Aptamer-Based Biosensors for Antibiotic Detection: A Review
Abstract
:1. Introduction
2. Aptasensors for Different Antibiotic Classes
2.1. β-Lactams
2.1.1. Ampicillin
2.1.2. Penicillin
2.2. Aminoglycosides
2.2.1. Gentamicin
2.2.2. Kanamycin
2.2.3. Neomycin
2.2.4. Tobramycin
2.2.5. Streptomycin
2.3. Anthracyclines
Daunomycin
2.4. Chloramphenicol
2.5. (Fluoro)Quinolones
2.5.1. Ciprofloxacin
2.5.2. Danofloxacin
2.5.3. Enrofloxacin
2.5.4. Ofloxacin
2.6. Lincosamide
2.7. Tetracyclines
2.7.1. Oxytetracycline
2.7.2. Tetracycline
2.8. Sulfonamides
Sulfadimethoxine
3. Summary
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | alternating current |
AEC | amperometric electrochemical |
AuNPs | gold nanoparticles |
bsa | bovine serum albumin |
CA | chronoamperometry |
CAN | cantilever |
cDNA | complementary DNA |
CNT | carbon nanotube |
CO | colorimetric |
CRET | chemiluminescence resonance energy transfer |
CSRP | circular strand-replacement DNA polymerization |
CV | cyclic voltammetry |
Cy3/Cy5 | cyanine 3, cyanine 5 |
dsDNA | double stranded DNA |
DPV | differential pulse voltammetry |
EBFC | enzyme biofuel cell |
ECL | electrochemiluminescent |
EIS | electrochemical impedance spectroscopy |
ELAA | enzyme-linked aptamer assay |
ELISA | enzyme-linked immunosorbent assay |
ESI-IMS | electrospray ionization-ion mobility spectrometry |
FAM | fluorescein amidite |
FIS | faradaic impedance spectroscopy |
FL | fluorometric |
FRET | fluorescence resonance energy transfer |
GO | graphene oxide |
HRP | horseradish peroxidase |
IEC | impedimetric electrochemical |
KD | dissociation constant |
LOD | limit of detection |
LCA | liquid crystal assay |
LSPIA | light scattering particle immunoagglutination assay |
LSV | linear sweep voltammetry |
MB | methylene blue |
MCH | 6-mercapto-1-hexanol |
MIP | molecularly imprinted polymer |
MOF | metal organic framework |
MWCNTs | multi-walled carbon nanotubes |
NPs | nanoparticles |
OCV | open circuit voltage |
PEC | photoelectrochemical |
QCM | quartz crystal microbalance |
QD | quantum dot |
rGO | reduced graphene oxide |
ROX | carboxy-x-rhodamine |
SAM | self-assembled monolayer |
SAW | surface acoustic wave |
SELEX | systematic evolution of ligands by exponential enrichment |
SERS | surface-enhanced Raman scattering |
SPCE | screen-printed carbon electrode |
SPE | screen-printed electrode |
SPR | surface plasmon resonance spectroscopy |
SSB | ssDNA binding protein |
ssDNA | single stranded DNA |
SWV | square wave voltammetry |
UCNPs | upconversion nanoparticles |
References
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. A Peer Rev. J. Formul. Manag. 2015, 40, 277–283. [Google Scholar]
- Centers for Disease Control and Prevention, Office of Infectious. Antibiotic Resistance Threats in the United States. Available online: http://www.cdc.gov/drugresistance/ (accessed on 17 May 2018).
- Read, A.F.; Woods, R.J. Antibiotic resistance management. Evol. Med. Public Health 2014, 2014, 147. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. Pharm. Ther. A Peer Rev. J. Formul. Manag. 2015, 40, 344–352. [Google Scholar]
- Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. (Eds.) Antibiotics: Targets, Mechanisms and Resistance; Wiley-VCH Verlag: Weinheim, Germany, 2014. [Google Scholar]
- Briscoe, S.E.; McWhinney, B.C.; Lipman, J.; Roberts, J.A.; Ungerer, J.P.J. A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J. Chromatogr. B 2012, 907, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-H.; Xue, Y.-G.; Liu, H.-J.; Dai, L.-L.; Yan, H.; Li, N. Development of Determination Method of Fluoroquinolone Antibiotics in Sludge Based on Solid Phase Extraction and HPLC-Fluorescence Detection Analysis. Huan Jing Ke Xue 2016, 37, 1553–1561. [Google Scholar] [PubMed]
- Van den Meersche, T.; van Pamel, E.; van Poucke, C.; Herman, L.; Heyndrickx, M.; Rasschaert, G.; Daeseleire, E. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J. Chromatogr. A 2016, 1429, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-J.; Wu, H.-L.; Fu, H.-Y.; Zhao, J.; Li, Y.-N.; Li, S.-F.; Kang, C.; Yu, R.-Q. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: Quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector. J. Chromatogr. A 2013, 1302, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhu, X.; Wang, J.; Jin, X.; Liu, Y.; Qian, F.; Zhang, S.; Chen, J. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques. Bioresour. Technol. 2015, 193, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Carballo, E.; Gonzalez-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Haller, M.Y.; Müller, S.R.; McArdell, C.S.; Alder, A.C.; Suter, M.J.-F. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J. Chromatogr. A 2002, 952, 111–120. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Posyniak, A.; Sniegocki, T.; Zmudzki, J. Liquid chromatography-tandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal farms. Chemosphere 2015, 119, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Koyun, A.; Ahlatcolu, E.; Koca, Y. Biosensors and Their Principles. In Medical Technology Management and Patient Safety; Sezdi, M., Ed.; InTech Open Access Publisher: London, UK, 2012. [Google Scholar] [Green Version]
- Mungroo, N.A.; Neethirajan, S. Biosensors for the detection of antibiotics in poultry industry—A review. Biosensors 2014, 4, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.E.; Wu, H.; Niu, Y.; Cai, J. Improving the stability of aptamers by chemical modification. Curr. Med. Chem. 2011, 18, 4126–4138. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed]
- Drolet, D.W.; Moon-McDermott, L.; Romig, T.S. An enzyme-linked oligonucleotide assay. Nat. Biotechnol. 1996, 14, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.A.; Abrams, B.; Lin, Y.; Jayasena, S.D. Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res. 1996, 24, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Gründler, P. Chemical sensors: An introduction for scientists and engineers; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Pfeiffer, F.; Mayer, G. Selection and Biosensor Application of Aptamers for Small Molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.A.; Hummel, G. Biosensoren; Mit 24 Tabellen; Springer: Berlin, Germany, 1995. [Google Scholar]
- Anderson, M.L.; Morris, C.A.; Stroud, R.M.; Merzbacher, C.I.; Rolison, D.R. Colloidal Gold Aerogels: Preparation, Properties, and Characterization. Langmuir 1999, 15, 674–681. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Leech, D.; Ju, H. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Anal. Lett. 2003, 36, 1–19. [Google Scholar] [CrossRef]
- Sharma, T.K.; Ramanathan, R.; Weerathunge, P.; Mohammadtaheri, M.; Daima, H.K.; Shukla, R.; Bansal, V. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. 2014, 50, 15856–15859. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.R.; Zhang, Y.; Cai, J.; Cai, W.; Gao, T. Aptamer-Based Fluorescent Biosensors. Curr. Med. Chem. 2011, 18, 4175–4184. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gao, S.; Liu, M.; Chang, Y.; Fan, X.; Quan, X. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide. Microchim. Acta 2013, 180, 829–835. [Google Scholar] [CrossRef]
- Swathi, R.S.; Sebastian, K.L. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 2008, 129, 54703. [Google Scholar] [CrossRef] [PubMed]
- Swathi, R.S.; Sebastian, K.L. Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 2009, 130, 86101. [Google Scholar] [CrossRef] [PubMed]
- Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55–75. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wu, S.; Duan, N.; Dai, S.; Wang, Z. Highly sensitive aptasensor for oxytetracycline based on upconversion and magnetic nanoparticles. Anal. Methods 2015, 7, 2585–2593. [Google Scholar] [CrossRef]
- Xue, J.; Liu, J.; Wang, C.; Tian, Y.; Zhou, N. Simultaneous electrochemical detection of multiple antibiotic residues in milk based on aptamers and quantum dots. Anal. Methods 2016, 8, 1981–1988. [Google Scholar] [CrossRef]
- Miao, Y.; Gan, N.; Li, T.; Cao, Y.; Hu, F.; Chen, Y. An ultrasensitive fluorescence aptasensor for chloramphenicol based on FRET between quantum dots as donor and the magnetic SiO2@Au NPs probe as acceptor with exonuclease-assisted target recycling. Sens. Actuators B Chem. 2016, 222, 1066–1072. [Google Scholar] [CrossRef]
- Miao, Y.-B.; Ren, H.-X.; Gan, N.; Zhou, Y.; Cao, Y.; Li, T.; Chen, Y. A homogeneous and “off-on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes. Anal. Chim. Acta 2016, 929, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017, 87, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Walling, M.A.; Novak, J.A.; Shepard, J.R.E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 2009, 10, 441–491. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Dai, S.; Wang, L. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosens. Bioelectron. 2014, 59, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [PubMed]
- Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens. Actuators B Chem. 2017, 242, 1201–1209. [Google Scholar] [CrossRef]
- Hayat, A.; Marty, J.L. Aptamer based electrochemical sensors for emerging environmental pollutants. Front. Chem. 2014, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M.; Lehninger, A.L. Lehninger Biochemie; Mit 131 Tabellen, 4, Vollst. überarb. u. erw. Aufl.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Schwedt, G. Analytische Chemie: Grundlagen, Methoden und Praxis, 1. Nachdr; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 49–52. [Google Scholar]
- European Union. Council Directive 96/23/EC of 29 April 1996 on Measures to Monitor Certain Substances and Residues Thereof in Live Animals and Animal Products and Repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. CD 96/23/EC; Official Journal of the European Union; European Union: Brussels, Belgium, 1996; Volume 125, pp. 10–32. [Google Scholar]
- Eggins, B.R. Chemical Sensors and Biosensors; Wiley: Chichester, UK, 2002. [Google Scholar]
- Schmid, R.D.; Hammelehle, R. Taschenatlas der Biotechnologie und Gentechnik, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Onken, D. Antibiotika: Chemie und Anwendung; Akademie-Verlag: Berlin, Germany, 1985. [Google Scholar]
