Detection Methods of Human and Animal Influenza Virus—Current Trends
Abstract
:1. Introduction
2. Influenza Pathogenesis
3. Influenza Diagnosis
4. Influenza Virus Conventional Detection Methods
4.1. Rapid Influenza Diagnostic Tests (RIDTs)
4.2. Immunofluorescence Assays
4.3. Serological Assays
4.4. Cell Culture Based Detection
4.5. Nucleic Acid-Based Tests (NATs)
4.6. Next-Generation Sequencing Based Methods
5. Novel Detection Methods of Influenza Virus
5.1. Microchip Approaches
5.2. Reuse of Known Devices
5.3. Electrical-Based Detections
5.4. Optical-Based Detections
5.5. Modifications of Standard Methods
5.6. Other Novel Ideas
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zaki, S.R.; Keating, M.K. 13—Viral Diseases. In Pulmonary Pathology (Second Edition); Zander, D.S., Farver, C.F., Eds.; Foundations in Diagnostic Pathology; Taylor & Francis: Philadelphia, PA, USA, 2018; pp. 244–288. ISBN 978-0-323-39308-9. [Google Scholar]
- Barrett, B. Chapter 18—Viral Upper Respiratory Infection. In Integrative Medicine (Fourth Edition); Rakel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 170–179.e7. ISBN 978-0-323-35868-2. [Google Scholar]
- Paules, C.; Subbarao, K. Influenza. Lancet 2017, 390, 697–708. [Google Scholar] [CrossRef]
- Past Pandemics | Pandemic Influenza (Flu) | CDC. Available online: https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html (accessed on 6 September 2018).
- Cui, X.; Das, A.; Dhawane, A.N.; Sweeney, J.; Zhang, X.; Chivukula, V.; Iyer, S.S. Highly specific and rapid glycan based amperometric detection of influenza viruses. Chem. Sci. 2017, 8, 3628–3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.E.; Holstein, C.A.; Strauch, E.-M.; Bennett, S.; Chevalier, A.; Nelson, J.; Fu, E.; Baker, D.; Yager, P. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein. Anal. Chem. 2017, 89, 6608–6615. [Google Scholar] [CrossRef] [PubMed]
- Influenza (Seasonal). Available online: http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 6 September 2018).
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26 (Suppl. 4), D49–D53. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Qi, J.; Khedri, Z.; Diaz, S.; Yu, H.; Chen, X.; Varki, A.; Shi, Y.; Gao, G.F. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism. PLoS Pathog. 2016, 12, e1005411. [Google Scholar] [CrossRef]
- McCauley, J.W.; Mahy, B.W. Structure and function of the influenza virus genome. Biochem. J. 1983, 211, 281–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, J.W. Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 1993, 90, 4171–4175. [Google Scholar] [CrossRef] [PubMed]
- WHO | Avian and Other Zoonotic Influenza. Available online: http://www.who.int/influenza/human_animal_interface/en/ (accessed on 6 September 2018).
- Gavin, P.J.; Thomson, R.B. Review of Rapid Diagnostic Tests for Influenza. Clin. Appl. Immunol. Rev. 2004, 4, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Orthomyxoviridae—Negative Sense RNA Viruses—Negative Sense RNA Viruses. 2011. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/209/orthomyxoviridae (accessed on 6 September 2018).
