biosensor Chip Surface Modification and Signal Amplifications toward Rapid and Sensitive Detection of COVID-19 Infections. Biosens. Bioelectron. 2023, 236, 115421. [Google Scholar] [CrossRef] [PubMed]
- Meira, D.I.; Barbosa, A.I.; Borges, J.; Reis, R.L.; Correlo, V.M.; Vaz, F. Label-Free Localized Surface Plasmon Resonance (LSPR) Biosensor, Based on Au-Ag NPs Embedded in TiO2 Matrix, for Detection of Ochratoxin-A (OTA) in Wine. Talanta 2025, 284, 127238. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xiao, S.; Wang, Q.; Zhang, H.; Yu, H.; Jia, D. Nanoparticle-Based FM-MCF LSPR Biosensor With Open Air-Hole. Front. Sens. 2021, 2, 751952. [Google Scholar] [CrossRef]
- Singh, P. LSPR Biosensing: Recent Advances and Approaches. In Reviews in Plasmonics 2016; Geddes, C.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 211–238. ISBN 978-3-319-48081-7. [Google Scholar]
- Zhou, M.; Geng, Z. Integrated LSPR Biosensing Signal Processing Strategy and Visualization Implementation. Micromachines 2024, 15, 631. [Google Scholar] [CrossRef]
- Luo, Z.; Cheng, Y.; He, L.; Feng, Y.; Tian, Y.; Chen, Z.; Feng, Y.; Li, Y.; Xie, W.; Huang, W.; et al. T-Shaped Aptamer-Based LSPR Biosensor Using Ω-Shaped Fiber Optic for Rapid Detection of SARS-CoV-2. Anal. Chem. 2023, 95, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Yuan, H.; Wang, J.; Guang, J.; Peng, W. Smartphone Based LSPR Biosensor. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; Available online: https://ieeexplore.ieee.org/document/8596229 (accessed on 4 December 2024).
- Islam, M.S.; Sultana, J.; Aoni, R.A.; Habib, M.S.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. Localized Surface Plasmon Resonance Biosensor: An Improved Technique for SERS Response Intensification. Opt. Lett. 2019, 44, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Lugongolo, M.Y.; Ombinda-Lemboumba, S.; Hlekelele, L.; Nyokana, N.; Mthunzi-Kufa, P. Localized Surface Plasmon Resonance Optical Biosensor for Simple Detection of Deoxyribonucleic Acid Mismatches. Adv. Photonics Res. 2024, 5, 2300283. [Google Scholar] [CrossRef]
- Paswan, M.K.; Basu, R. Hybrid Structure–Based SPR Sensor for Chemical Sensing with Enhanced Sensitivity. Plasmonics 2024, 19, 765–776. [Google Scholar] [CrossRef]
- Kushwaha, A.S.; Kumar, A.; Kumar, R.; Srivastava, S.K. A Study of Surface Plasmon Resonance (SPR) Based Biosensor with Improved Sensitivity. Photonics Nanostruct.-Fundam. Appl. 2018, 31, 99–106. [Google Scholar] [CrossRef]
- Villarim, M.R.; Belfort, D.R.; de Souza, C.P. A Surface Plasmon Resonance (SPR)-Based Biosensor Simulation Platform for Performance Evaluation of Different Constructional Configurations. Coatings 2023, 13, 546. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Awasthi, S.K.; Almawgani, A.H.; Mehaney, A.; Ali, Y.A.A.; Alzahrani, A.; Ahmed, A.M. High-Performance Biosensors Based on Angular Plasmonic of a Multilayer Design: New Materials for Enhancing Sensitivity of One-Dimensional Designs. RSC Adv. 2024, 14, 7877–7890. [Google Scholar] [CrossRef]