- Song, K.-M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 2012, 402, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Dapra, J.; Lauridsen, L.H.; Nielsen, A.T.; Rozlosnik, N. Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor. Biosens. Bioelectron. 2013, 43, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, Y.; Lu, X.; Chen, J.; Wei, F.; Huang, Z.; Zhou, C.; Duan, Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal. Chim. Acta 2017, 984, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Rosati, G.; Daprà, J.; Cherré, S.; Rozlosnik, N. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors. Electroanalysis 2014, 26, 1400–1408. [Google Scholar] [CrossRef]
- Sun, Y.; Perch-Nielsen, I.; Dufva, M.; Sabourin, D.; Bang, D.D.; Hogberg, J.; Wolff, A. Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay. Anal. Bioanal. Chem. 2012, 402, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Liu, S.; Yu, J.; Xu, W.; Guo, Y.; Huang, J. Target-aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level. Chem. Commun. 2015, 51, 8377–8380. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, S.; Gai, P.; Duan, R.; Li, F. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens. Bioelectron. 2016, 82, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, K.; Yin, H.; Zhou, Y.; Ai, S. Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles. Microchim. Acta 2018, 185, 589. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-G.; Lai, R.Y. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 2018, 176, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-G.; Sutlief, A.L.; Lai, R.Y. Towards the development of a sensitive and selective electrochemical aptamer-based ampicillin sensor. Sens. Actuators B Chem. 2018, 258, 722–729. [Google Scholar] [CrossRef]
- Gai, P.; Gu, C.; Hou, T.; Li, F. Ultrasensitive Self-Powered Aptasensor Based on Enzyme Biofuel Cell and DNA Bioconjugate: A Facile and Powerful Tool for Antibiotic Residue Detection. Anal. Chem. 2017, 89, 2163–2169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guo, W.; Pei, M.; Ding, F. GR–Fe3O4 NPs and PEDOT–AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Anal. Methods 2016, 8, 4391–4397. [Google Scholar] [CrossRef]
- Paniel, N.; Istamboulie, G.; Triki, A.; Lozano, C.; Barthelmebs, L.; Noguer, T. Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor. Talanta 2017, 162, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.-Y.; Ha, N.-R.; Jung, I.-P.; Kim, S.-H.; Kim, A.-R.; Yoon, M.-Y. Development of a ssDNA aptamer for detection of residual benzylpenicillin. Anal. Biochem. 2017, 531, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.A.; Miller, E.A.; Plaxco, K.W. Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal. Chem. 2010, 82, 7090–7095. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rando, R.R. Specific binding of aminoglycoside antibiotics to RNA. Chem. Biol. 1995, 2, 281–290. [Google Scholar] [CrossRef]
- Song, K.-M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 2011, 415, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Lv, Z.; Liu, J.; Bai, W.; Yang, S.; Chen, A. Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. PLoS ONE 2014, 9, e109263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Luo, J.; Zhang, J.; You, Y.; Tian, Y. A label-free electrochemical aptasensor for the detection of kanamycin in milk. Anal. Methods 2015, 7, 1991–1996. [Google Scholar] [CrossRef]
- Xu, Y.; Han, T.; Li, X.; Sun, L.; Zhang, Y.; Zhang, Y. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism. Anal. Chim. Acta 2015, 891, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.-R.; Jung, I.-P.; Kim, S.-H.; Kim, A.-R.; Yoon, M.-Y. Paper chip-based colorimetric sensing assay for ultra-sensitive detection of residual kanamycin. Process Biochem. 2017, 62, 161–168. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, J.; Tian, Y.; Zhou, N. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 2017, 143, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Shen, J.; Xiong, X.; Deng, S. Aptamer based bare eye detection of kanamycin by using a liquid crystal film on a glass support. Microchim. Acta 2017, 184, 3765–3771. [Google Scholar] [CrossRef]
- Khabbaz, L.S.; Hassanzadeh-Khayyat, M.; Zaree, P.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Detection of kanamycin by using an aptamer-based biosensor using silica nanoparticles. Anal. Methods 2015, 7, 8611–8616. [Google Scholar] [CrossRef]
- Liu, C.; Lu, C.; Tang, Z.; Chen, X.; Wang, G.; Sun, F. Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim. Acta 2015, 182, 2567–2575. [Google Scholar] [CrossRef]
- Ramezani, M.; Danesh, N.M.; Lavaee, P.; Abnous, K.; Taghdisi, S.M. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sens. Actuators B Chem. 2016, 222, 1–7. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.-E.; Liu, Y.; Liu, Z. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens. Bioelectron. 2014, 55, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.-R.; Jung, I.-P.; La, I.-J.; Jung, H.-S.; Yoon, M.-Y. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci. Rep. 2017, 7, 40305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Q.G.; Wei, B.H.; Luo, L.G. Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim. Acta 2017, 184, 627–632. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, T.; Ma, S.; Liu, Y.; Tian, Y.; Wang, R.; Jiang, Y.; Hou, D.; Wang, J. Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim. Acta 2017, 184, 203–210. [Google Scholar] [CrossRef]
- Robati, R.Y.; Arab, A.; Ramezani, M.; Langroodi, F.A.; Abnous, K.; Taghdisi, S.M. Aptasensors for quantitative detection of kanamycin. Biosens. Bioelectron. 2016, 82, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-P.; Liu, C.; Zhou, X.-H.; Shi, H.-C. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay. Sci. Rep. 2015, 5, 8125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Gu, C.; Wang, C.; Song, B.; Zhou, X.; Lou, X.; He, M. Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching. Biosens. Bioelectron. 2018, 102, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.-H.; He, H.-Z.; Chan, D.S.-H.; Fu, W.-C.; Leung, C.-H.; Ma, D.-L. An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution. Sens. Actuators B Chem. 2013, 177, 487–492. [Google Scholar] [CrossRef]
- Zhao, M.; Zhuo, Y.; Chai, Y.-Q.; Yuan, R. Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel “on-off-on” switch system. Biomaterials 2015, 52, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Gu, H.; Duan, N.; Wu, S.; Wang, Z. A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk. Anal. Methods 2016, 8, 7929–7936. [Google Scholar] [CrossRef]
- Bai, X.; Hou, H.; Zhang, B.; Tang, J. Label-free detection of kanamycin using aptamer-based cantilever array sensor. Biosens. Bioelectron. 2014, 56, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Zhang, J.; Tian, Y. Aptamer-based spectrophotometric detection of kanamycin in milk. Anal. Methods 2014, 6, 1569. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Li, Z.; Zhang, Z. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays. Chem. Commun. 2015, 51, 15498–15501. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Lei, Q.; Xiao, Q.; Li, X.; Huang, Y.; Li, H. Facile fabrication of an “off–on” photoelectrochemical aptasensor for kanamycin detection based on polypyrrole/CeO2. Anal. Methods 2017, 9, 4754–4759. [Google Scholar] [CrossRef]
- Sharma, A.; Istamboulie, G.; Hayat, A.; Catanante, G.; Bhand, S.; Marty, J.L. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens. Actuators B Chem. 2017, 245, 507–515. [Google Scholar] [CrossRef]
- Zhu, Y.; Chandra, P.; Song, K.-M.; Ban, C.; Shim, Y.-B. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, F.; Shen, G.; Huang, J.; Wang, X. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 2014, 139, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Guo, Y.; Sun, X.; Wang, X. Aptasensor based on thionine, graphene–polyaniline composite film, and gold nanoparticles for kanamycin detection. Eur. Food Res. Technol. 2014, 239, 227–236. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Liu, S.; Yu, J.; Wang, H.; Huang, J. A novel sandwich-type electrochemical aptasensor for sensitive detection of kanamycin based on GR–PANI and PAMAM–Au nanocomposites. New J. Chem. 2014, 38, 4931–4937. [Google Scholar] [CrossRef]
- Guo, W.; Sun, N.; Qin, X.; Pei, M.; Wang, L. A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous PtTi alloy. Biosens. Bioelectron. 2015, 74, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Guo, W.; Yu, H.; Zhao, J.; Pei, M. A novel electrochemical aptasensor based on MWCNTs–BMIMPF6 and amino functionalized graphene nanocomposite films for determination of kanamycin. Anal. Methods 2015, 7, 5419–5427. [Google Scholar] [CrossRef]
- Qin, X.; Yin, Y.; Yu, H.; Guo, W.; Pei, M. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens. Bioelectron. 2016, 77, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta 2016, 161, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-Y.; Kang, T.-F.; Li, N.-N.; Lu, L.-P.; Cheng, S.-Y. Highly sensitive voltammetric determination of kanamycin based on aptamer sensor for signal amplification. Anal. Methods 2016, 8, 3366–3372. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Liu, S.; Yu, J.; Guo, Y.; Xu, Y.; Huang, J. Signal-on electrochemical detection of antibiotics based on exonuclease III-assisted autocatalytic DNA biosensing platform. RSC Adv. 2016, 6, 43501–43508. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Liu, S.; Yu, J.; Guo, Y.; Xu, Y.; Huang, J. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification. Biosens. Bioelectron. 2016, 80, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-Y.; Kang, T.-F.; Lu, L.-P.; Cheng, S.-Y. Highly sensitive aptasensor based on synergetic catalysis activity of MoS2-Au-HE composite using cDNA-Au-GOD for signal amplification. Talanta 2017, 164, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Gan, N.; Li, T.; Zhou, Y.; Cao, Y.; Dong, Y. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Talanta 2018, 179, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Nikolaus, N.; Strehlitz, B. DNA-aptamers binding aminoglycoside antibiotics. Sensors 2014, 14, 3737–3755. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Z.; Ge, J.; Yang, R.; Zhang, L.; Qu, L.-B.; Wang, H.-Q.; Zhang, L. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Talanta 2015, 139, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Sun, N.; Tu, C.; Zhang, Q.; Diao, A. Design of an aptamer-based fluorescence displacement biosensor for selective and sensitive detection of kanamycin in aqueous samples. RSC Adv. 2017, 7, 38512–38518. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Z.; Guo, Q.; Zhao, J.; Ma, J.; Kang, Q.; Tang, Y.; Xue, Y.; Lou, X.; He, M. Signaling-Probe Displacement Electrochemical Aptamer-based Sensor (SD-EAB) for Detection of Nanomolar Kanamycin A. Electrochim. Acta 2015, 182, 516–523. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Nikolaus, N.; Strehlitz, B. Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics. J. Anal. Methods Chem. 2012, 2012, 415697. [Google Scholar] [CrossRef] [PubMed]