- Manzoor, R.; Igarashi, M.; Takada, A. Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Faccini, S.; De Mattia, A.; Chiapponi, C.; Barbieri, I.; Boniotti, M.B.; Rosignoli, C.; Franzini, G.; Moreno, A.; Foni, E.; Nigrelli, A.D. Development and evaluation of a new Real-Time RT-PCR assay for detection of proposed influenza D virus. J. Virol. Methods 2017, 243, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-T.; Wang, C.-H.; Chang, C.-P.; Lee, G.-B. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay. Biosens. Bioelectron. 2016, 82, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Shelby, T.; Banerjee, T.; Kallu, J.; Sulthana, S.; Zegar, I.; Santra, S. Novel magnetic relaxation nanosensors: An unparalleled “spin” on influenza diagnosis. Nanoscale 2016, 8, 19605–19613. [Google Scholar] [CrossRef] [PubMed]
- Hushegyi, A.; Bertok, T.; Damborsky, P.; Katrlik, J.; Tkac, J. An ultrasensitive impedimetric glycan biosensor with controlled glycan density for detection of lectins and influenza hemagglutinins. Chem. Commun. 2015, 51, 7474–7477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peaper, D.R.; Landry, M.L. Rapid diagnosis of influenza: State of the art. Clin. Lab. Med. 2014, 34, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Storch, G.A. Rapid diagnostic tests for influenza. Curr. Opin. Pediatr. 2003, 15, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Dehaen, W.; Radecki, J.; Radecka, H. An electrochemical immunosensor based on a 4,4′-thiobisbenzenethiol self-assembled monolayer for the detection of hemagglutinin from avian influenza virus H5N1. Sens. Actuators B Chem. 2016, 228, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Couch, R.B. Seasonal Inactivated Influenza Virus Vaccines. Vaccine 2008, 26, D5–D9. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Cao, C.; Lin, Y.; Zhong, L.; Xie, S.; Wang, X.; Yin, S.; Xu, Z.; Dai, Y.; Li, Z.; et al. Detection of a novel highly pathogenic H7 influenza virus by duplex real-time reverse transcription polymerase chain reaction. J. Virol. Methods 2017, 246, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Rowell, J.; Lo, C.-Y.; Price, G.E.; Misplon, J.A.; Epstein, S.L.; Garcia, M. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice. Vaccine 2018, 36, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Ultrasensitive Detection and Glycan Analysis of a Prostate Cancer Biomarker | Atlas of Science. Available online: https://atlasofscience.org/ultrasensitive-detection-and-glycan-analysis-of-a-prostate-cancer-biomarker/ (accessed on 6 September 2018).
- Dinh, H.; Zhang, X.; Sweeney, J.; Yang, Y.; He, Y.; Dhawane, A.; Iyer, S.S. Glycan based Detection and Drug Susceptibility of Influenza Virus. Anal. Chem. 2014, 86, 8238–8244. [Google Scholar] [CrossRef] [PubMed]
- Influenza Signs and Symptoms and the Role of Laboratory Diagnostics | Seasonal Influenza (Flu) | CDC. Available online: https://www.cdc.gov/flu/professionals/diagnosis/labrolesprocedures.htm (accessed on 6 September 2018).
- WHO. Use of Influenza Rapid Diagnostic Tests; WHO: Rome, Italy, 2010; ISBN 978-92-4-159928-3. [Google Scholar]
- McMullen, A.R.; Anderson, N.W.; Burnham, C.-A.D.; Education Committee of the Academy of Clinical Laboratory Physicians and Scientists. Pathology Consultation on Influenza Diagnostics. Am. J. Clin. Pathol. 2016, 145, 440–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koski, R.R.; Klepser, M.E. A systematic review of rapid diagnostic tests for influenza: Considerations for the community pharmacist. J. Am. Pharm. Assoc. 2017, 57, 13–19. [Google Scholar] [CrossRef] [PubMed]
- González-Del Vecchio, M.; Catalán, P.; de Egea, V.; Rodríguez-Borlado, A.; Martos, C.; Padilla, B.; Rodríguez-Sanchez, B.; Bouza, E. An algorithm to diagnose influenza infection: Evaluating the clinical importance and impact on hospital costs of screening with rapid antigen detection tests. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- WHO | Recommendations and Laboratory Procedures for Detection of Avian Influenza A(H5N1) Virus in Specimens from Suspected Human Cases. Available online: http://www.who.int/influenza/resources/documents/h5n1_laboratory_procedures/en/ (accessed on 6 September 2018).
- Ryu, S.W.; Suh, I.B.; Ryu, S.-M.; Shin, K.S.; Kim, H.-S.; Kim, J.; Uh, Y.; Yoon, K.J.; Lee, J.-H. Comparison of three rapid influenza diagnostic tests with digital readout systems and one conventional rapid influenza diagnostic test. J. Clin. Lab. Anal. 2017. [Google Scholar] [CrossRef] [PubMed]
- Table 2: Characteristics of Rapid Influenza Diagnostic Tests (Antigen Detection Only). Available online: https://www.cdc.gov/flu/pdf/professionals/diagnosis/rapid-diagnostics-table-2.pdf (accessed on 6 September 2018).
- Rapid Influenza Diagnostic Tests | Seasonal Influenza (Flu) | CDC. Available online: https://www.cdc.gov/flu/professionals/diagnosis/clinician_guidance_ridt.htm (accessed on 6 September 2018).
