Micro-nano Optic-Based Biosensing Technology and Strategy

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Optical and Photonic Biosensors".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 9428

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Interests: plasmonic nano-optics devices; optical fiber sensor; optical super-resolution imaging
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biosensors are analytical devices that are employed to detect, identify, and quantify numerous biological, chemical and other target analytes with the assistance of a biological recognition element. Recent advances in micro/nano optics technologies have significantly improved these devices’ viability for biomedical purposes such as healthcare and medicine, food industry, chemical industry, agriculture, environmental monitoring, etc.

A micro/nano optical biosensor integrates a biorecognition element with an micro/nano transducer, which analyses the change in the properties of light that result from the interaction of the biorecognition element with the analyte. The distinct advantages offered by micro/nano optics biosensors, such as rapid detection, real-time operation, efficacy, label-free detection, and robustness, make them superior to many other conventional biosensing techniques, and various micro/nano technologies have offered new opportunities to further improve the sensitivity, selectivity, response time and biocompatibility of biosensors in light of their physical, chemical, electrical and electrochemical properties.

In conclusion, this Special Issue aims to highlight the most recent and promising micro/nano technologies utilized in the development of biosensors for biomedical applications.

Prof. Dr. Wenchao Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro/nano-optics biosensor
  • microfluidic
  • lab-on-a-chip
  • point-of-care test
  • SPR
  • optical micro/nano fiber
  • metasurface
  • nanophotonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 3147 KiB  
Communication
Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material–Flexible Nanotip Array
by Yong Bin Kim, Satyabrat Behera, Dukhyung Lee, Seon Namgung, Kyoung-Duck Park, Dai-Sik Kim and Bamadev Das
Biosensors 2024, 14(12), 619; https://doi.org/10.3390/bios14120619 - 15 Dec 2024
Viewed by 1103
Abstract
Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order [...] Read more.
Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS2 transferred onto a flexible metallic nanotip array. Using mechanical strain, the enhancement factor of 1L MoS2/nanotip is modulated from 1.23 to 8.72 for 2LA mode. For the same mode, the SERS intensity is enhanced by ~31 times when silver nanoparticles of ~13 nm diameter are deposited on 1L MoS2/nanotip, which is tuned up to ~34 times by compressive strain. The change in SERS enhancement factor is due to the decrease (increase) in gap width as the sample is bent inwardly (outwardly). This is corroborated by FEM structural and electromagnetic simulation. We also observed significant control over mode peak and linewidth, which may have applications in biosensing, chemical detection, and optoelectronics. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

14 pages, 4553 KiB  
Article
Peptide-Based Rapid and Selective Detection of Mercury in Aqueous Samples with Micro-Volume Glass Capillary Fluorometer
by Marta Sosnowska, Emil Pitula, Monika Janik, Piotr Bruździak, Mateusz Śmietana, Marcin Olszewski, Dawid Nidzworski and Beata Gromadzka
Biosensors 2024, 14(11), 530; https://doi.org/10.3390/bios14110530 - 1 Nov 2024
Viewed by 1123
Abstract
Mercury, a toxic heavy metal produced through both natural and anthropogenic processes, is found in all of Earth’s major systems. Mercury’s bioaccumulation characteristics in the human body have a significant impact on the liver, kidneys, brain, and muscles. In order to detect Hg [...] Read more.
Mercury, a toxic heavy metal produced through both natural and anthropogenic processes, is found in all of Earth’s major systems. Mercury’s bioaccumulation characteristics in the human body have a significant impact on the liver, kidneys, brain, and muscles. In order to detect Hg2+ ions, a highly sensitive and specific fluorescent biosensor has been developed using a novel, modified seven amino acid peptide, FY7. The tyrosine ring in the FY7 peptide sequence forms a 2:1 complex with Hg2+ ions that are present in the water-based sample. As a result, the peptide’s fluorescence emission decreases with higher concentrations of Hg2+. The FY7 peptide’s performance was tested in the presence of Hg2+ ions and other metal ions, revealing its sensitivity and stability despite high concentrations. Conformational changes to the FY7 structure were confirmed by FTIR studies. Simultaneously, we designed a miniaturized setup to support an in-house-developed micro-volume capillary container for volume fluorometry measurements. We compared and verified the results from the micro-volume system with those from the commercial setup. The micro-volume capillary system accommodated only 2.9 µL of sample volume, allowing for rapid, sensitive, and selective detection of toxic mercury (II) ions as low as 0.02 µM. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

