Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the QDs Fluorescent Nanostructures
2.2. Preparation of the Modified Electrodes
2.3. QDsSF Solution Characterization
2.4. Surface Characterizations
2.5. Electrochemical Characterizations
2.6. Calibration Curve and Real Sample Analysis
3. Results and Discussion
3.1. Spectral Characteristics of Prepared QDsSF
3.2. Surface Characterizations of Modified Electrodes
3.3. Electrochemical Characterizations of Modified Electrodes
Parameter | Rs (Ω·cm2) | Rct (Ω·cm2) | CPEct | RPPy (Ω·cm2) | CPEPPy | χ2 | |||
---|---|---|---|---|---|---|---|---|---|
Sample * | Yoct (S·sn) | Nct | YoPPy (S·sn) | NPPy | |||||
GC/PPy-QDsSF | 109.04 | 0.61 × 104 | 32.2 × 10−4 | 0.71 | 397.31 | 19.6 × 10−4 | 0.52 | 0.016 | |
GC/PPy-QDsSF-PAMAM | 106.61 | 0.82 × 104 | 22.8 × 10−4 | 0.59 | 112.2 | 24.8 × 10−4 | 0.35 | 0.023 | |
GC/PPy-QDsSF-PAMAM-tTG | 139.28 | 0.74 × 104 | 26.6 × 10−4 | 0.61 | 221.7 | 30.3 × 10−4 | 0.40 | 0.045 |
3.4. Modified Electrode Repeatability, Stability and Behavior in Time
3.5. Antibodies Presence Determination with Modified Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014, 130, 598–602. [Google Scholar] [CrossRef]
- Popp, A.; Mäki, M. Changing Pattern of Childhood Celiac Disease Epidemiology: Contributing Factors. Front. Pediatr. 2019, 7, 357. [Google Scholar] [CrossRef]
- Chokkalla, A.K.; Parham, M.M.; Fishman, D.S.; Devaraj, S. Path Towards Biopsy-Free Diagnosis of Celiac Disease in Pediatric Patients. Clin. Chim. Acta 2024, 557, 117891. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.; Abougabal, A.; Zeid, A. Celiac disease: Do not miss that diagnosis! Egypt. J. Radiol. Nucl. Med. 2013, 44, 727–735. [Google Scholar] [CrossRef]
- Dulay, S.; Lozano-Sánchez, P.; Iwuoha, E.; Katakis, I.; O’Sullivan, C.K. Electrochemical detection of celiac disease-related anti-tissue transglutaminase antibodies using thiol based surface chemistry. Biosens. Bioelectron. 2011, 26, 3852–3856. [Google Scholar] [CrossRef] [PubMed]
- Pividori, M.I.; Lermo, A.; Bonanni, A.; Alegret, S.; del Valle, M. Electrochemical immunosensor for the diagnosis of celiac disease. Anal. Biochem. 2009, 388, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Pasinszki, T.; Krebsz, M. Chapter One—Advances in celiac disease testing. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 91, pp. 1–29. [Google Scholar]
- Apetrei, R.-M.; Carac, G.; Ramanaviciene, A.; Bahrim, G.; Tanase, C.; Ramanavicius, A. Cell-assisted synthesis of conducting polymer–polypyrrole—for the improvement of electric charge transfer through fungal cell wall. Colloids Surf. B Biointerfaces 2019, 175, 671–679. [Google Scholar] [CrossRef]
- Shamaeli, E.; Alizadeh, N. Functionalized gold nanoparticle-polypyrrole nanobiocomposite with high effective surface area for electrochemical/pH dual stimuli-responsive smart release of insulin. Colloids Surf. B Biointerfaces 2015, 126, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kumar, H. Self-assembled quantum dots decorated polypyrrole based multifunctional nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131241. [Google Scholar] [CrossRef]