- Akaishi, Y.; Matsumoto, T.; Harada, Y.; Hirayama, Y. Evaluation of the rapid influenza detection tests GOLD SIGN FLU and Quick Navi-Flu for the detection of influenza A and B virus antigens in adults during the influenza season. Int. J. Infect. Dis. 2016, 52, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Melchers, W.J.G.; Kuijpers, J.; Sickler, J.J.; Rahamat-Langendoen, J. Lab-in-a-tube: Real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol. 2017, 89, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Gómez, S.; Prieto, C.; Vera, C.; Otero, J.R.; Folgueira, L. Evaluation of a new rapid diagnostic test for the detection of influenza and RSV. Enferm. Infecc. Microbiol. Clin. 2016, 34, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Moesker, F.M.; van Kampen, J.J.A.; Aron, G.; Schutten, M.; van de Vijver, D.A.M.C.; Koopmans, M.P.G.; Osterhaus, A.D.M.E.; Fraaij, P.L.A. Diagnostic performance of influenza viruses and RSV rapid antigen detection tests in children in tertiary care. J. Clin. Virol. 2016, 79, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen Van, J.C.; Caméléna, F.; Dahoun, M.; Pilmis, B.; Mizrahi, A.; Lourtet, J.; Behillil, S.; Enouf, V.; Le Monnier, A. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV. Diagn. Microbiol. Infect. Dis. 2016, 85, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Sanbonmatsu-Gámez, S.; Pérez-Ruiz, M.; Lara-Oya, A.; Pedrosa-Corral, I.; Riazzo-Damas, C.; Navarro-Marí, J.M. Analytical performance of the automated multianalyte point-of-care mariPOC® for the detection of respiratory viruses. Diagn. Microbiol. Infect. Dis. 2015, 83, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Enders, M.; Terletskaia-Ladwig, E. Evaluation of the Becton Dickinson Rapid Influenza Diagnostic Tests in Outpatients in Germany during Seven Influenza Seasons. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Ruest, A.; Michaud, S.; Deslandes, S.; Frost, E.H. Comparison of the Directigen Flu A + B Test, the QuickVue Influenza Test, and Clinical Case Definition to Viral Culture and Reverse Transcription-PCR for Rapid Diagnosis of Influenza Virus Infection. J. Clin. Microbiol. 2003, 41, 3487–3493. [Google Scholar] [CrossRef] [PubMed]
- Mese, S.; Akan, H.; Badur, S.; Uyanik, A. Istanbul Rapid Test Study Group Analytical performance of the BD veritorTM system for rapid detection of influenza virus A and B in a primary healthcare setting. BMC Infect. Dis. 2016, 16, 481. [Google Scholar] [CrossRef] [PubMed]
- Nolte, F.S.; Gauld, L.; Barrett, S.B. Direct Comparison of Alere i and cobas Liat Influenza A and B Tests for Rapid Detection of Influenza Virus Infection. J. Clin. Microbiol. 2016, 54, 2763–2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.; McPhie, K.; Druce, J.; Birch, C.; Dwyer, D.E. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses. J. Med. Virol. 2009, 81, 1918–1922. [Google Scholar] [CrossRef] [PubMed]
- Piché-Renaud, P.-P.; Turcot, J.; Chartrand, C.; Gravel, J.; Labrecque, M.; Vallières, É.; Renaud, C. Evaluation of a fluorescent immunoassay rapid test (SofiaTM) for detection of influenza A+B and RSV in a tertiary pediatric setting. Diagn. Microbiol. Infect. Dis. 2016, 84, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Binnicker, M.J.; Espy, M.J.; Irish, C.L.; Vetter, E.A. Direct Detection of Influenza A and B Viruses in Less Than 20 Minutes Using a Commercially Available Rapid PCR Assay. J. Clin. Microbiol. 2015, 53, 2353–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, C.; Hirsch, H.H. Diagnostic performance of near-patient testing for influenza. J. Clin. Virol. 2015, 67, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, J.C.; Mosquera, M.M.; de Lazzari, E.; Martínez, E.; Torner, N.; Isanta, R.; de Molina, P.; Pumarola, T.; Marcos, M.A.; Vila, J.; et al. Evaluation of a new, rapid, simple test for the detection of influenza virus. BMC Infect. Dis. 2015, 15, 44. [Google Scholar] [CrossRef]
- Yoon, J.; Yun, S.G.; Nam, J.; Choi, S.-H.; Lim, C.S. The use of saliva specimens for detection of influenza A and B viruses by rapid influenza diagnostic tests. J. Virol. Methods 2017, 243, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Rapid Diagnostic Testing for Influenza: Information for Clinical Laboratory Directors | Seasonal Influenza (Flu) | CDC. Available online: https://www.cdc.gov/flu/professionals/diagnosis/rapidlab.htm (accessed on 6 September 2018).