- Wallis, M.G.; von Ahsen, U.; Schroeder, R.; Famulok, M. A novel RNA motif for neomycin recognition. Chem. Biol. 1995, 2, 543–552. [Google Scholar] [CrossRef]
- Ling, K.; Jiang, H.; Zhang, L.; Li, Y.; Yang, L.; Qiu, C.; Li, F.-R. A self-assembling RNA aptamer-based nanoparticle sensor for fluorometric detection of Neomycin B in milk. Anal. Bioanal. Chem. 2016, 408, 3593–3600. [Google Scholar] [CrossRef] [PubMed]
- de-los-Santos-Alvarez, N.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. J. Am. Chem. Soc. 2007, 129, 3808–3809. [Google Scholar] [CrossRef] [PubMed]
- de-los-Santos-Alvarez, N.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B. Biosens. Bioelectron. 2009, 24, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Spiga, F.M.; Maietta, P.; Guiducci, C. More DNA-Aptamers for Small Drugs: A Capture-SELEX Coupled with Surface Plasmon Resonance and High-Throughput Sequencing. ACS Comb. Sci. 2015, 17, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Cappi, G.; Spiga, F.M.; Moncada, Y.; Ferretti, A.; Beyeler, M.; Bianchessi, M.; Decosterd, L.; Buclin, T.; Guiducci, C. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal. Chem. 2015, 87, 5278–5285. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, Y.; Nie, J.; Zhao, S.; Tian, Y.; Zhou, N. Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers. Microchim. Acta 2018, 185, 340. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, Y.; Jia, J.; Xiang, Y. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chem. 2018, 249, 98–103. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Impedimetric aptasensor for tobramycin detection in human serum. Biosens. Bioelectron. 2010, 26, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Aptamer-Based Inhibition Assay for the Electrochemical Detection of Tobramycin Using Magnetic Microparticles. Electroanalysis 2011, 23, 43–49. [Google Scholar] [CrossRef]
- Schoukroun-Barnes, L.R.; Wagan, S.; White, R.J. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal. Chem. 2014, 86, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Monovalent labeling system improves the sensitivity of aptamer-based inhibition assays for small molecule detection. Sens. Actuators B Chem. 2013, 182, 668–674. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, J.; Zhang, J.; Li, C.; Tian, Y.; Wang, J. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta 2013, 108, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Xie, Y.; Sun, Y.; Bi, K.; Cui, Z.; Zhao, L.; Fan, W. An aptamer-based colorimetric sensor for streptomycin and its application in food inspection. Chem. Res. Chin. Univ. 2017, 33, 714–720. [Google Scholar] [CrossRef]
- Luan, Q.; Miao, Y.; Gan, N.; Cao, Y.; Li, T.; Chen, Y. A POCT colorimetric aptasensor for streptomycin detection using porous silica beads-enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification. Sens. Actuators B Chem. 2017, 251, 349–358. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Y.; Tao, H.; Chen, H.; Yang, W.; Qiu, S. Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles. RSC Adv. 2017, 7, 38471–38478. [Google Scholar] [CrossRef] [Green Version]
- Emrani, A.S.; Danesh, N.M.; Lavaee, P.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem. 2016, 190, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Abnous, K. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem. 2016, 203, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, D.; Luo, L.; Li, L.; Wang, K.; You, T. Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin. Sens. Actuators B Chem. 2017, 251, 564–571. [Google Scholar] [CrossRef]
- Ghanbari, K.; Roushani, M. A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic. Bioelectrochemistry 2018, 120, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Guo, W.; Qin, X.; Pei, M.; Wang, L.; Ding, F. A regular “signal attenuation” electrochemical aptasensor for highly sensitive detection of streptomycin. New J. Chem. 2016, 40, 9711–9718. [Google Scholar] [CrossRef]
- Yin, Y.; Qin, X.; Wang, Q.; Yin, Y. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy. RSC Adv. 2016, 6, 39401–39408. [Google Scholar] [CrossRef]
- Yin, J.; Guo, W.; Qin, X.; Zhao, J.; Pei, M.; Ding, F. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification. Sens. Actuators B Chem. 2017, 241, 151–159. [Google Scholar] [CrossRef]
- Wu, C.; Gan, N.; Ou, C.; Tang, H.; Zhou, Y.; Cao, J. A homogenous “signal-on” aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification. RSC Adv. 2017, 7, 8381–8387. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Yu, Y.; Cao, Y.; Guo, M.; Zhu, D.; Dai, J.; Zheng, M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron. 2018, 100, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Danesh, N.; Ramezani, M.; Sarreshtehdar Emrani, A.; Abnous, K.; Taghdisi, S.M. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens. Bioelectron. 2016, 75, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Lüllmann, H.; Mohr, K.; Wehling, M. Pharmakologie und Toxikologie: Arzneimittelwirkungen Verstehen-Medikamente Gezielt Einsetzen; 14 komplett überarb. und neu gestaltete Aufl.; Thieme: Stuttgart, Germany, 1999. [Google Scholar]
- Koolman, J.; Röhm, K.-H. Taschenatlas der Biochemie, 2nd ed.; Thieme: Stuttgart, Germany, 1998. [Google Scholar]
- He, L.; Zhi, W.; Wu, Y.; Zhan, S.; Wang, F.; Xing, H.; Zhou, P. A highly sensitive resonance scattering based sensor using unmodified gold nanoparticles for daunomycin detection in aqueous solution. Anal. Methods 2012, 4, 2266. [Google Scholar] [CrossRef]
- Wochner, A.; Menger, M.; Orgel, D.; Cech, B.; Rimmele, M.; Erdmann, V.A.; Glokler, J. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal. Biochem. 2008, 373, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Noh, H.-B.; Won, M.-S.; Shim, Y.-B. Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens. Bioelectron. 2011, 26, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Duan, N.; Wu, S.; Xu, B.; Wang, Z. Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles. Anal. Bioanal. Chem. 2015, 407, 7907–7915. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; van Dorst, B.; Rouah-Martin, E.; Herrebout, W.; Scippo, M.-L.; Blust, R.; Robbens, J. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J. Biotechnol. 2011, 155, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Gan, N.; Pan, D.; Chen, Y.; Li, T.; Cao, Y.; Fu, T. A sensitive colorimetric aptasensor for chloramphenicol detection in fish and pork based on the amplification of a nano-peroxidase-polymer. Anal. Methods 2015, 7, 6528–6536. [Google Scholar] [CrossRef]
- Miao, Y.; Gan, N.; Li, T.; Zhang, H.; Cao, Y.; Jiang, Q. A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification. Sens. Actuators B Chem. 2015, 220, 679–687. [Google Scholar] [CrossRef]
- Miao, Y.; Gan, N.; Ren, H.-X.; Li, T.; Cao, Y.; Hu, F.; Yan, Z.; Chen, Y. A triple-amplification colorimetric assay for antibiotics based on magnetic aptamer-enzyme co-immobilized platinum nanoprobes and exonuclease-assisted target recycling. Analyst 2015, 140, 7663–7671. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.-B.; Ren, H.-X.; Gan, N.; Zhou, Y.; Cao, Y.; Li, T.; Chen, Y. A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling. Biosens. Bioelectron. 2016, 86, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.-B.; Ren, H.-X.; Gan, N.; Cao, Y.; Li, T.; Chen, Y. Fluorescent aptasensor for chloramphenicol detection using DIL-encapsulated liposome as nanotracer. Biosens. Bioelectron. 2016, 81, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.-B.; Gan, N.; Ren, H.-X.; Li, T.; Cao, Y.; Hu, F.; Chen, Y. Switch-on fluorescence scheme for antibiotics based on a magnetic composite probe with aptamer and hemin/G-quadruplex coimmobilized nano-Pt-luminol as signal tracer. Talanta 2016, 147, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, H.; Shi, Z.; Duan, N.; Fang, C.; Dai, S.; Wang, Z. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 2015, 50, 597–604. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, L.; Gao, Z.; Wang, H.; Zhang, H.; Li, H. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR. Talanta 2017, 165, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gan, N.; Zhou, Y.; Li, T.; Cao, Y.; Chen, Y. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Biosens. Bioelectron. 2017, 87, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Hadizadeh, F.; Vajhedin, F.; Abnous, K.; Ramezani, M. Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet. Mater. Sci. Eng. C 2015, 48, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Gan, N.; Zhang, H.; Yan, Q.; Li, T.; Cao, Y.; Hu, F.; Yu, H.; Jiang, Q. A novel “dual-potential” electrochemiluminescence aptasensor array using CdS quantum dots and luminol-gold nanoparticles as labels for simultaneous detection of malachite green and chloramphenicol. Biosens. Bioelectron. 2015, 74, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Gan, N.; Lin, S.; Li, T.; Cao, Y.; Hu, F.; Jiang, Q.; Chen, Y. Ratiometric electrochemiluminescent aptasensor array for antibiotic based on internal standard method and spatial-resolved technique. Sens. Actuators B Chem. 2016, 226, 305–311. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, F.; Qin, X.; Wang, Q. Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu(III)-doped CdS quantum dots. Microchim. Acta 2018, 185, 906. [Google Scholar] [CrossRef] [PubMed]