- Zakirov, N.; Zhu, S.; Bruyant, A.; Lérondel, G.; Bachelot, R.; Zeng, S. Sensitivity Enhancement of Hybrid Two-Dimensional Nanomaterials-Based Surface Plasmon Resonance Biosensor. Biosensors 2022, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Wekalao, J.; Kumaresan, M.S.; Mallan, S.; Murthy, G.S.; Nagarajan, N.R.; Karthikeyan, S.; Dorairajan, N.; Prabu, R.T.; Rashed, A.N.Z. Metasurface Based Surface Plasmon Resonance (SPR) Biosensor for Cervical Cancer Detection with Behaviour Prediction Using Machine Learning Optimization Based on Support Vector Regression. Plasmonics 2024, 1–24. [Google Scholar] [CrossRef]
- Wekalao, J.; Patel, S.K.; Al-zahrani, F.A. Graphene Metasurfaces-Based Surface Plasmon Resonance Biosensor for Virus Detection with Sensitivity Enhancement Using Perovskite Materials. Plasmonics 2024, 1–16. [Google Scholar] [CrossRef]
- Koresawa, H.; Seki, K.; Nishimoto, K.; Hase, E.; Tokizane, Y.; Yano, T.-A.; Kajisa, T.; Minamikawa, T.; Yasui, T. Real-Time Hybrid Angular-Interrogation Surface Plasmon Resonance Sensor in the near-Infrared Region for Wide Dynamic Range Refractive Index Sensing. Sci. Rep. 2023, 13, 15655. [Google Scholar] [CrossRef] [PubMed]
- Samarentsis, A.G.; Pantazis, A.K.; Tsortos, A.; Friedt, J.-M.; Gizeli, E. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements. Sensors 2020, 20, 6177. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.-Q.; Meng, X.-M.; Coquet, P.; Yong, K.-T. Graphene–MoS2 Hybrid Nanostructures Enhanced Surface Plasmon Resonance Biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Hong, Q.; Luo, J.; Wen, C.; Zhang, J.; Zhu, Z.; Qin, S.; Yuan, X. Hybrid Metal-Graphene Plasmonic Sensor for Multi-Spectral Sensing in Both near- and Mid-Infrared Ranges. Opt. Express 2019, 27, 35914–35924. [Google Scholar] [CrossRef]
- Nan, M.; Darmawan, B.A.; Go, G.; Zheng, S.; Lee, J.; Kim, S.; Lee, T.; Choi, E.; Park, J.-O.; Bang, D. Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat. Biosensors 2023, 13, 184. [Google Scholar] [CrossRef]
- Sommers, D.R.; Stubbs, D.D.; Hunt, W.D. A PDA-Based Wireless Biosensor Using Industry Standard Components. IEEE Sens. J. 2004, 4, 551–558. [Google Scholar] [CrossRef]
- Kassal, P.; Steinberg, M.D.; Steinberg, I.M. Wireless Chemical Sensors and Biosensors: A Review. Sens. Actuators B Chem. 2018, 266, 228–245. [Google Scholar] [CrossRef]
- Dubois, C.; Ducas, É.; Laforce-Lavoie, A.; Robidoux, J.; Delorme, A.; Live, L.S.; Brouard, D.; Masson, J.-F. A Portable Surface Plasmon Resonance (SPR) Sensor for the Detection of Immunoglobulin A in Plasma. Transfusion 2024, 64, 881–892. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Chen, S.; Cheng, F.; Wang, H.; Peng, W. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Sci. Rep. 2015, 5, 12864. [Google Scholar] [CrossRef]
- Singh, P. SPR Biosensors: Historical Perspectives and Current Challenges. Sens. Actuators B Chem. 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Cheng, L.; Guo, R.; Zheng, W.; He, K.; Geng, Y.; Liu, L.; Ai, Q.; He, Y.; Zhang, Y.-N.; Zhao, Y. ZnO-Nafion assisted optical fiber dual-SPR biosensor for simultaneous detection of urea and uric acid concentrations. Biosens. Bioelectron. 2025, 271, 117076. [Google Scholar] [CrossRef]
- Chopra, A.; Mohanta, G.C.; Sarkar, S. Addressing the Challenge of Non-Specificity in Surface Plasmon Resonance (Spr) Biosensors on a Fiber-Optic Platform; SSRN: Rochester, NY, USA, 2023. [Google Scholar]