- Vemula, S.V.; Zhao, J.; Liu, J.; Wang, X.; Biswas, S.; Hewlett, I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-N.; Weber, K.M.; Limmer, R.A.; Horne, B.J.; Stevens, J.; Schwerzmann, J.; Wrammert, J.; McCausland, M.; Phipps, A.J.; Hancock, K.; et al. Evaluation of multiplex assay platforms for detection of influenza hemagglutinin subtype specific antibody responses. J. Virol. Methods 2017, 243, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Russell, M.L.; Brewer, A.; Newton, J.; Singh, P.; Ward, B.J.; Loeb, M. Single radial haemolysis compared to haemagglutinin inhibition and microneutralization as a correlate of protection against influenza A H3N2 in children and adolescents. Influenza Other Respir. Viruses 2017, 11, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Leirs, K.; Tewari Kumar, P.; Decrop, D.; Pérez-Ruiz, E.; Leblebici, P.; Van Kelst, B.; Compernolle, G.; Meeuws, H.; Van Wesenbeeck, L.; Lagatie, O.; et al. Bioassay Development for Ultrasensitive Detection of Influenza A Nucleoprotein Using Digital ELISA. Anal. Chem. 2016, 88, 8450–8458. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Guo, Y.; Zhao, M.; Sun, M.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G. Highly sensitive colorimetric immunosensor for influenza virus H5N1 based on enzyme-encapsulated liposome. Anal. Chim. Acta 2017, 963, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Vemula, S.V.; Zhao, J.; Du, B.; Mohan, H.; Liu, J.; El Mubarak, H.S.; Landry, M.L.; Hewlett, I. A highly sensitive europium nanoparticle-based immunoassay for detection of influenza A/B virus antigen in clinical specimens. J. Clin. Microbiol. 2014, 52, 4385–4387. [Google Scholar] [CrossRef] [PubMed]
- Table 1. FDA-cleared RT-PCR Assays and Other Molecular Assays for Influenza Viruses. Available online: https://www.cdc.gov/flu/pdf/professionals/diagnosis/table1-molecular-assays.pdf (accessed on 6 September 2018).
- Lee, M.S.; Chang, P.C.; Shien, J.H.; Cheng, M.C.; Shieh, H.K. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J. Virol. Methods 2001, 97, 13–22. [Google Scholar] [CrossRef]
- Sueki, A.; Matsuda, K.; Yamaguchi, A.; Uehara, M.; Sugano, M.; Uehara, T.; Honda, T. Evaluation of saliva as diagnostic materials for influenza virus infection by PCR-based assays. Clin. Chim. Acta 2016, 453, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-T.; Curran, M.D.; Ellis, J.S.; Parmar, S.; Ritchie, A.V.; Sharma, P.I.; Allain, J.-P.; Jalal, H.; Zambon, M.; Lee, H.H. Nucleic acid dipstick test for molecular diagnosis of pandemic H1N1. J. Clin. Microbiol. 2010, 48, 3608–3613. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.; Hibbitts, S.; Owen, N.; Corden, S.A.; Harrison, G.; Fox, J.; Gelder, C.; Westmoreland, D. Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A. J. Med. Virol. 2004, 74, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.L.M.; Leung, C.S.W.; Chan, K.H.; Lee, J.H.C.; Yuen, K.Y.; Guan, Y.; Peiris, J.S.M. Detection of human influenza A viruses by loop-mediated isothermal amplification. J. Clin. Microbiol. 2005, 43, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Parida, M.; Shukla, J.; Sharma, S.; Ranghia Santhosh, S.; Ravi, V.; Mani, R.; Thomas, M.; Khare, S.; Rai, A.; Kant Ratho, R.; et al. Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for rapid and real-time detection of the swine-origin influenza A H1N1 virus. J. Mol. Diagn. 2011, 13, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of Next-Generation Sequencing Systems. Available online: https://www.hindawi.com/journals/bmri/2012/251364/ (accessed on 6 September 2018).
- Quail, M.A.; Smith, M.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, T.A.; Chevalier, A.; Song, Y.; Dreyfus, C.; Fleishman, S.J.; De Mattos, C.; Myers, C.A.; Kamisetty, H.; Blair, P.; Wilson, I.A.; et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat. Biotechnol. 2012, 30, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radecka, H.; Radecki, J. Electrochemical Sensors for Detections of Influenza Viruses: Fundamentals and Applications. In Steps Forwards in Diagnosing and Controlling Influenza; InTech: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Novel Nano Biosensor Developed for Rapid Detection of Flu Virus. Available online: https://www.sciencedaily.com/releases/2016/03/160314091754.htm (accessed on 6 September 2018).