- Pilehvar, S.; Dardenne, F.; Blust, R.; De wael, K. Electrochemical sensing of phenicol antibiotics at gold. Int. J. Electrochem. Sci 2012, 5000–5011. [Google Scholar]
- Pilehvar, S.; Mehta, J.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K. Aptasensing of chloramphenicol in the presence of its analogues: Reaching the maximum residue limit. Anal. Chem. 2012, 84, 6753–6758. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Luo, C.; Cheng, W.; Mao, W.; Zhang, D.; Ding, S. A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release. J. Electroanal. Chem. 2012, 687, 89–94. [Google Scholar] [CrossRef]
- Yadav, S.K.; Agrawal, B.; Chandra, P.; Goyal, R.N. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens. Bioelectron. 2014, 55, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Bagheri Hashkavayi, A.; Bakhsh Raoof, J.; Ojani, R.; Hamidi Asl, E. Label-Free Electrochemical Aptasensor for Determination of Chloramphenicol Based on Gold Nanocubes-Modified Screen-Printed Gold Electrode. Electroanalysis 2015, 27, 1449–1456. [Google Scholar] [CrossRef]
- Hamidi-Asl, E.; Dardenne, F.; Blust, R.; de Wael, K. An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine. Sensors 2015, 15, 7605–7618. [Google Scholar] [CrossRef] [PubMed]
- Rosy, R.; Goyal, R.N.; Shim, Y.-B. Glutaraldehyde sandwiched amino functionalized polymer based aptasensor for the determination and quantification of chloramphenicol. RSC Adv. 2015, 5, 69356–69364. [Google Scholar] [CrossRef]
- Yan, Z.; Gan, N.; Wang, D.; Cao, Y.; Chen, M.; Li, T.; Chen, Y. A “signal-on” aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers. Biosens. Bioelectron. 2015, 74, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Bagheri Hashkavayi, A.; Raoof, J.B.; Azimi, R.; Ojani, R. Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol. Anal. Bioanal. Chem. 2016, 408, 2557–2565. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Gan, N.; Li, T.; Cao, Y.; Chen, Y. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens. Bioelectron. 2016, 78, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Anal. Chim. Acta 2017, 968, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lai, G.; Zhang, H.; Yu, A. Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles. Microchim. Acta 2017, 184, 1445–1451. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Ramezani, M.; Emrani, A.S.; Taghdisi, S.M. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosens. Bioelectron. 2016, 78, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, K.; Okoth, O.K.; Zhang, J. A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Biosens. Bioelectron. 2015, 74, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Pilehvar, S.; Dierckx, T.; Blust, R.; Breugelmans, T.; De Wael, K. An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol. Sensors 2014, 14, 12059–12069. [Google Scholar] [CrossRef] [PubMed]
- Lavaee, P.; Danesh, N.M.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Microchim. Acta 2017, 11, 81. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M.; Emrani, A.S. A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Sens. Actuators B Chem. 2017, 240, 100–106. [Google Scholar] [CrossRef]
- Han, S.R.; Yu, J.; Lee, S.-W. In vitro selection of RNA aptamers that selectively bind danofloxacin. Biochem. Biophys. Res. Commun. 2014, 448, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Su, L.; Zhu, L.; Gao, X.; Wang, Y.; Bai, F.; Tang, Y.; Li, J. Hybrid material for enrofloxacin sensing based on aptamer-functionalized magnetic nanoparticle conjugated with upconversion nanoprobes. Sens. Actuators B Chem. 2016, 233, 394–401. [Google Scholar] [CrossRef]
- Liu, X.; Ren, J.; Su, L.; Gao, X.; Tang, Y.; Ma, T.; Zhu, L.; Li, J. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens. Bioelectron. 2017, 87, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; van Vlierberghe, S.; Blust, R.; Strehlitz, B.; de Wael, K. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sens. Actuators B Chem. 2017, 240, 1024–1035. [Google Scholar] [CrossRef]
- Reinemann, C.; Freiin von Fritsch, U.; Rudolph, S.; Strehlitz, B. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens. Bioelectron. 2016, 77, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, C.; Yin, G.; Zhang, Q.; Luo, J.; Wu, N. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens. Bioelectron. 2017, 91, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Niazi, J.H.; Lee, S.J.; Kim, Y.S.; Gu, M.B. ssDNA aptamers that selectively bind oxytetracycline. Bioorg. Med. Chem. 2008, 16, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Niazi, J.H.; Gu, M.B. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal. Chim. Acta 2009, 634, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Gu, M.-B.; Kang, D.-H.; Park, J.-W.; Song, I.-H.; Jung, H.-S.; Suh, K.-Y. High-sensitivity detection of oxytetracycline using light scattering agglutination assay with aptasensor. Electrophoresis 2010, 31, 3115–3120. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, J.H.; Kim, I.A.; Lee, S.J.; Jurng, J.; Gu, M.B. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens. Bioelectron. 2010, 26, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, J.H.; Kim, I.A.; Lee, S.J.; Gu, M.B. The affinity ratio—Its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosens. Bioelectron. 2011, 26, 4058–4063. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H.; Lee, L.-P.; Min, J.-R.; Lim, M.-W.; Jeong, S.-H. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Biosens. Bioelectron. 2013, 51, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 2005, 383, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Niazi, J.H.; Lee, S.J.; Gu, M.B. Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg. Med. Chem. 2008, 16, 7245–7253. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Ahmad Raston, N.H.; Gu, M.B. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chem. Commun. 2014, 50, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Ma, X.; Duan, N.; Wu, S.; Xia, Y.; Wang, Z.; Xu, B. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Talanta 2017, 165, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Bai, X.; Xing, C.; Gu, N.; Zhang, B.; Tang, J. Aptamer-based cantilever array sensors for oxytetracycline detection. Anal. Chem. 2013, 85, 2010–2014. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.B.; Kwon, Y.S.; Lee, J.-E.; Cullen, D.; Noh, H.M.; Gu, M.B. A novel reflectance-based aptasensor using gold nanoparticles for the detection of oxytetracycline. Analyst 2015, 140, 6671–6675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, F.; Zhao, H.; Zhang, Z.; Gao, L.; Xu, J.; Quan, X. Fluorescent biosensor for sensitive analysis of oxytetracycline based on an indirectly labelled long-chain aptamer. RSC Adv. 2015, 5, 58895–58901. [Google Scholar] [CrossRef]
- Tan, B.; Zhao, H.; Du, L.; Gan, X.; Quan, X. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens. Bioelectron. 2016, 83, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fang, C.; Wu, S.; Duan, N.; Wang, Z. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Anal. Biochem. 2015, 489, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Liu, Y.; Yang, Y.; Zhang, J. A Cathodic “Signal-off” Photoelectrochemical Aptasensor for Ultrasensitive and Selective Detection of Oxytetracycline. Anal. Chem. 2015, 87, 12215–12220. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, J.; Yuan, T.; Wang, P.; Lu, J. A sensitive photoelectrochemical aptasensor for oxytetracycline based on a signal “switch off-on” strategy. Sens. Actuators B Chem. 2017, 240, 785–792. [Google Scholar] [CrossRef]
- Zheng, D.; Zhu, X.; Zhu, X.; Bo, B.; Yin, Y.; Li, G. An electrochemical biosensor for the direct detection of oxytetracycline in mouse blood serum and urine. Analyst 2013, 138, 1886–1890. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, S.; Yu, J.; Cui, M.; Li, J.; Guo, Y.; Wang, H.; Huang, J. An ultrasensitive HRP labeled competitive aptasensor for oxytetracycline detection based on grapheme oxide–polyaniline composites as the signal amplifiers. RSC Adv. 2014, 4, 10273. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Xu, W.; Leng, X.; Wang, H.; Guo, Y.; Huang, J. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens. Bioelectron. 2017, 88, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Aslipashaki, S.N.; Khayamian, T.; Hashemian, Z. Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis of tetracycline in biological fluids. J. Chromatogr. B 2013, 925, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, K.; Zhang, J. Graphitic Carbon Nitride Sensitized with CdS Quantum Dots for Visible-Light-Driven Photoelectrochemical Aptasensing of Tetracycline. ACS Appl. Mater. Interfaces 2015, 28255–28264. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Weigand, J.E.; Weichenrieder, O.; Suess, B. Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res. 2006, 34, 2607–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.; Rhee Paeng, I. Sensitivity and selectivity on aptamer-based assay: The determination of tetracycline residue in bovine milk. Sci. World J. 2012, 2012, 159456. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Luo, Y.; Zhi, W.; Wu, Y.; Zhou, P. A Colorimetric Aptamer Biosensor Based on Gold Nanoparticles for the Ultrasensitive and Specific Detection of Tetracycline in Milk. Aust. J. Chem. 2013, 66, 485. [Google Scholar] [CrossRef]
- He, L.; Luo, Y.; Zhi, W.; Zhou, P. Colorimetric Sensing of Tetracyclines in Milk Based on the Assembly of Cationic Conjugated Polymer-Aggregated Gold Nanoparticles. Food Anal. Methods 2013, 6, 1704–1711. [Google Scholar] [CrossRef]
- Ramezani, M.; Mohammad Danesh, N.; Lavaee, P.; Abnous, K.; Mohammad Taghdisi, S. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron. 2015, 70, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, X.; Liedberg, B.; Zhu, X.; Memon, A.G.; Shi, H. Screening Criteria for Qualified Antibiotic Targets in Unmodified Gold Nanoparticles-Based Aptasensing. ACS Appl. Mater. Interfaces 2017, 9, 35492–35497. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, J.; Liu, J.-H.; Gapparov, I.; Wang, S.; Dong, Y.; Su, H.; Tan, T. The development of a graphene oxide-based aptasensor used for the detection of tetracycline in honey. Anal. Methods 2017, 9, 1133–1140. [Google Scholar] [CrossRef]