- Lim, J.L.; Lin, C.-J.; Huang, C.-C.; Chang, L.-C. Curcumin-derived carbon quantum dots: Dual actions in mitigating tau hyperphosphorylation and amyloid beta aggregation. Colloids Surf. B Biointerfaces 2024, 234, 113676. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneswari, C.; Elangovan, A.; Sudhan, N.; Vinodhkumar, G.; Saravanan, S.; Balasubramanian, V.; Sharmila, C.; Karuppaiah, S. A low-cost hybrid GQDs/Fe3O4/polypyrrole nanocomposite based chemo-sensor for electrochemical non-enzymatic selective determination of creatinine in biological samples. Microchem. J. 2023, 194, 109259. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, J.; Biesold-McGee, G.V.; Huang, J.; Ng, Y.H.; Sun, H.; Wang, J.; Lai, Y.; Lin, Z. Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy 2020, 78, 105313. [Google Scholar] [CrossRef]
- Sonam, S.; Patel, P.; Jain, K. PAMAM dendrimer and carbon quantum dots complexes as theranostic nanocarrier: Synthesis, optimization and photophysical characterization. Opt. Laser Technol. 2024, 175, 110761. [Google Scholar] [CrossRef]
- Urbanowicz, M.; Sadowska, K.; Lemieszek, B.; Paziewska-Nowak, A.; Sołdatowska, A.; Dawgul, M.; Pijanowska, D.G. Effect of dendrimer-based interlayers for enzyme immobilization on a model electrochemical sensing system for glutamate. Bioelectrochemistry 2023, 152, 108407. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, D.; Xie, M.; Jing, L.; Huang, Y.; Huang, L.; Xu, H.; Li, H.; Xie, J. Novel broad spectrum light responsive PPy/hexagonal-SnS2 photocatalyst for efficient photoreduction of Cr(VI). Mater. Res. Bull. 2019, 112, 226–235. [Google Scholar] [CrossRef]
- Yuan, X.; Floresyona, D.; Aubert, P.-H.; Bui, T.-T.; Remita, S.; Ghosh, S.; Brisset, F.; Goubard, F.; Remita, H. Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl. Catal. B Environ. 2019, 242, 284–292. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Liu, J.H.; Hou, P.; Zhou, J.; Huang, C.Z. Preparation of nitrogen-doped carbon dots with high quantum yield from Bombyx mori silk for Fe (III) ions detection. RSC Adv. 2017, 7, 50584–50590. [Google Scholar] [CrossRef]
- Hu, F.; Lin, N.; Liu, X.Y. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020, 23, 101035. [Google Scholar] [CrossRef]
- Xia, C.; Hai, X.; Chen, X.-W.; Wang, J.-H. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta 2017, 168, 269–278. [Google Scholar] [CrossRef]
- Mohd Tarmizi, E.Z.; Baqiah, H.; Talib, Z.A.; Kamari, H.M. Preparation and physical properties of polypyrrole/zeolite composites. Results Phys. 2018, 11, 793–800. [Google Scholar] [CrossRef]
- Sunilkumar, A.; Manjunatha, S.; Ravikiran, Y.; Revanasiddappa, M.; Prashantkumar, M.; Machappa, T. AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites. Polym. Bull. 2021, 79, 1391–1407. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, I.; Husain, A.; Khan, A.; Asiri, A.M. Electrical Conductivity Based Ammonia Sensing Properties of Polypyrrole/MoS2 Nanocomposite. Polymers 2020, 12, 3047. [Google Scholar] [CrossRef]
- Nerkar, D.; Panse, S.; Patil, S.; Jaware, S.; Padhye, G. Polypyrrole-silver nanocomposite: Synthesis and characterization. Sens. Transducers 2016, 202, 76–82. [Google Scholar]
- Asthana, A.; Chauhan, A.; Diwan, P.D.; Jain, N. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech 2005, 6, E536-542. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, A.S.; Elmacı, G. PAMAM dendrimer functionalized manganese ferrite magnetic nanoparticles: Microwave-assisted synthesis and characterization. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2100–2107. [Google Scholar] [CrossRef]
- Yan, Q.; Zhi, N.; Yang, L.; Xu, G.; Feng, Q.; Zhang, Q.; Sun, S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep. 2020, 10, 10607. [Google Scholar] [CrossRef]