- Derkus, B. Applying the miniaturization technologies for biosensor design. Biosens. Bioelectron. 2016, 79, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, K.; Saito, M.; Kondoh, K.; Hossain, M.M.; Koketsu, R.; Sasaki, T.; Nagatani, N.; Ikuta, K.; Tamiya, E. Rapid detection for primary screening of influenza A virus: Microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst 2011, 136, 2064–2068. [Google Scholar] [CrossRef] [PubMed]
- Lodes, M.J.; Suciu, D.; Elliott, M.; Stover, A.G.; Ross, M.; Caraballo, M.; Dix, K.; Crye, J.; Webby, R.J.; Lyon, W.J.; et al. Use of semiconductor-based oligonucleotide microarrays for influenza a virus subtype identification and sequencing. J. Clin. Microbiol. 2006, 44, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Birnbaumer, G.M.; Lieberzeit, P.A.; Richter, L.; Schirhagl, R.; Milnera, M.; Dickert, F.L.; Bailey, A.; Ertl, P. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab Chip 2009, 9, 3549–3556. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.-J.; Cuc, B.T.; Sung, H.W.; Park, H. Evaluation of a smartphone-based rapid fluorescent diagnostic system for H9N2 virus in specific-pathogen-free chickens. Arch. Virol. 2016, 161, 2249–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Zhang, J.; Xu, F.; Wen, X.; Li, P.; Zhang, X.; Qiao, S.; Ge, S.; Xia, N.; Qian, S.; et al. A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid. Nanofluid. 2017, 21, 43. [Google Scholar] [CrossRef]
- Zhang, X.; Dhawane, A.N.; Sweeney, J.; He, Y.; Vasireddi, M.; Iyer, S.S. Electrochemical assay to detect influenza viruses and measure drug susceptibility. Angew. Chem. Int. Ed. Engl. 2015, 54, 5929–5932. [Google Scholar] [CrossRef] [PubMed]
- Kłos-Witkowska, A. The phenomenon of fluorescence in immunosensors. Acta Biochim. Pol. 2016, 63, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Krejcova, L.; Hynek, D.; Michalek, P.; Milosavljevic, V.; Kopel, P.; Zitka, O.; Konecna, M.; Kynicky, J.; Adam, V.; Hubalek, J.; et al. Electrochemical Sensors and Biosensors for Influenza Detection—Literature Survey 2012–2013. Int. J. Electrochem. Sci. 2014, 9, 3440–3448. [Google Scholar]
- Horiguchi, Y.; Goda, T.; Matsumoto, A.; Takeuchi, H.; Yamaoka, S.; Miyahara, Y. Direct and label-free influenza virus detection based on multisite binding to sialic acid receptors. Biosens. Bioelectron. 2017, 92, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Nidzworski, D.; Siuzdak, K.; Niedziałkowski, P.; Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Weiher, P.; Sawczak, M.; Wnuk, E.; Goddard, W.A.; et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep. 2017, 7, 15707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Cui, H.; Wu, J.; Eda, S. A PCR-free point-of-care capacitive immunoassay for influenza A virus. Microchim. Acta 2017, 184, 1649–1657. [Google Scholar] [CrossRef]
- Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Radecki, J.; Radecka, H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens. Bioelectron. 2014, 55, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.-H.; Zhuo, Y.; Yuan, R.; Chai, Y.-Q. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens. Bioelectron. 2015, 69, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Veerapandian, M.; Hunter, R.; Neethirajan, S. Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta 2016, 155, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Hong, S.; Jang, J. Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform. Sci. Rep. 2017, 7, 42771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsubara, T.; Ujie, M.; Yamamoto, T.; Akahori, M.; Einaga, Y.; Sato, T. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proc. Natl. Acad. Sci. USA 2016, 113, 8981–8984. [Google Scholar] [CrossRef] [PubMed]
- Nidzworski, D.; Pranszke, P.; Grudniewska, M.; Król, E.; Gromadzka, B. Universal biosensor for detection of influenza virus. Biosens. Bioelectron. 2014, 59, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017, 4, 753–777. [Google Scholar] [CrossRef]