- Luo, Y.; He, L.; Zhan, S.; Wu, Y.; Liu, L.; Zhi, W.; Zhou, P. Ultrasensitive resonance scattering (RS) spectral detection for trace tetracycline in milk using aptamer-coated nanogold (ACNG) as a catalyst. J. Agric. Food Chem. 2014, 62, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Q.; Mehedi Hassan, M.; Chen, X.; Ouyang, Q.; Guo, Z.; Zhao, J. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification. Biosens. Bioelectron. 2017, 92, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Jalalian, S.H.; Taghdisi, S.M.; Danesh, N.M.; Bakhtiari, H.; Lavaee, P.; Ramezani, M.; Abnous, K. Sensitive and fast detection of tetracycline using an aptasensor. Anal. Methods 2015, 7, 2523–2528. [Google Scholar] [CrossRef]
- Chen, T.-X.; Ning, F.; Liu, H.-S.; Wu, K.-F.; Li, W.; Ma, C.-B. Label-free fluorescent strategy for sensitive detection of tetracycline based on triple-helix molecular switch and G-quadruplex. CCL 2017, 28, 1380–1384. [Google Scholar] [CrossRef]
- Ouyang, Q.; Liu, Y.; Chen, Q.; Guo, Z.; Zhao, J.; Li, H.; Hu, W. Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 2017, 81, 156–163. [Google Scholar] [CrossRef]
- Sun, C.; Su, R.; Bie, J.; Sun, H.; Qiao, S.; Ma, X.; Sun, R.; Zhang, T. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes Pigments 2018, 149, 867–875. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Qiao, Y.; Fang, H.; Fan, D.; Wang, W. Nano-gold plasmon coupled with dual-function quercetin for enhanced photoelectrochemical aptasensor of tetracycline. Sens. Actuators B Chem. 2017, 243, 1027–1033. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Yang, A.; Wang, Q.; Kong, R.; Qu, F. Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Microchim. Acta 2017, 184, 4367–4374. [Google Scholar] [CrossRef]
- Le, T.H.; van Pham, P.; La, T.H.; Phan, T.B.; Le, Q.H. Electrochemical aptasensor for detecting tetracycline in milk. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 15008. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.-C.; Zhang, Q.-Q.; Sun, X.; Guo, Y.-M.; Wang, X.-Y. Aptasensors modified by antimony tin oxide nanoparticle-chitosan based on interdigitated array microelectrodes for tetracycline detection. RSC Adv. 2016, 6, 17328–17335. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, Q.; Zhang, Q.; Guo, Y.; Sun, X.; Wang, X. Study on Aptasensors Modified by Ionic Liquid–Fe3O4 Based on Microarray Electrodes for Tetracycline Detection. Int. J. Electrochem. Sci. 2016, 1699–1706. [Google Scholar]
- Hou, W.; Shi, Z.; Guo, Y.; Sun, X.; Wang, X. An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline. Bioprocess Biosyst. Eng. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Kim, Y.S.; Niazi, J.H.; Gu, M.B. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. 2010, 33, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, B.; Wu, Y.; Jia, S.; Fan, T.; Zhang, Z.; Zhang, C. Fast determination of the tetracyclines in milk samples by the aptamer biosensor. Analyst 2010, 135, 2706–2710. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, D.-J.; Gai, L.; Wang, J.-P.; Li, Y.-B. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sens. Actuators B Chem. 2012, 162, 201–208. [Google Scholar] [CrossRef]
- Chen, D.; Yao, D.; Xie, C.; Liu, D. Development of an aptasensor for electrochemical detection of tetracycline. Food Control 2014, 42, 109–115. [Google Scholar] [CrossRef]
- Shen, G.; Guo, Y.; Sun, X.; Wang, X. Electrochemical Aptasensor Based on Prussian Blue-Chitosan-Glutaraldehyde for the Sensitive Determination of Tetracycline. Nano-Micro Lett. 2014, 6, 143–152. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Sun, X. A label-free Electrochemical Aptasensor Based on Electrodeposited Gold Nanoparticles and Methylene Blue for Tetracycline Detection. Int. J. Electrochem. Sci. 2015, 3668–3679. [Google Scholar]
- Benvidi, A.; Tezerjani, M.D.; Moshtaghiun, S.M.; Mazloum-Ardakani, M. An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim. Acta 2016, 183, 1797–1804. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Q.; Xu, Q.; Ma, N.; Sun, X.; Wang, X.Y. Fabrication of aptasensors modified by MWCNTs-CS/Fe3O4-CS based on SPEs. Int. J. Electrochem. Sci. 2016, 1691–1698. [Google Scholar]
- Jahanbani, S.; Benvidi, A. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens. Bioelectron. 2016, 85, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Abnous, K. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens. Bioelectron. 2016, 85, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Hu, G.; Wagberg, T.; Zhan, S.; Xu, H.; Zhou, P. Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim. Acta 2016, 183, 723–729. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Z.; Fu, J.; Zhao, W.; Guo, Y.; Sun, X.; Zhang, H. Ratiometric electrochemical aptasensor based on ferrocene and carbon nanofibers for highly specific detection of tetracycline residues. Sci. Rep. 2017, 7, 14729. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yong, W.; Liu, J.; Zhang, L.; Chen, Q.; Dong, Y. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens. Bioelectron. 2014, 57, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.; Yong, W.; Chen, Q.; Zhang, L.; Dong, Y.; Su, H.; Tan, T. A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey. Talanta 2015, 131, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xu, J.; Li, Y.; Gao, H.; Guo, J.; Shen, F.; Sun, C. A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 2015, 54, 7–15. [Google Scholar] [CrossRef]
- Song, K.-M.; Jeong, E.; Jeon, W.; Jo, H.; Ban, C. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine. Biosens. Bioelectron. 2012, 33, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Jiang, X.; Zhang, W.; Chen, G.; Zhao, Y.; Tunio, T.M.; Liu, J.; Lv, Z.; Li, C.; Yang, S. High sensitive rapid visual detection of sulfadimethoxine by label-free aptasensor. Biosens. Bioelectron. 2013, 42, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guan, Z.; Lv, Z.; Jiang, X.; Yang, S.; Chen, A. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosens. Bioelectron. 2014, 52, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Huang, Y.; Zhang, C.; Fang, Z.; Bai, W.; Yan, M.; Zhu, C.; Chen, A. Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition and reactivation of the peroxidase-like activity of gold nanoparticles. Microchim. Acta 2017, 184, 59–63. [Google Scholar] [CrossRef]
- Wang, A.; Zhao, H.; Chen, X.; Tan, B.; Zhang, Y.; Quan, X. A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@palladium hybrids. Anal. Biochem. 2017, 525, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, T.; Gao, X.; Ma, T.; Tang, Y.; Zhu, L.; Li, J. An aptamer based sulfadimethoxine assay that uses magnetized upconversion nanoparticles. Microchim. Acta 2017, 184, 3557–3563. [Google Scholar] [CrossRef]
- Okoth, O.K.; Yan, K.; Liu, Y.; Zhang, J. Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens. Bioelectron. 2016, 86, 636–642. [Google Scholar] [CrossRef] [PubMed]
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref. 1 |
---|---|---|---|---|---|---|---|
FAM | I: GCG GGC GGT TGT ATA GCG G II: TTA GTT GGG GTT CAG TTG G III: CAC GGC ATG GTG GGC GTC GTG | - | I: 13.4 II: 9.8 III: 9:4 | I: 1.4 (dw, FL) I: 5.7 (m, FL) I: 14.3 (dw, CO) I: 28.6 (m, CO) | m | FL, CO/UV–VIS | [58] |
- | apt I: GCG GGC GGT TGT ATA GCG GTT TTT TT apt II: GCG GGC GGT TGT ATA GCG GTT TTT TT cDNA I: AAC CGC CCG CTT TC CTC AGC cDNA II: AAC CGC CCG CTT TAC CTC AGC cDNA III: AAC CGC CCG CTT TAC CTC AGC A cDNA IV: AAC CGC CCG CTT TAC CTC AGC A cDNA V: ACC GCC CGC TTT ACC TCA GCA cDNA VI: CAA CCG CCC GCT TTA CCT CAG CA cDNA VII: ACA ACC GCC CGC TTT ACC TCA GCA | apt I: SH apt II: | - | 0.2 (b) (0.07 × 10−6 g/L) | rw | FL | [60] |
NH2-C6 | GCG GGC GGT TGT ATA GCG G | - | 13.4 | 0.1 (b) | m | IEC/EIS | [58,59] |
poly(T)-poly(C) | GCG GGC GGT TGT ATA GCG G | - | - | 0.1 (b) | - | IEC/EIS | [61,62] |
- | - | - | - | 0.001 (b) | m | AEC/DPV | [63] |
MB | GCG GGC GGT TGT ATA GCG G | A10 | - | 0.004 (b) | m | AEC/DPV | [64] |
apt: SH cDNA: SH | TGG GGG TTG AGG CTA AGC CGA C cDNA: GTC TTA GCC TCA ACC CCC A | - | - | 0.00038 (b) | m | AEC/DPV | [65] |
SH-(CH2)6 | TTA GTT GGG GTT CAG TTG G | MB | 1000 (AC) 30,000 (SWV) | bsa, sa, m | AEC/AC, SWV | [66] | |
SH-(CH2)6 | apt: TTA GTT GGG GTT CAG TTG G cDNA I: CCA ACT AA cDNA II: CCC AAC TA cDNA III: CCC AAC TAA cDNA IV: CCC CAA CTA cDNA V: CCC CAA CTA A cDNA VI: ACC CCA ACT AA cDNA VII:AAC CCC AAC TAA cDNA VIII: GAA CCC CAA CTA A cDNA IX: TGA ACC CCA ACT AA | MB | - | 30 (b) | hu, w, m, sa | AEC/AC | [67] |
apt: NH2-(CH2)6 cDNA: SH-(CH2)6 | TTT TGC GGG CGG TTG TAT AGC GG cDNA: TTT TTT TTT CCG CTA TAC AAC CGC C | - | - | 0.003 (b) | m | EBFC/CV, OCV | [68] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | GGG AGG ACG AAG CGG AAC GAG ATG TAG ATG AGG CTC GAT CCG AAT GCG TGA CGT CTA TCG GAA TAC TCG TTT TTA CGC CTC ATA AGA CAC GCC CGA CA | - | - | 0.49 (b) (0.17 × 10−6 g/L) | m | IEC/EIS | [70] |
FAM | GGG TCT GAG GAG TGC GCG GTG CCA GTG AGT | - | 383.4 | 9.2 (b) | m | FL | [71] |
NH2 | CTG AAT TGG ATC TCT CTT CTT GAG CGA TCT CCA CA | - | - | 0.057 (b) | m | IEC/EIS | [69] ² |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
I: SH II: SH III: SH | I: GGG ACU UGG UUU AGG UAA UGA GUC CC II: (fully O-methylated) GGG ACU UGG UUU AGG UAA UGA GUC CC III: GGG ACT TGG TTT AGG TAA TGA GTC CC | I: NH-MB II: NH-MB III: NH-MB | I: 72,000 II: ≈ 80,000 III: ≈ 200,000 | - | hs | AEC/SWV | [72,73] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
SH-(CH2)6 | TGG GGG TTG AGG CTA AGC CGA C | - | - | 50000 (b) | - | CAN | [94] |
- | TGG GGG TTG AGG CTA AGC CGA | - | 78.8 | 25 (b) | - | CO/UV–VIS | [74] |
- | TGG GGG TTG AGG CTA AGC CGA | - | 78.8 | - | - | CO/UV–VIS | [74,75] |
- | TGG GGG TTG AGG CTA AGC CGA | - | 8.38 | 1.49 (b) | - | CO | [32,74] |
SH-(CH2)6 | TGG GGG TTG AGG CTA AGC CGA | - | - | 0.014 (b) | m | CO/UV–VIS | [74,95] |
- | TGG GGG TTG AGG CTA AGC CGA | - | - | 4.5 (b) (2.6 × 10−6 g/L) | m | CO | [77] |