- Dumitriu, C.; Pandele, A.M.; Mîndroiu, M.V.; Lazar, O.-A.; Popp, A.; Enachescu, M.; Buica, G.-O. Electrochemical detection of anti-tissue transglutaminase antibody using quantum dots-doped polypyrrole-modified electrode. Microchim. Acta 2024, 191, 543. [Google Scholar] [CrossRef]
- Sethi, J.; Van Bulck, M.; Suhail, A.; Safarzadeh, M.; Perez-Castillo, A.; Pan, G. A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Mikrochim. Acta 2020, 187, 288. [Google Scholar] [CrossRef]
- Cancelliere, R.; Albano, D.; Brugnoli, B.; Buonasera, K.; Leo, G.; Margonelli, A.; Rea, G. Electrochemical and morphological layer-by-layer characterization of electrode interfaces during a label-free impedimetric immunosensor build-up: The case of ochratoxin A. Appl. Surf. Sci. 2021, 567, 150791. [Google Scholar] [CrossRef]
- Prasad, K.R.; Munichandraiah, N. Electrocatalytic efficiency of polyaniline by cyclic voltammetry and electrochemical impedance spectroscopy studies. Synth. Met. 2002, 126, 61–68. [Google Scholar] [CrossRef]
- Singh, P.; Singh, K.R.B.; Singh, J.; Das, S.N.; Singh, R.P. Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by Annona squamosa seed extract for agricultural utility. RSC Adv. 2021, 11, 18050–18060. [Google Scholar] [CrossRef] [PubMed]
- Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta 2015, 6, 1–4. [Google Scholar]
- Neves, M.M.P.S.; González-García, M.B.; Nouws, H.P.A.; Costa-García, A. Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosens. Bioelectron. 2012, 31, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Rivera, L.C.; Dulay, S.; Lozano-Sánchez, P.; Katakis, I.; Acero-Sánchez, J.L.; O’Sullivan, C.K. Disulfide-modified antigen for detection of celiac disease-associated anti-tissue transglutaminase autoantibodies. Anal. Bioanal. Chem. 2017, 409, 3799–3806. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Costa-García, A. Towards a blocking-free electrochemical immunosensing strategy for anti-transglutaminase antibodies using screen-printed electrodes. Bioelectrochemistry 2015, 105, 88–94. [Google Scholar] [CrossRef]
- Giannetto, M.; Mattarozzi, M.; Umiltà, E.; Manfredi, A.; Quaglia, S.; Careri, M. An amperometric immunosensor for diagnosis of celiac disease based on covalent immobilization of open conformation tissue transglutaminase for determination of anti-tTG antibodies in human serum. Biosens. Bioelectron. 2014, 62, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, H.B.; Not, T.; De Leo, L.; Longo, S.; Moretto, L.M.; Ugo, P. Electrochemical Immunosensor Based on Nanoelectrode Ensembles for the Serological Analysis of IgG-type Tissue Transglutaminase. Sensors 2019, 19, 1233. [Google Scholar] [CrossRef]
- Longo, S.; De Leo, L.; Not, T.; Ugo, P. Nanoelectrode ensemble immunosensor platform for the anodic detection of anti-tissue transglutaminase isotype IgA. J. Electroanal. Chem. 2022, 906, 115984. [Google Scholar] [CrossRef]