- Mohammadi, J.; Moattari, A.; Sattarahmady, N.; Pirbonyeh, N.; Yadegari, H.; Heli, H. Electrochemical biosensing of influenza A subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal. Chim. Acta 2017, 979, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diba, F.S.; Kim, S.; Lee, H.J. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens. Bioelectron. 2015, 72, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Wiriyachaiporn, N.; Sirikett, H.; Maneeprakorn, W.; Dharakul, T. Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim. Acta 2017, 184, 1827–1835. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Tran, V.T.; Suzuki, T.; Neethirajan, S.; Lee, J.; Park, E.Y. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Sci. Rep. 2017, 7, 44495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Ouyang, W.; Xie, P.; Lin, Y.; Qiu, B.; Lin, Z.; Chen, G.; Guo, L. Highly Uniform Gold Nanobipyramids for Ultrasensitive Colorimetric Detection of Influenza Virus. Anal. Chem. 2017, 89, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, J.; Petrochenko, P.; Zheng, J.; Hewlett, I. Sensitive detection of influenza viruses with Europium nanoparticles on an epoxy silica sol-gel functionalized polycarbonate-polydimethylsiloxane hybrid microchip. Biosens. Bioelectron. 2016, 86, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, R. Aptasensors for Detection of Avian Influenza Virus H5N1. Methods Mol. Biol. (Clifton NJ) 2017, 1572, 379–402. [Google Scholar] [CrossRef]
- Karash, S.; Wang, R.; Kelso, L.; Lu, H.; Huang, T.J.; Li, Y. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J. Virol. Methods 2016, 236, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.-M.; Hashim, U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 2016, 34, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Appl. Mater. Interfaces 2017, 9, 14162–14170. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, Z.; Xie, Z.; Luo, S.; Xie, L.; Huang, L.; Fan, Q.; Zhang, Y.; Wang, S.; Zeng, T. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal. Chim. Acta 2016, 913, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-H.; Zhuo, Y.; Yuan, R.; Chai, Y.-Q. A nanohybrid of platinum nanoparticles-porous ZnO-hemin with electrocatalytic activity to construct an amplified immunosensor for detection of influenza. Biosens. Bioelectron. 2016, 78, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Benhua, Z.; Wang, R.; Wang, Y.; Li, Y. LabVIEW-based impedance biosensing system for detection of avian influenza virus. Int. J. Agric. Biol. Eng. 2016, 9, 116–122. [Google Scholar] [CrossRef]
- Han, J.-H.; Lee, D.; Chew, C.H.C.; Kim, T.; Pak, J.J. A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens. Actuators B Chem. 2016, 228, 36–42. [Google Scholar] [CrossRef]
- Mubarok, A.Z.; Mani, V.; Huang, C.-H.; Chang, P.-C.; Huang, S.-T. Label-free electrochemical detection of neuraminidase activity: A facile whole blood diagnostic probe for infectious diseases. Sens. Actuators B Chem. 2017, 252, 641–648. [Google Scholar] [CrossRef]
- Hushegyi, A.; Pihíková, D.; Bertok, T.; Adam, V.; Kizek, R.; Tkac, J. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens. Bioelectron. 2016, 79, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Wang, L.; Li, S. Influenza A Virus–Host Protein Interactions Control Viral Pathogenesis. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Klemm, C.; Boergeling, Y.; Ludwig, S.; Ehrhardt, C. Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends Microbiol. 2018, 26, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, Y.; Noda, T.; Kawakami, E.; Akkina, R.; Kawaoka, Y. Identification of Novel Influenza A Virus Proteins Translated from PA mRNA. J. Virol. 2013, 87, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xu, G.; Sun, Y.; Qi, L.; Wang, J.; Kong, W.; Sun, H.; Pu, J.; Chang, K.-C.; Liu, J. PA-X is a virulence factor in avian H9N2 influenza virus. J. Gen. Virol. 2015, 96, 2587–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miodek, A.; Sauriat-Dorizon, H.; Chevalier, C.; Delmas, B.; Vidic, J.; Korri-Youssoufi, H. Direct electrochemical detection of PB1-F2 protein of influenza A virus in infected cells. Biosens. Bioelectron. 2014, 59, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Karn-orachai, K.; Sakamoto, K.; Laocharoensuk, R.; Bamrungsap, S.; Songsivilai, S.; Dharakul, T.; Miki, K. Extrinsic surface-enhanced Raman scattering detection of influenza A virus enhanced by two-dimensional gold@silver core–shell nanoparticle arrays. RSC Adv. 2016, 6, 97791–97799. [Google Scholar] [CrossRef] [Green Version]