- | CGG AAG CGC GCC ACC CCA TCG GCG GGG GCG AAG CTT GCG | - | - | 3.35 (b) | m | CO | [78,85] |
apt: SH-(CH2)6 cDNA I: SH-(CH2)6 cap: biotin | apt: TGG GGG TTG AGG CTA AGC CGA cDNA I: TCA GTC GGC TTA GCC GTC CAA CGT CAG ATC C cap: CCG ATG GAT CTG ACG T | apt: biotin | 0.0778 (b) | m, h | CO | [79] | |
- | TGG GGG TTG AGG CTA AGC CGA | NH2-(CH2)6 | - | <1 (b) | - | LCA | [74,80] |
apt: biotin cDNA: FAM | apt: AGA TGG GGG TTG AGG CTA AGC CGA cDNA: CTT AGC CTC AAC CCC CAT CT | - | - | 0.612 (b) 0.453 (rs) | rs | FL | [81] |
apt: biotin cDNA: ROX | apt: TGG GGG TTG AGG CTA AGC CGA cDNA: TCG GCT TAG CCT CAA CCC CCA | - | - | 1.58 (b) (0.92 × 10−6 g/L) | m, h, p | FL | [74,82] |
- | AGA TGG GGG TTG AGG CTA AGC CGA | - | - | 0.321 (b) 0.476 (m) 0.568 (rs) | m, rs | FL | [58,83,90] |
- | apt: TGG GGG TTG AGG CTA AGC CGA | - | - | 59 (b) | m | FL | [74,89] |
NH2 | AGA TGG GGG TTG AGG CTA AGC CGA | - | - | 0.009 (b) 0.018 (bs) | bs | FL | [84] |
II: FAM | I: ATG CGG ATC CCG CGC GAC CAA CGG AAG CGC GCC ACC CCA TCG GCG GGC GCG AAG CTT GCG C II: CGG AAG CGC GCC ACC CCA TCG GCG GGC GCG AAG CTT GCG | - | II: 92.3 | I: 6.25 (b) II: 6.25 (b) II: 0.001 (st) II: 0.1 (bs) II: 0.02 (m) | m, bs | FL | [85] |
apt I: FAM | apt I: TGG GGG TTG AGG CTA AGC CGA apt II: TGG GGG TT FAM GAG GCT AAG CCG A apt III: TGG GGG TTG AGG CTA AGC CGA cDNA I: AAC CCC cDNA II: AAC CCC A cDNA III: AAC CCC CAA CT | cDNA I: FAM cDNA II: FAM cDNA III: FAM | - | 0.4 (b) | m | FL | [86] |
NH2-C6 | TGG GGG TTG AGG CTA AGC CGA C | - | - | 1100 (b) | m | FL | [87] |
apt II: Cy3 apt III: Cy5 anchor apt: NH2 cDNA II: Cy3 | apt I: TGG GGG TTG AGG CTA AGC CGA apt II: TGG GGG TTG AGG CTA AGC CGA apt III: TGG GGG TTG AGG CTA AGC CGA apt IV: TGG GGG TTG AGG CTA AGC CGA anchor apt: TTT TTT TGG GGG TTG AGG CTA AGC CGA cDNA I: TAG CCT CAA cDNA II: TCG GCT TAG CCT | apt IV: Cy3 cDNA I: Cy3 | 26 (b) | m | FL | [74,90] | |
- | TGG GGG TTG AGG CTA AGC CGA | - | 78.8 | 143 (b) | f | ECL | [74,91] |
SH-(CH2)6-T5 | TGG GGG TTG AGG CTA AGC CGA G-quadruplex: GGT TGG TGT GGT TGG TAG CCT CAA GGT TGG TGT GGT TGG | - | - | 0.045 (b) | m | ECL | [92] |
apt: biotin cDNA: SH-(CH2)6 | apt: TGG GGG TTG AGG CTA AGC CGA cDNA: TTA GCC TCA A | - | - | 0.034 (b) (0.002 × 10−6 g/L) | m | ECL | [93] |
- | TGG GGG TTG AGG CTA AGC CGA | - | - | 0.2 (b) | - | PEC | [96] |
SH-(CH2)6 | TGG GGG TTG AGG CTA AGC CGA | - | - | 0.1 (b) | - | PEC/EIS, CA | [97] |
SH-(CH2)6 | TGG GGG TTG AGG CTA AGC CGA | - | - | 7.2 (b) (3.5 × 10−6 g/L) | m | PEC/EIS | [97,98] |
- | TGG GGG TTG AGG CTA AGC CGA | - | - | 1.0 (b) | m | IEC/EIS | [76] |
- | TGG GGG TTG AGG CTA AGC CGA | - | - | 0.23 (0.11 × 10−6 g/L) | m | IEC/EIS | [74,99] |
I: SH II: SH III: SH | I: GGG ACU UGG UUU AGG UAA UGA GUC CC II: (fully O-methylated) GGG ACU UGG UUU AGG UAA UGA GUC CC III: GGG ACT TGG TTT AGG TAA TGA GTC CC | I: NH-MB II: NH-MB III: NH-MB | I: 281,000 II: ≈ 450,000 III: ≈ 600,000 | - | hs | AEC/SWV | [72,73] |
NH2 | TGG GGG TTG AGG CTA AGC CGA C | - | 78.8 | 9.4 ± 0.4 (b) 10.8 ± 0.6 (m) | m | AEC/SWV | [100] |
I: NH2 II: biotin | I: TGG GGG TTG AGG CTA AGC CGA C II: TGG GGG TTG AGG CTA AGC CGA C | - | - | 5.8 (b) | m | AEC/DPV | [101] |
I NH2 II biotin | I: TGG GGG TTG AGG CTA AGC CGA C II: TGG GGG TTG AGG CTA AGC CGA C | - | - | 8.6 (b) | m | AEC/DPV | [102] |
biotin | TGG GGG TTG AGG CTA AGC CG | - | - | 7.9 (b) (4,6 × 10−6 g/L) | m | AEC/DPV | [103] |
NH2 | AGA TGG GGG TTG AGG CTA AGC CGA | - | - | 0.0037 (b) | m | AEC/DPV | [104] |
PO4 | AGA TGG GGG TTG AGG CTA AGC CGA | - | 0.87 (b) | m, p, c | AEC/DPV | [105] | |
NH2 | AGA TGG GGG TTG AGG CTA AGC CGA | - | - | 0.00042 (b) | m, p, c | AEC/DPV | [106] |
- | TCT GGG GGT TGA GGC TAA GCC GAC | (CH2)6-NH2 | 78.8 | 0.00015 (b) | m | AEC/SWV | [101,107] |
apt: SH cDNA: apt | apt: TGG GGG TTG AGG CTA AGC CGA C cDNA: GTC GGC TTA CGG TCA ACC CCC A | - | - | 0.01 (b) (0.005 × 10−6 g/L) | m | AEC/SWV | [108] |
- | TGG GGG TTG AGG CTA AGC CG | - | - | 0.00074 (b) | m | AEC/DPV | [109] |
- | TGG GGG TTG AGG CTA AGC CGA C | - | - | 0.0000013 (b) | m | AEC/DPV | [110] |
apt: NH2-(CH2)6 cDNA: NH2-(CH2)6 | apt: TGG GGG TTG AGG CTA AGC CGA C cDNA: CGT TAG CCT CAA CCC | - | - | 0.00016 (b) | m | AEC/SWV | [49] |
SH | TGG GGG TTG AGG CTA AGC CGA | - | - | 0.00137 (b) (0.008 × 10−9 g/L) | m | AEC/DPV | [111] |
apt I: SH | apt: TGG GGG TTG AGG CTA AGC CGA | 0.000035 (b) | m | AEC/SWV | [74,112] | ||
FAM | ATA CCA GCT TAT TCA ATT AGC CCG GTA TTG AGG TCG ATC TCT TAT CCT ATG GCT TGT CCC CCA TGG CTC GGT TAT ATC CAG ATA GTA AGT GCA ATC T | - | 3900 | 5000 (ww) | ww | FL | [113] 2 |
FAM | TGG GGG TTG AGG CTA AGC CGA | - | 115 ± 2.76 | 0.3 (b) | m | FL | [74,114] 2 |
- | apt: TGG GGG TTG AGG CTA AGC CGA mut I: TGG AGG TTG AG CTA AGC CGA mut II: TGG AGG TTG AGG CTA AGC CGA mut III: TGG AGG TTG AAG CTA AAC CGA mut IV: TAA AAA TTA AAA CTA AAC CAA | - | - | 0.3 (b) | m | FL | [74,115] 2 |
NH2-C6 | TGG GGG TTG AGG CTA AGC CGA | - | 78.8 | 10 (b) | m | IEC/EIS | [58,59] 2 |
cDNA I: ferrocene-(CH2)6 cDNA II: SH-(CH2)6 | apt I: TGG GGG TTG AGG CTA AGC CGA GTC ACT AT cDNA I: GTG ACT CGG CTT apt II: TGG GGG TTG AGG CTA AGC CGA GTC ACT AT cDNA II: TAT GTG ACT CGG CTT | apt I: (CH2)3-SH apt II: (CH2)3-ferrocene | 78.8 | 1.0 (b) | lw | IEC/EIS | [74,116] 2 |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
FAM | GGA CUG GGC GAG AAG UUU AGU CC | (T)15–(A)12 | 115 ± 25 | 10 (m) | m | FL | [118,119] |
- | (fully O-methylated) GGC CUG GGC GAG AAG UUU AGG CC | - | - | <1000 (b) | m | IEC/FIS | [120] |
- | (fully O-methylated) GGC CUG GGC GAG AAG UUU AGG CC | - | 2500 ± 900 | 5 (b, SPR) | - | IEC/FIS SPR | [121] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
SH | TCC GTG TAT AGG TCG GGT CTC TTG CCA ACT GAT TCG TTG AAA AGT ATA GCC CCG CAG GG | - | 260 | 500 (b) 3400 (bs) | bs | SPR | [122,123] |
- | I: TAG GGA ATT CGT CGA CGG ATC CAT GGC ACG TTA TGC GGA GGC GGT ATG ATA GCG CTA CTG CAG GTC GAC GCA TGC GCC G II: CGT CGA CGG ATC CAT GGC ACG TTA TGC GGT ATG ATA GCG CAG GTC GAC G III: CGT CGA CGG ATC CAT GGC ACG TTA TAG GTC GAC G | - | I: 56.9 II: 46.8 III: 48.4 | 37.9 (b) | h | CO | [124] |
- | GGG ACT TGG TTT AGG TAA TGA GTC CC | - | - | 23.3 (b) | m, ce | CO | [125] |
- | I: (O-methylated RNA except U12 position) GGC ACG AGG UUU AGC UAC ACU CGU GCC II: (fully O-methylated) GGC ACG AGG UUU AGC UAC ACU CGU GCC | - | I: 600 II: 400 | I: 700 (b) II: 400 (b) | hs | IEC/FIS | [73,126] |
I: SH II: SH III: SH | I: GGG ACU UGG UUU AGG UAA UGA GUC CC II: (fully O-methylated) GGG ACU UGG UUU AGG UAA UGA GUC CC III: GGG ACT TGG TTT AGG TAA TGA GTC CC | I: NH-MB II: NH-MB III: NH-MB | I: 319,000 II: ≈ 180,000 III: ≈ 1,380,000 | - | hs | AEC/SWV | [72,73] |
biotin | (O-methylated except U12 position) GGC ACG AGG UUU AGC UAC ACU CGU GCC | - | - | 5000 (b) | - | AEC/DPV | [73,127] |
fluorescein | (O-methylated except U12 position) GGC ACG AGG UUU AGC UAC ACU CGU GCC | - | - | 100 (b) | hs | AEC/DPV, CA | [129] |
I: SH-C6 II: SH-C6 III: SH-C6 IV: SH-C6 | I: GGG ACU UGG UUU AGG UAA UGA GUC CC II: ACU UGG UUU AGG UAA UGA GU III: CUU GGU UUA GGU AAU GAG IV: GGG ACU UGG UUU AGG UAA UGA GU | I: MB II: MB III: MB IV: MB | I: 16,000 ± 3000 II: 220 ± 50 III: 510 ± 70 IV: 2900 ± 900 III: 148,000 ± 4000 (s) | - | bsa | AEC/SWV | [73,128] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | I: GGG GTC TGG TGT TCT GCT TTG TTC TGT CGG GTC GT II: TGA AGG GTC GAC TCT AGA GGC AGG TGT TCC TCA GG III: AGC TTG GGT GGG GCC ACG TAG AGG TAT AGC TTG TT IV: TGT GTG TTC GGT GCT GTC GGG TTG TTT CTT GGT TT | - | I: 199.1 II: 221.3 III: 272.0 IV: 340.6 | I: 200 (b) I: 200 (h) | h | CO/UV–VIS | [130] |
I: FAM II: FAM III: FAM | I: CCC GTT TAA AGT AGT TGA GAG TAT TCC GTT TCT TTG TGT C II: GTG CGT TAT AAA CTA GTT TTG ATT CAA TGT TGG GTG TGG G III: GGG CCT GTT TTG CCT TCA CGT TCT CTT CCT TGC CGT TCT G | I: biotin II: biotin III: biotin | I: 6.07 II: 8.56 III: 13.14 | 25 (b) | m, h | CO | [131] |
SH-(CH2)6 | TAG GGA ATT CGT CGACGG ATC CGG GGT CTG GTG TTC TGC TTT GTT CTG TCG GGT CGTCTG CAG GTC GAC GCA TGC GCC G | - | - | 0.0017 (b) (1∙10−9 g/L) | m | CO | [130,132] |
SH | TAG GGA ATT CGT CGA CGA ATC CGG GGT CTG GTG TTC TGC TTT GTT CGTB TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | - | 199.1 | 86 (b) | m | CO | [130,133] |
cDNA: FAM | apt: TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G cDNA: CGG CGC ATG CGT CGA CCT GCA GAC GAC CCG ACA GAA CAA AGC AGA ACA CCA GAC CCC GGA TCC GTC GAC GAA TTC CCT A | - | - | 73.1 (b, CO) 102.4 (bs, CO) 108.7 (m, CO) 47.6 (b, FL) 58.2 (bs, FL) 56.2 (m, FL) | m, bs | CO, FL/UV–VIS | [134] |
- | apt: TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G cDNA: CGG CGCA TGC GTC GAC CTG CAG ACG ACC CGA CAG AAC AAA GCA GAA CAC CAG ACC CCG GAT CCG TCG ACG AAT TCC CTA | - | - | 54.5 (b) 71.0 (rs) 76.05 (m) | m, bs | FL | [135] |
- | GGG GTC TGG TGT TCT GCT TTG TTC TGT CGG GTC GT | - | - | 0.05 (b) | m | FL | [130,141] |
- | apt: TAG GGA ATT CGT CGA CGG ATC CGG GGT CTG GTG TTC TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G cDNA I: CGG CGGC ATG CGT CGA CCT GCA GAC GAC CCG ACA GAA CAA AGC AGA ACA CCA GAC CCC GGA TCC GTC GAC GAA TTC CCT A cDNA II: CAG ACG ACC CGA CAG AAC AAA GCA GAA CAC CAG ACC CCG GAT CCG TCG ACG AAT TCC CTA cDNA III: GAC AGA ACA AAG CAG AAC ACC AGA CCC CGG ATC CGT CGA CGA ATT CCC TA cDNA IV: AGC AGA ACA CCA GAC CCC GGA TCC GTC GAC GAA TTC CCT A | - | - | 94 (b) | m, c | FL | [132,142] |
- | TAG GGA ATT CGT CGA CGG ATC CGG GGT CTG GTG TTC TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | NH2 | - | 0.033 (b) | h | PEC | [136] |
- | TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | SH | - | 0.057∙10−3 (b) (0.033∙10−9 g/L) | hs | IEC | [137] |
- | TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | SH | - | 11.4 (b) 14.1 (m) 15.3 (rs) | m, rs | AEC/DPV | [143] |
cap: SH-(CH2)6 | apt: TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G cap: GGT GTT GGT GTT cDNA I: GAC AGA ACA AAG CAG AAC ACC A cDNA II: TTC TGT CTC TCG | cDNA II: biotin | - | 10 (b) | m | AEC/SWV | [41] |
- | TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | SH | - | 0.036 (b) | m, h | AEC/DPV | [138] |
NH2 | TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | - | 0.0078 (b) | m | AEC/DPV | [139] | |