- Nguyen, A.B.N.; Maldonado, M.; Poch, D.; Sodia, T.; Smith, A.; Rowland, T.J.; Bonham, A.J. Electrochemical DNA Biosensor That Detects Early Celiac Disease Autoantibodies. Sensors 2021, 21, 2671. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Niaz, F.; Ehsan, M.A.; Das, H.T.; Younas, M.; Khan, A.S.; Rahman, H.U.; Nayem, S.M.A.; Oyama, M.; Aziz, M.A. Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement: A comprehensive review. J. Energy Storage 2024, 79, 110152. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.M.; Hassan, H.H.; Badr, I.H.A. Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS Omega 2022, 7, 34127–34135. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.-A.; Nguyen, H.L.; Nguyen, D.T.; Do, Q.P.; Tran, L.D. Electrosynthesized poly (1,5-diaminonaphthalene)/polypyrrole nanowires bilayer as an immunosensor platform for breast cancer biomarker CA 15-3. Curr. Appl. Phys. 2017, 17, 1422–1429. [Google Scholar] [CrossRef]
- Kanzhigitova, D.; Askar, P.; Tapkharov, A.; Kudryashov, V.; Abutalip, M.; Rakhmetullayeva, R.; Adilov, S.; Nuraje, N. p-Toluenesulfonic acid doped vanadium pentoxide/polypyrrole film for highly sensitive hydrogen sensor. Adv. Compos. Hybrid. Mater. 2023, 6, 218. [Google Scholar] [CrossRef]
- Facure, M.H.M.; Schneider, R.; Lima, J.B.S.; Mercante, L.A.; Correa, D.S. Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem 2021, 2, 490–519. [Google Scholar] [CrossRef]
- Qu, D.; Zheng, M.; Zhang, L.; Zhao, H.; Xie, Z.; Jing, X.; Haddad, R.E.; Fan, H.; Sun, Z. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, N.; Haghiralsadat, F.; Yazdian, F.; Sadeghian-Nodoushan, F.; Ghasemi, N.; Mazaheri, F.; Pourmadadi, M.; Naghib, S.M. Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: In vitro and in vivo studies. Int. J. Biol. Macromol. 2023, 238, 124078. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kaushal, A.; Kumar, A.; Kumar, D. Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human. Int. J. Biol. Macromol. 2017, 105, 905–911. [Google Scholar] [CrossRef] [PubMed]
Used for Detection | Linear Domain | Limit of Detection | Reference |
---|---|---|---|
screen-printed modified with CdSe/ZnS QDs | 0–40 U/mL | 2.2 U/mL | [1] |
screen-printed carbon electrodes modified with * 1 MWCNTs and gold np. | 0–40 U/mL | not mentioned | [35] |
disulfide-modified antigen | 0.26–6.9 μg/mL | 0.26 μg/mL | [36] |
8-channel screen-printed electrodes and anti-human IgA labelled with biotin and streptavidin labelled with CdSe/ZnS quantum dots | 0–40 U/mL | 2.7 U/mL | [37] |
* 2 GC/Au/MUA functionalized electrodes | 0–30 U/mL | 1.7 U/mL | [38] |
gold nanoelectrode and polycarbonate track-etched membranes | 0.005–1.0 µg/mL | 1.8 ng/mL | [39] |
gold deposited on track-etched polycarbonate | 0.25–8.54 U/mL | 0.7 U/mL | [40] |
DNA oligomer anchored to a gold electrode surface | 0.01–10 U/mL | ~10−2 U/mL | [41] |
GC/PPy-QDsSF-PAMAM-tTG | 0–75 U/mL | 7.56 U/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pãun, A.G.; Popescu, S.; Ungureanu, A.I.; Trusca, R.; Popp, A.; Dumitriu, C.; Buica, G.-O. Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots. Biosensors 2025, 15, 42. https://doi.org/10.3390/bios15010042
Pãun AG, Popescu S, Ungureanu AI, Trusca R, Popp A, Dumitriu C, Buica G-O. Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots. Biosensors. 2025; 15(1):42. https://doi.org/10.3390/bios15010042
Chicago/Turabian StylePãun, Angela Gabriela, Simona Popescu, Alisa Ioana Ungureanu, Roxana Trusca, Alina Popp, Cristina Dumitriu, and George-Octavian Buica. 2025. "Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots" Biosensors 15, no. 1: 42. https://doi.org/10.3390/bios15010042
APA StylePãun, A. G., Popescu, S., Ungureanu, A. I., Trusca, R., Popp, A., Dumitriu, C., & Buica, G.-O. (2025). Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots. Biosensors, 15(1), 42. https://doi.org/10.3390/bios15010042