- Tazi, I.; Riana, D.; Syahadi, M.; Muthmainnah, M.; Sasmitaninghidayah, W.; Aprilia, L.; Tresna, W.P. Performance Evaluation of Single-Mode Fiber Optic-Based Surface Plasmon Resonance Sensor on Material and Geometrical Parameters. Int. J. Electr. Comput. Eng. 2024, 14, 5072–5082. [Google Scholar] [CrossRef]
- Vachali, P.P.; Li, B.; Bartschi, A.; Bernstein, P.S. Surface Plasmon Resonance (SPR)-Based Biosensor Technology for the Quantitative Characterization of Protein–Carotenoid Interactions. Arch. Biochem. Biophys. 2015, 572, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Rakibul Islam, M.; Khan, M.M.I.; Mehjabin, F.; Alam Chowdhury, J.; Islam, M. Design of a Fabrication Friendly & Highly Sensitive Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Results Phys. 2020, 19, 103501. [Google Scholar] [CrossRef]
- Butt, M.A.; Mateos, X.; Piramidowicz, R. Photonics Sensors: A Perspective on Current Advancements, Emerging Challenges, and Potential Solutions (Invited). Phys. Lett. A 2024, 516, 129633. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial Intelligence Biosensors: Challenges and Prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef]
- Ansari, G.; Pal, A.; Srivastava, A.K.; Verma, G. Machine Learning Approach to Surface Plasmon Resonance Bio-Chemical Sensor Based on Nanocarbon Allotropes for Formalin Detection in Water. Sens. Bio-Sens. Res. 2023, 42, 100605. [Google Scholar] [CrossRef]
- Zain, H.A.; Batumalay, M.; Harith, Z.; Rahim, H.R.A.; Harun, S.W. Machine Learning Algorithms for Surface Plasmon Resonance Bio-Detection Applications, A Short Review. J. Phys. Conf. Ser. 2022, 2411, 012013. [Google Scholar] [CrossRef]
- Mondal, H.S.; Ahmed, K.A.; Birbilis, N.; Hossain, M.Z. Machine Learning for Detecting DNA Attachment on SPR Biosensor. Sci. Rep. 2023, 13, 3742. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Addona, T.A. The Integration of SPR Biosensors with Mass Spectrometry: Possible Applications for Proteome Analysis. Trends Biotechnol. 2000, 18, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xia, S.; Xu, W.; Zhai, X.; Wang, L. Topological Plasmonically Induced Transparency in a Graphene Waveguide System. Phys. Rev. B 2024, 109, 245420. [Google Scholar] [CrossRef]
- Ramirez-Priego, P.; Mauriz, E.; Giarola, J.F.; Lechuga, L.M. Overcoming Challenges in Plasmonic Biosensors Deployment for Clinical and Biomedical Applications: A Systematic Review and Meta-Analysis. Sens. Bio-Sens. Res. 2024, 46, 100717. [Google Scholar] [CrossRef]
- Topor, C.-V.; Puiu, M.; Bala, C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. Biosensors 2023, 13, 465. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A Comprehensive Review on Plasmonic-Based Biosensors Used in Viral Diagnostics. Commun. Biol. 2021, 4, 70. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A. Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review. Biosensors 2025, 15, 35. https://doi.org/10.3390/bios15010035
Butt MA. Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review. Biosensors. 2025; 15(1):35. https://doi.org/10.3390/bios15010035
Chicago/Turabian StyleButt, Muhammad A. 2025. "Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review" Biosensors 15, no. 1: 35. https://doi.org/10.3390/bios15010035
APA StyleButt, M. A. (2025). Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review. Biosensors, 15(1), 35. https://doi.org/10.3390/bios15010035