11 pages, 7955 KiB  
Article
Grating Bio-Microelectromechanical Platform Architecture for Multiple Biomarker Detection
by Fahimeh Marvi, Kian Jafari and Mohamad Sawan
Biosensors 2024, 14(8), 385; https://doi.org/10.3390/bios14080385 - 9 Aug 2024
Viewed by 1578
Abstract
A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the [...] Read more.
A label-free biosensor based on a tunable MEMS metamaterial structure is proposed in this paper. The adopted structure is a one-dimensional array of metamaterial gratings with movable and fixed fingers. The moving unit of the optical detection system is a component of the MEMS structure, driven by the surface stress effect. Thus, these suspended optical nanoribbons can be moved and change the grating pattern by the biological bonds that happened on the modified cantilever surface. Such structural variations lead to significant changes in the optical response of the metamaterial system under illuminating angled light and subsequently shift its resonance wavelength spectrum. As a result, the proposed biosensor shows appropriate analytical characteristics, including the mechanical sensitivity of Sm = 11.55 μm/Nm−1, the optical sensitivity of So = Δλ/Δd = 0.7 translated to So = Δλ/Δσ = 8.08 μm/Nm−1, and the quality factor of Q = 102.7. Also, considering the importance of multi-biomarker detection, a specific design of the proposed topology has been introduced as an array for identifying different biomolecules. Based on the conducted modeling and analyses, the presented device poses the capability of detecting multiple biomarkers of disease at very low concentrations with proper precision in fluidic environments, offering a suitable bio-platform for lab-on-chip structures. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

14 pages, 7092 KiB  
Article
Dynamic Monitoring of Time-Dependent Evolution of Biomolecules Using Quantum Dots-Based Biosensors Assemblies
by Razvan Bocu
Biosensors 2024, 14(8), 380; https://doi.org/10.3390/bios14080380 - 7 Aug 2024
Viewed by 1393
Abstract
The dynamic monitoring of biomolecules that are part of cell membranes generally constitutes a challenge. Electrochemiluminescence (ECL) biosensor assemblies provide clear advantages concerning microscopic imaging. Therefore, this paper proposes and analyzes a quantum dots-based biosensor assembly. Thus, particular attention is granted to biomolecules [...] Read more.
The dynamic monitoring of biomolecules that are part of cell membranes generally constitutes a challenge. Electrochemiluminescence (ECL) biosensor assemblies provide clear advantages concerning microscopic imaging. Therefore, this paper proposes and analyzes a quantum dots-based biosensor assembly. Thus, particular attention is granted to biomolecules that are part of cell membranes. Additionally, this paper describes and analyzes a quantum dots-based biosensor assembly, which is used to implement a fully functional color ECL visualization system that allows for cellular and biomolecular structures to be accurately visualized. The related nano-emitter allows the implementation of real-time bioimaging scenarios. Consequently, the proposed approach is thoroughly evaluated relative to the time-dependent evolution of biomolecules. It has been demonstrated that traditionally problematic structures, like the biomolecules that are part of cell membranes, can be studied and monitored relative to their time-dependent dynamic evolution using the proposed solution. The reported research process has been conducted in the realm of cooperation with a specialized biomedical engineering company, and the described results are expected to substantially support a better understanding of the biomolecules’ time-dependent dynamic evolution. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 1986 KiB  
Review
Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Araceli Sánchez-Álvarez, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Biosensors 2025, 15(1), 44; https://doi.org/10.3390/bios15010044 - 13 Jan 2025
Viewed by 1097
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation [...] Read more.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography–mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

44 pages, 7218 KiB  
Review
Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review
by Muhammad A. Butt
Biosensors 2025, 15(1), 35; https://doi.org/10.3390/bios15010035 - 9 Jan 2025
Viewed by 769
Abstract
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and [...] Read more.
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance. The paper also explores diverse applications of SPR biodetection systems, ranging from pathogen detection and cancer biomarker identification to food safety monitoring and environmental toxin analysis. By providing a comprehensive overview of technological progress and emerging trends, this review underscores the transformative potential of SPR-based biodetection systems in addressing critical scientific and societal challenges. Future directions and challenges, including miniaturization, cost reduction, and expanding multiplexing capabilities, are also presented to guide ongoing research and development in this rapidly evolving field. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

18 pages, 2344 KiB  
Review
The Research Progress of Single-Molecule Sequencing and Its Significance in Nucleic Acid Metrology
by Yajun Wang, Jingjing Liu, Zhendong Wang, Mei Zhang and Yongzhuo Zhang
Biosensors 2025, 15(1), 4; https://doi.org/10.3390/bios15010004 - 25 Dec 2024
Viewed by 712
Abstract
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, [...] Read more.
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability. Notably, its direct detection capabilities offer a novel approach to nucleic acid metrology. This paper provides a detailed overview of library construction, signal generation and detection, and data analysis methods in single-molecule sequencing and discusses its implications for nucleic acid metrology. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

33 pages, 3010 KiB  
Review
Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review
by Saeed Takaloo, Alexander H. Xu, Liena Zaidan, Mehrdad Irannejad and Mustafa Yavuz
Biosensors 2024, 14(12), 593; https://doi.org/10.3390/bios14120593 - 4 Dec 2024
Viewed by 1073
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but [...] Read more.
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

Back to TopTop