- Maneeprakorn, W.; Bamrungsap, S.; Apiwat, C.; Wiriyachaiporn, N. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Adv. 2016, 6, 112079–112085. [Google Scholar] [CrossRef]
- Liu, W.; Gómez-Durán, C.F.A.; Smith, B.D. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage. J. Am. Chem. Soc. 2017, 139, 6390–6395. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, L.; Zhang, F.; Song, Z.; Hu, Y.; Ji, Y.; Shen, J.; Li, B.; Lu, H.; Yang, H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens. Bioelectron. 2017, 89, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Yang, S.C.; Choo, J. Early Diagnosis of Influenza Virus A Using Surface-enhanced Raman Scattering-based Lateral Flow Assay. Bull. Korean Chem. Soc. 2016, 37, 2019–2024. [Google Scholar] [CrossRef]
- Yeo, S.-J.; Cuc, B.T.; Kim, S.-A.; Kim, D.T.H.; Bao, D.T.; Tien, T.T.T.; Anh, N.T.V.; Choi, D.-Y.; Chong, C.-K.; Kim, H.S.; et al. Rapid detection of avian influenza A virus by immunochromatographic test using a novel fluorescent dye. Biosens. Bioelectron. 2017, 94, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 2016, 85, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol. Bioeng. 2016, 113, 2298–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, W.W.; Tsang, M.-K.; Liu, X.; Yang, M.; Hao, J. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small (Weinh. Bergstr. Ger.) 2014, 10, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wei, J.; Lv, X.; Bi, Y.; Wu, P.; Zhang, Z.; Wang, P.; Liu, R.; Jiang, J.; Cong, H.; et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron. 2017, 91, 46–52. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, Y.; Iyer, S.S. Neuraminidase Resistant Sialosides for the Detection of Influenza Viruses. Bioconjug. Chem. 2016, 27, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, O.; Kato, T.; Park, E.Y. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA. Biosens. Bioelectron. 2016, 80, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Hmila, I.; Wongphatcharachai, M.; Laamiri, N.; Aouini, R.; Marnissi, B.; Arbi, M.; Sreevatsan, S.; Ghram, A. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J. Virol. Methods 2017, 243, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Fu, Y.; Xu, M.; Su, L.; Cao, L.; Xu, J.; Cheng, X. Evaluation of a PCR/ESI-MS platform to identify respiratory viruses from nasopharyngeal aspirates. J. Med. Virol. 2015, 87, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Eboigbodin, K.; Filén, S.; Ojalehto, T.; Brummer, M.; Elf, S.; Pousi, K.; Hoser, M. Reverse transcription strand invasion based amplification (RT-SIBA): A method for rapid detection of influenza A and B. Appl. Microbiol. Biotechnol. 2016, 100, 5559–5567. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Zhou, Q.; Zhao, K.; Chi, Y.; Liu, B.; Min, X.; Shi, Z.; Zou, B.; Cui, L. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor. Int. J. Nanomed. 2017, 12, 2645–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepunaru, L.; Plowman, B.J.; Sokolov, S.V.; Young, N.P.; Compton, R.G. Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem. Sci. 2016, 7, 3892–3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, A.; Takayama, K.; Nomura, N.; Kajiwara, N.; Okamatsu, M.; Yamamoto, N.; Tamura, T.; Yamada, J.; Hashimoto, M.; Sakoda, Y.; et al. Fluorescent Immunochromatography for Rapid and Sensitive Typing of Seasonal Influenza Viruses. PLoS ONE 2015, 10, e0116715. [Google Scholar] [CrossRef] [PubMed]
- Gouma, P.-I.; Wang, L.; Simon, S.R.; Stanacevic, M. Novel Isoprene Sensor for a Flu Virus Breath Monitor. Sensors 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tan, C.Y.; Tan, S.Y.; Wong, M.S.F.; Chen, Y.F.; Zhang, L.; Yao, K.; Gan, S.K.E.; Verma, C.; Tan, Y.J. SAW sensor for Influenza A virus detection enabled with efficient surface functionalization. Sens. Actuators B Chem. 2015, 209, 78–84. [Google Scholar] [CrossRef]