- | TAG GGA ATT CGT CGA CGG ATG CGG GGT CTG GTG TTG TGC TTT GTT CTG TCG GGT CGT CTG CAG GTC GAC GCA TGC GCC G | SH | - | 0.028 (b) | m | AEC/DPV | [140] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | GGG AAT TCG AGC TCG GTA CCA TCT GTG TAA GGG GTA AGG GGT GGG GGT GGG TAC GTC TAG CTG CAG GCA TGC AAG CTT GG | - | 20 | 15 (b) (8.4 × 10−6 g/L) | - | FL ELAA SPR | [147] |
- | GGG AAT TCG AGC TCG GTA CCA TCT GTG TAA GGG GTA AGG GGT GGG GGT GGG TAC GTC TAG CTG CAG GCA TGC AAG CTT GG | - | 20 | 17.6 (b) | - | CO, FL | [146,147] |
poly-TTBA-NH2 | GGG AAT TCG AGC TCG GTA CCA TCT GTG TAA GGG GTA AGG GGT GGG GGT GGG TAC GTC TAG CTG CAG GCA TGC AAG CTT GG | - | 20 | 0.052 ± 0.002 (b) | hu | AEC/DPV | [147,148] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | I: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G II: ACT GAG GGC ACG GAC AGG AGG GGG AGA GAT GGC GTG AGG T | - | I: 766 II: 1160 | - | - | FL | [150] |
apt: SH-(CH2)6 cDNA: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: TTT TCT ACC ACC GAC TCG C | - | 766 | 0.062 (b) (0.02 × 10−6 g/L) | f, p | CO/UV–VIS | [150,151] |
apt: (CH2)6 cDNA: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTA CCA CCG ACT CGC CGA CCG TGG GAC AAC TCA CTG AAG T | - | - | 0.046 (b) (0.015 × 10−6 g/L) | m | CO/UV–VIS | [150,152] |
apt: (CH2)6 cDNA: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTA CCA CCG ACT CGCG CGA CCG TGG GAC AAC TCA CTG AAG T | - | - | 0.00093 (b) (0.3 × 10−9 g/L) | m | CO/UV–VIS | [153] |
- | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | biotin | - | 0.451 (b) 0.697 (m) 0.601 (rs) | m, rs | CO/UV–VIS | [176] |
NH2-C6 | AGC AGC ACA GAG GTC AGA TGC ACT CGG ACC CCA TTC TCC TTC CAT CCC TCA TCC GTC CAC CCT ATG CGT GCT ACC GTG AA | - | - | 0.098 (b) 0.761 (m) | m | FL | [160] |
apt: biotin cDNA: NH2 | apt: AGC AGC ACA GAG GTC AGA TGA CTT CAG TGA GTT GTC CCA CGG TCG GCG AGT CGG TGG TAG CCT ATG CGT GCT ACC GTG AA cDNA: CGA CCG TGG GAC AAC TCA | - | - | 0.031 (b) (0.01 × 10−6 g/L) | m | FL | [157] |
apt: (CH2)6 cDNA: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTA CCA CCG ACT CGC CGA CCG TGG GAC AAC TCA CTG AAG T | - | - | 0.0006 (b) (0.0002 × 10−6 g/L) | f | FL | [42,150] |
apt: (CH2)6 cDNA: SH-(CH2)6 G-quadruplex: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTA CCA CCG ACT CGC CGA CCG TGG GAC AAC TCA CTG AAG T G-quadruplex: GGG TAG GGC GGG AA | - | - | 0.0015 (b) (0.0005 × 10−6 g/L) | m | FL | [150,156] |
(CH2)6 | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | - | 0.001 (b) | f | FL | [150,155] |
apt: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTA CCA CCG ACT CGC | - | - | 0.0003 (b) | m | FL | [43,150] |
- | apt: CAA TAA GCG ATG CGC CCT CGC CTG GGG GCC TAG TCC TCT CCT ATG CGT GCT ACC GTG AA cDNAI: TCG CTT ATT GAA AAA AAA AA cDNAII: CAT CGC TTA TTG AAA AAA AAA A cDNAIII: CGC ATC GCT TAT TGA AAA AAA AAA | cDNAI: biotin cDNAII: biotin cDNAIII: biotin | 32.24 | 0.31 (b) | m | FL | [158] |
SH-(CH2)6 | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | 766 | 0.093 (b) (0.003 × 10−6 g/L) | m | FL | [150,159] |
cDNA: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: TTT TTC TAC CAC CGA CTC | apt: COOH | - | 0.07 (b) | - | ECL | [161,167] |
apt: biotin cDNA: SH-(CH2)6 | apt: TTT TTA GCA GCA CAG AGG TCA GAT GAC TTC AGT GAG TTG TCC CAC GGT CGG CGA GTC GGT AGC CTA TGC GTG CTA CCG TGA A cDNA: CAC GCA TAG GCT ACC A | - | - | 0.031 (b) (0.01 × 10−6 g/L) 3.094 (m) (1.0 × 10−6 g/L) | m | ECL | [149,150] |
cDNA: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTA CCA CCG ACT C | apt: (CH2)6-NH2 | - | 0.03 (b) | f | ECL | [162,167] |
apt: (CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: CTC GCC GAC CGT GGG ACA ACT CAC TGA AGT | - | - | 0.000034 (b) | f | ECL/SPR | [150,154] |
- | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | - | 3.1 (b) | d | PEC | [177] |
NH2 | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | - | 0.00036 (b) | m | PEC | [163] |
SH-(CH2)6 | AGC AGC ACA GAG GTC AGA TGA CTG AGG GCA CGG ACA GGA GGG GGA GAG ATG GCG TGA GGT CCT ATG CGT GCT ACC GTG AA | - | - | 1.76 (b) | - | IEC/EIS | [150,178] |
SH-(CH2)6 | AGC AGC ACA GAG GTC AGA TGA CTG AGG GCA CGG ACA GGA GGG GGA GAG ATG GCG TGA GGT CCT ATG CGT GCT ACC GTG AA | - | - | 1000 (b) | - | AEC/SWV | [150,164] |
SH-(CH2)6 | AGC AGC ACA GAG GTC AGA TGA CTG AGG GCA CGG ACA GGA GGG GGA GAG ATG GCG TGA GGT CCT ATG CGT GCT ACC GTG AA | - | 766 | 1.6 (b) 1.6 (m) | w, m | AEC/SWV | [150,165] |
apt: SH-(CH2)6 cDNA: biotin | apt: TTT TTA GCA GCA CAG AGG TCA GAT GAC TTC AGT GAG TTG TCC CAC GGT CGG CGA GTC GGT GGT AGC CTA TGC GTG CTA CCG TGA A cDNA: TTT TCT ACC ACC GAC TCG C | - | - | 0.29 (b) | h | AEC/DPV | [150,166] |
NH2 | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | - | 0.02 (b) | u, d | AEC/SWV | [150,167] |
SH-(CH2)6 | AGC AGC ACA GAG GTC AGA TGA CTT CAG TGA GTT GTC CCA CGG TCG GCG AGT CGG TGG TAG CCT ATG CGT GCT ACC GTG AA | - | - | 4.0 (b) | hs | AEC/SWV | [168] |
SH-(CH2)6 | AGC AGC ACA GAG GTC AGA TGA CTG AGG GCA CGG ACA GGA GGG CAT GGA GAG ATG GCG | - | 766 | 0.183 (b) | m | AEC/DPV | [150,169] |
NH2 | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | - | 0.000011 (b) 0.000014 (u) | d | AEC/SWV | [167,170] |
apt: SH-(CH2)6 cDNA: NH2-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: ACC ACC GAC TCG CCG | - | 0.0009 (b) (0.3 × 10−9 g/L) | f | AEC/SWV | [171] | |
SH-(CH2)6 | AGC AGC ACA GAG GTC AGA TGA CTT CAG TGA GTT GTC CCA CGG TCG GCG AGT CGG TGG TAG CCT ATG CGT GCT ACC GTG AA | - | - | 4.0 (b) | hs | AEC/DPV | [172] |
cDNA I: SH-(CH2)6 cDNA II: NH2-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA cDNA I: ACA CAA GGG GGC CAC CAC AA cDNA II: TTG TGG TGG CCC CCT TGT GT | cDNA I: (CH2)6 | - | 0.46 (b) (0.15 × 10−6 g/L) | m | AEC/SWV | [173] |
cap: SH-(CH2)6 | apt: AGC AGC ACA GAG GTC AGA TGA CTT CAG TGA GTT GTC CCA CGG TCG GCG AGT CGG TGG TAG CCT ATG CGT GCT ACC GTG AA cap: GAG GAT TCA GTG A cDNA I: CCG ACC GTG GGA CAA CTC AGT GAA cDNA II: ACG GTC GGT TAC A | cDNA II: biotin | - | 5 (b) | m | AEC/SWV | [41] |
apt: NH2- (CH2)6 cDNA: NH2-(CH2)6 | apt: ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G cDNA: ACC GAC TCG CCG ACC | - | - | 0.00019 (b) | m | AEC/SWV | [49] |
cDNA I: NH2-(CH2)6 cDNA II: SH-(CH2)6 | apt: ACT TCA GTG AGT TGT CCCACG GTC GGC GAG TCG GTG GTA GCC TAT GCA GTT T cDNA I: TTT CGC TGT GAC CTA CCA CCG ACT GC cDNA II: TTT GTG CAT AGG GTC ACA G | - | - | 0.0000033 (b) | m | AEC/SWV | [174] |
SH-(CH2)6 | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G | - | - | 2.0 (b) | m | AEC/LSV | [175] |
apt: SH | apt: AGC AGC ACA GAG GTC AGA TGA CTG AGG GCA CGG ACA GGA GGG CAT GGA GAG ATG GCG | - | 0.000021 (b) | m | AEC /SWV | [112,150] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
cDNA II: SH | apt: ATA CCA GCT TAT TCA ATT GCA GGG TAT CTG AGG CTT GAT CTA CTA AAT GTC GTG GGG CAT TGC TAT TGG CGT TGA TAC GTA CAA TCG TAA TCA GTT AG cDNA I: TTG AAT AAG CTG GTA TAA ACC cDNA II: AAA CCA CCT CCG AAT CCC AAG CCA CCG CCG CTA ACT GAT TAC GAT TGT | cDNA I: SH | - | 1.3 (sw) 2.6 (s) 3.2 (m) | sw, hs, m | CO | [179,185] |
SH | ATA CCA GCT TAT TCA ATT GCA GGG TAT CTG AGG CTT GAT CTA CTA AAT GTC GTG GGG CAT TGC TAT TGG CGT TGA TAC GTA CAA TCG TAA TCA GTT AG | - | - | 0.263 (b) | m, hs | AEC/DPV | [180] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
FAM-oligo(dT) | UCA GGC UCC UGU GAA GCA ACC GAA UGG ACU GA | A16 | 1.81 ± 0.18 | - | - | FL, SPR | [181] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | apt: CCC ATC AGG GGG CTA GGC TAA CAC GGT TCG GCT CTC TGA GCC CGG GTT ATT TCA GGG GGA cDNA: GTG TTA GCC TAG CCC CCT GAT | apt: biotin cDNA: biotin | - | 0.56 (b) (0.02 × 10−6 g/L) | f | FL | [182] |
- | CCC ATC AGG GGG CTA GGC TAA CAC GGT TCG GCT CTC TGA GCC CGG GTT ATT TCA GGG GGA | biotin | - | 0.11 (b) (0.04 × 10−6 g/L) | f | FL | [183] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
SH-(CH2)6 | ATA CCA GCT TAT TCA ATT AGT TGT GTA TTG AGG TTT GAT CTA GGC ATA GTC AAC AGA GCA CGA TCG ATC TGG CTT GTT CTA CAA TCG TAA TCA GTT AG | - | 0.2 | 1.0 (b) | p, tp | AEC/CV, DPV | [184,185] |
- | apt I: ATA CCA GCT TAT TCA ATT CGA TGG TAA GTG AGG TTC GTC CCT TTA ATA AAC TCG ATT AGG ATC TCG TGA GGT GTG CTC TAC AAT CGT AAT CAG TTA G apt II: ATA CCA GCT TAT TCA ATT GCA GGG TAT CTG AGG CTT GAT CTA CTA AAT GTC GTG GGG CAT TGC TAT TGG CGT TGA TAC GTA CAA TCG TAA TCA GTT AG apt III: ATA CCA GCT TAT TCA ATT AGT TGT GTA TTG AGG TTT GAT CTA GGC ATA GTC AAC AGA GCA CGA TCG ATC TGG CTT GTT CTA CAA TCG TAA TCA GTT AG | - | I: 56.9 ± 11.3 II: 0.11 ± 0.06 III: 0.20 ± 0.09 | - | - | FL | [185] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
C dot | CGC GTG ATG TGG TCG ATG CGA TAC GGT GAG TCG CGC CAC GGC TAC ACA CGT CTC AGC GA | - | - | 0.00016 (b) | me | ECL/CV, AC | [186] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | I: CGT ACG GAA TTC GCT AGC CGA CGC GCG TTG GTG GTG GAT GGT GTG TTA CAC GTG TTG TGG ATC CGA GCT CCA CGT G II: CGT ACG GAA TTC GCT AGC ACG TTG ACG CTG GTG CCC GGT TGT GGT GCG AGT GTT GTG T GG ATC CGA GCT CCA CGT G III: CGT ACG GAA TTC GCT AGC CGA GTT GAG CCG GGC GCG GTA CGG GTA CTG GTA TGT GTG G GG ATC CGA GCT CCA CGT G | - | I: 9.61 II: 12.08 III: 56.84 | - | - | FL | [187,194] |
- | AGG TGC AC | - | 1.104 | 0.1 (b) | - | CO/UV–VIS | [195] |
- | GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG | (CH2)6-SH | 0.2 (b) | - | CAN | [187,197] | |
- | CGA ACG CGC GTT GGT GGT GGA TGG TGT GTT ACA CGT GTT GT | - | 9.61 | 100 (b) | - | LSPIA | [187,189] |
- | I: CGA CGC ACA GTC GCT GGT GCG TAC CTG GTT GCC GTT GTG T II: GGC GCG GCA TGG TGT GGA CTC CAG GCG GTA GGG ATG TCG T III: GGC GAA GGA GTC ATG TAG GTG TGG TCG AGA CCG CTG TGC T IV: GAA AGG GAC GTT CCA AGT TCG TAT AAG CAG TCC TGT GCG T | - | I: 4.7 II: 8.0 III: 9.5 IV: 14.0 | I: 26.7 (b) (12.3 × 10−6 g/L) I: 58.6 (m) (27 × 10−6 g/L) | m | ELAA | [192] |
biotin | ACC GCA CCA CCG TCA TGA GTG CGA ACT TAC GCA ATC ATG ACG GTG GTG CGG TGG TG | SH | - | 0.000000009 (b) (0.0435 × 10−12 g/L) | f | SERS | [195,196] |
- | CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC TGG GGG AAT GGA GTG CTG CGT GCT GCG GGG ATC CGA GCT CCA CGT G | - | 11.13 | 25 (b) | - | CO/UV–VIS | [187,190] |
- | CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC TGG GGG AAT GGA GTG CTG CGT GCT GCG GGG ATC CGA GCT CCA CGT G | - | - | 1 (b) 1 (tw) | tw | CO/UV–VIS | [187,198] |
FAM | CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC GGG AAT GGA GTG CTG CGT GCT GCG GGG ATC CGA GCT CCA CGT G | - | 10 (b) | lw | FL | [34,187] | |
apt: biotin cDNA: FAM | apt: GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG cDNA: ACA CAA CAC TCG CAC CAC AAC CGG GCA CCA GCG TCA ACG T | - | - | 1.85 (b) (0.85 × 10−6 g/L) | m, h, p | FL | [82,187] |
- | apt: CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC GGG AAT GGA GTG CTG CGT GCT GCG GGG ATC CGA GCT CCA CGT G cDNA I: AAT TCC GTA CG cDNA II: CGT ACG GAA TT | cDNA I: FAM | - | 10 (b) | m, tw | FL | [199] |
FAM | CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC TGG GGG AAT GGA GTG CTG CGT GCT GCG GGG ATC CGA GCT CCA CGT G | - | - | 54.3 (b) (25 × 10−6 g/L) | tw, rw | FL | [200] |
apt: NH2 cDNA: NH2 | apt: GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG cDNA: CGG ATC CAC ACA ACA | - | - | 0.078 (b) (0.036 × 10−6 g/L) | m | ECL | [40,187] |
apt: NH2 cDNA: NH2 | apt: GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG cDNA: CAA CGT GCT AGC GAA | - | - | 0.12 (b) (0.054 × 10−6 g/L) | m | ECL | [187,201] |
apt: biotin cDNA: SH-(CH2)6 | apt: GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT GTG GAT CCG AGC TCC ACG TG cDNA: AAA ATC CAC ACA ACA | - | - | 0.043 (b) (0.02 × 10−6 g/L) | m | ECL | [93] |
NH2-(CH2)6 | GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG | - | - | 0.9 (b) | d | PEC/EIS | [187,202] |
cDNA I: SH cDNA II: SH cDNA III: SH | apt: GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG cDNA I: CAC GTG GAG CTC GGA TCC ACA CAA CAC TCG CAC CAC AAC CGG GCA CCA GCG TCA ACG TGC TAG CGA ATT CC cDNA II: CAC GTG GAG CTC GGA TCC AC cDNA III: CAC GTG GAG CTC GGA TCC ACA CAA CAC TCG CAC CA | cDNA I: (TTT)20-ACG TG-NH2 cDNA II: (TTT)5-ACG TG-NH2 cDNA III: (TTT)10-ACG TG-NH2 | - | 0.19 (b) | m, w, c | PEC | [203] |
- | GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG | C3-SH | 11.13 | 1 (b) | - | AEC/SWV | [187,188] |
cDNA: SH-(CH2)6 | apt: CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC GGG AAT GGA GTG CTG CGT GCT GCG GGG ATC CGA GCT CCA CGT G cDNA: GCA TGC CTT AAG CGA TCG CCA TAT TAT AAG GCA TGC | cDNA: ferrocene | - | 21.3 (b) (9.8 × 10−6 g/L) | mb, ms, mu | AEC/SWV | [204] |
biotin C3 | GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC CGG TTG TGG TGC GAG TGT TGT | - | - | 0.005 (b) (2.3 × 10−9 g/L) | h | AEC/CV | [205] |
- | TCA CGT TGA CGC TGG TGC CCG GTT GTG GTG GGA GTG TTG TGT | (CH2)6-NH2 | 4.7 | 0.00018 (b) | m | AEC/SWV | [107,187] |
cDNA I: SH-(CH2)6 cDNA II: NH2-(CH2)6 | apt: ACG TTG ACG CTG GTG CCC GGT TGT GGT GGG AGT GTT GTG T cDNA I: CTA CCA TTT TTT CGC CGA CC cDNA II: GGT CGG CGA AAA AAT GGT AG | cDNA I: (CH2)6-PHO | - | 0.22 (b) (0.1 × 10−6 g/L) | m | AEC/SWV | [173] |
cDNA I: NH2-(CH2)6 cDNA II: SH-(CH2)6 | apt: ACG TTG ACG CTG GTG CCC GGT TGT GGT GCG AGT GTT GTG TCC TAT GCA GTT T cDNA I: TTT CGC TGT GAC ACA CAA CAC TCG GT cDNA II: TTT GTG CAT AGG GTC ACAG | - | - | 0.0000048 (b) | m | AEC/SWV | [174] |
SH | CGA CGC ACA GTC GCT GGT GCG TAC CTG GTT GCC GTT GTG T | - | - | 0.498 (b) | h | AEC/DPV | [206] |
5′ Linker and Spacer | Aptamer Sequence 5′→3 | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | I: CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G II: CGT ACG GAA TTC GCT AGC GGG GGC ACA CAT GTA GGT GCT GTC CAG GTG TGG TTG TGG TGG ATC CGA GCT CCA CGT G III: CGT ACG GAA TTC GCT AGC GGG CGG GGG TGC TGG GGG AAT GGA GTG CTG CGT GCT GCG G GG ATC CGA GCT CCA CGT G | - | I 63 II 70 III 100 | - | - | - | [194] |
NH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | C6 | 63.6 | 42.8 (hu) (0.019 × 10−3 g/L) 83.3 (p) (0.037 × 10−3 g/L) | hu, hp | ESI-IMS | [207,228] |
II biotin | I CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G II GAG CCU AAA ACA UAC CAG AGA AAU CUG GAG AGG UGA AGA AUA CGA CCA CCU AGG CUC | I biotin | I: 63 II: 0.77 | I: 32.7 (b) I: 95.2 (m) II: 21.0 (b) II: 35.1 (m) | m | ELAA | [194,209,210] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | biotin | 63.6 | 0.018 (b) (7.8 × 10−9 g/L) 0.022 (h) (9.6 × 10−9 g/L) | h | ELAA | [194,240] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | biotin | - | 0.15 (b) (0.0659 × 10−6 g/L) 0.22 (h) (0.0978 × 10−6 g/L) | h | ELAA | [194,241] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 11.6 (b) | m | SERS | [194,216] |
apt: NH2 cDNA: NH2 | apt: CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G cDNA: CAA CGT GCT AGC GAA | apt: NH2 | - | 0.0023 (b) (0.001 × 10−6 g/L) | m | SERS | [217] |
- | AGG TGC AC | - | 1.067 | 0.1 (b) | - | CO/UV–VIS | [195] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 122 (b) | m | CO/UV–VIS | [194,211] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 45.8 (uw) | m | CO/UV–VIS | [194,212] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | 63.6 | 87.8 (b) (0.039 × 10−3 g/L) | m | CO/UV–VIS | [194,242] |
- | CTC TCT CGG TGG TGT CTC TC | - | - | 0.266 (b) 0.347 (m) 0.393 (rs) | m, rs | CO/UV–VIS | [195,213] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | 3.4 | - | - | CO/UV–VIS | [194,195,214] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.0023 (b) (0.001 × 10−6 g/L) | h | CO/UV–VIS | [215] |
I: (CT)4 II: (CT)4C II: (CT)5 cDNA: FAM | I, II, III: GGG GGC ACA CAT GTA GGT GCT GTC CAG GTG TGG TTG TGG T cDNA: GAG GAG AGA GAG AGA TCC TC | I: (TC)3 II: (CT)3C III: (TC)4 cDNA: black hole quencher | I: 2.09 (b) I: 7.30 (tw) I: 8.48 (rs) | tw, rs | FL | [218] | |
- | apt: TCC CTT CCG GTG GTG CTT CCC T G-quadruplex: ATG GGA AGG GAG GGA TGG GT | - | - | 0.97 (b) | hs | FL | [195,219] |
- | apt: CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G cDNA: CAA CGT GCT AGC GAA | - | - | 0.014 (b) (6.2 × 10−9 g/L) | m, p | FL | [194,220] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.65 (uw) (0.29 × 10−6 g/L) | m | FL | [194,221] |
apt: biotin cDNA: SH-(CH2)6 | apt: CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G cDNA: GGA CCA ACC CAA | - | - | 0.045 (b) (0.02 × 10−6 g/L) | m | ECL | [93] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 5.3 (b) | lw | PEC | [208,242] |
SH-(CH2)6 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.1 (b) | m | PEC | [222,241] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | 4.5 (b) | w | PEC | [223,242] | |
- | ACT CTT ATA CGG GAG CCA ACA CCA AAG CTT CTG CGC CAC ACC ATA TGA GAG CAG GTG GTA CGG ATA AGC T | - | 52.5 ± 3.6 | 22.5 (b) (1 × 10−5 g/L) | m | IEC/EIS | [224] |
SH-(CH2)6 | GTC TCT GTG TGC GCC AGA GAA CAC TGG GGC AGA TAT GGG CCA GCA CAG AAT GAG GCC C | - | - | 6.75 (b) (3.0 × 10−6 g/L) | m | IEC/EIS | [147,225] |
SH-(CH2)6 | GTC TCT GTG TGC GCC AGA GAA CAC TGG GGC AGA TAT GGG CCA GCA CAG AAT GAG GCC C | - | - | 1.0 (b) | m | IEC/EIS | [147,226] |
NH2-CH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 1.0 (b) | m | IEC/EIS | [227] |
biotin-T5 | TTT TTG GTA CGG AAT TCG CTA GCC CCC CHG CAG GCC ACG GCT TGG GTT GGT CCC ACT GCG CGT GGA TCC GAG CTC CAC GTG | - | 63.6 | 10 (b) | - | AEC/SWV | [194,228] |
- | - | - | - | 2.25 (b) (1.0 × 10−6 g/L) | m | AEC/CV | [229] |
NH2-CH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 5.0 (b) | m | AEC/DPV | [194,230] |
NH2-(CH2)6 | - | - | 51800 | 2.25 (b) (1.0 × 10−6 g/L) | m | AEC/DPV | [231] |
NH2-CH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.32 (b) | m | AEC/DPV | [194,232] |
NH2-CH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.0042 (b) | m | AEC/CV IEC/EIS | [194,233] |
NH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.000029 (b) | d | AEC/DPV | [234] |
SH-(CH2)6 | GTC TCT GTG TGC GCC AGA GAA CAC TGG GGC AGA TAT GGG CCA GCA CAG AAT GAG GCC C | - | 10 (b) | m | AEC/CV | [147,235] | |
NH2 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | aptasensor I: 0.0003 (b, EIS) 0.029 (b, DPV) aptasensor II: 0.0000038 (b, EIS) 0.00031 (b, DPV) | m, d, h, bs | AEC/DPV IEC/EIS | [236] | |
cDNA I: SH cDNA II: SH | apt: CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G cDNA I: CCA TCA GAC CTA CCA AAC ACG TGG AGC T cDNA II: AGA CCT ACC AAA CGA ACC CA cDNA III: AAT TCC GTA CGA AAC CAT CCA GAC TAC C | cDNA III: SH | 63 | 0.45 (b) 0.74 (m) 0.71 (s) | m, hs | AEC/DPV | [194,237] |
cap: SH-(CH2)6 | apt: CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G cap: ATG TAG CTA GGT G cDNA I: CGT GTA GCA CAG CAT CAC CAC CTA GC cDNA II: GCT ACA CGC GTT T | cS II: biotin | - | 20 (b) | m | AEC/SWV | [41] |
- | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.6 (b) | - | AEC/DPV | [238] |
SH-(CH2)6 | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | - | - | 0.74 (b) (0.33 × 10−6 g/L) | m | AEC/DPV | [147,239] |
5′ Linker and Spacer | Aptamer Sequence 5′→3′ | 3′ Linker and Spacer | KD (nM) | LOD (nM) | RSA | Sensor Type/Method | Ref 1 |
---|---|---|---|---|---|---|---|
- | I: GTT AGA TGG GAG GTC ATA TAG C II: GAG GGC AAC GAG TGT TTA TAG A | - | I: 150 II: 84 | II: 32.2 (b) II: 32.2 (m) (10 × 10−6 g/L) | m | FL | [243] |
- | GAG GGC AAC GAG TGT TTA TAG A | FAM | - | - | - | FL, CO/UV–VIS | [243,246] |
- | GAG GGC AAC GAG TGT TTA TAG A | - | - | 161.1 (b) (50 × 10−6 g/L) | - | CO/UV–VIS | [243,244] |
- | GAG GGC AAC GAG TGT TTA TAG A | - | 84 | - | - | CO/UV–VIS | [75,243] |
- | GAG GGC AAC GAG TGT TTA TAG A | - | - | 32.2 (b) (10 × 10−6 g/L) | m | CO/UV–VIS | [246] |
- | GAG GGC AAC GAG TGT TTA TAG A | - | - | 22.56 (b) | lw | CO | [247] |
- | apt: GAG GGC AAC GAG TGT TTA TAG A cDNA: CGT TGC CCT C | apt: biotin cDNA: biotin | - | 0.35 (b) (0.11 × 10−6 g/L) | f | FL | [243,248] |
NH2 | GAG GGC AAC GAG TGT TTA TAG A | FAM | - | 0.55 (b) | m, d | PEC | [249] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. https://doi.org/10.3390/bios8020054
Mehlhorn A, Rahimi P, Joseph Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors. 2018; 8(2):54. https://doi.org/10.3390/bios8020054
Chicago/Turabian StyleMehlhorn, Asol, Parvaneh Rahimi, and Yvonne Joseph. 2018. "Aptamer-Based Biosensors for Antibiotic Detection: A Review" Biosensors 8, no. 2: 54. https://doi.org/10.3390/bios8020054
APA StyleMehlhorn, A., Rahimi, P., & Joseph, Y. (2018). Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors, 8(2), 54. https://doi.org/10.3390/bios8020054