- Oyama, Y.; Osaki, T.; Kamiya, K.; Sawai, M.; Sakai, M.; Takeuchi, S. A sensitive point-of-care testing chip utilizing superabsorbent polymer for the early diagnosis of infectious disease. Sens. Actuators B Chem. 2017, 240, 881–886. [Google Scholar] [CrossRef]
- Krishna, V.D.; Wu, K.; Perez, A.M.; Wang, J.-P. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, J.; Rozlosnik, N. Screen-Printed All-Polymer Aptasensor for Impedance Based Detection of Influenza A Virus. Methods Mol. Biol. (Clifton NJ) 2017, 1572, 55–70. [Google Scholar] [CrossRef]
- Ozcelik, D.; Parks, J.W.; Wall, T.A.; Stott, M.A.; Cai, H.; Parks, J.W.; Hawkins, A.R.; Schmidt, H. Optofluidic wavelength division multiplexing for single-virus detection. Proc. Natl. Acad. Sci. USA 2015, 112, 12933–12937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Chakkarapani, S.K.; Yeung, E.S.; Kang, S.H. Direct quantitative screening of influenza A virus without DNA amplification by single-particle dual-mode total internal reflection scattering. Biosens. Bioelectron. 2017, 87, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.; Shi, J.; Fan, Y.; Yang, M. A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sens. Actuators B Chem. 2017, 251, 927–933. [Google Scholar] [CrossRef]
- Zhang, H.; Dunand, C.H.; Wilson, P.; Miller, B.L. A label-free optical biosensor for serotyping “unknown” influenza viruses. Proc. SPIE 2016, 9824, 982405. [Google Scholar]
- Katayama, Y.; Ohgi, T.; Mitoma, Y.; Hifumi, E.; Egashira, N. Detection of influenza virus by a biosensor based on the method combining electrochemiluminescence on binary SAMs modified Au electrode with an immunoliposome encapsulating Ru (II) complex. Anal. Bioanal. Chem. 2016, 408, 5963–5971. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, Z.; Li, C.; Yu, L. Combining complement fixation and luminol chemiluminescence for ultrasensitive detection of avian influenza A rH7N9. Analyst 2016, 141, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.L.; Nguyen, T.T.; Tran, T.T.H.; Chu, V.T.; Tran, Q.T.; Mai, A.T. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 93, 83–86. [Google Scholar] [CrossRef]
Rapid Diagnostic Tests | Immunofluores-Cence Assays | Serological Assays | Cell Culture Based Detection | Nucleic Acid-Based Tests | Next-Generation Sequencing Based Methods |
---|---|---|---|---|---|
Alere TM and Influenza A&B | direct fluorescent antibody staining | hemagglutina-tion inhibition | Immunofluores-cence microscopy | reverse transcriptase-PCR | Sanger method |
BD Veritor TM | indirect fluorescent antibody staining | virus neutralization | antibody staining | sequencing-based tests like NGS | Illumina Platform |
Sofia® Influenza A + B | single radial hemolysis | erythrocytes hemadsorption | ligase chain reaction | Roche 454 Life Sciences | |
the cobas® Liat® Influenza A/B | complement fixation | DNA microarray tests | Pacific Bioscience | ||
BUDDITM Influenza | ELISA | SAMBA | Ion Proton | ||
Quick Navi-FluTM | Western blotting | NASBA | Complete Genomics | ||
LAMP | Luminex |
Detection Method | Target Molecule | LOD | Linear Range | Detection Time | Reference |
---|---|---|---|---|---|
Microchip approaches | |||||
microfluidic RT-PCR + DEP chip | DNA | 5.36 × 103 copies/mL | 5.36 × 103–5.36 × 105 copies/mL | 15 min | [73] |
Reuse of known devices | |||||
smartphone-based fluorescence | VP | 7.5 PFU/mL | 0.94 × 100–4.8 × 102 PFU/mL | 15 min | [76] |
Electrical-based detections | |||||
EIS | M1 | 1 fg/mL | 1–100 fg/mL | 5 min | [82] |
dielectrophoresis | VP | 0.25 pg/mL | 1:100 000 dilution factor | 30 s | [83] |
LSV | NA | 5.6 ng/mL | 0–900 ng/mL | 30 min | [106] |
DPV | PB1-F2 | 0.42 nM | 50–300 nM; 0.5–1.5 mM | - | [112] |
Optical-based detections | |||||
spectrophotometry | VP | 0.04 ng/mL | 0.1–4.0 ng/mL | 30 min | [58] |
SERS + LFA | VP | 1.9 × 104 PFU/mL | 0–1.0 × 106 PFU/mL | - | [117] |
LRET | HA | 7 pM | 10 pM to 10 nM | 2 h | [121] |
NIR | RNA | 1 copy/mL | 0–14 copies/mL | 3 min | [124] |
Modification of standard methods | |||||
RT-SIBA | RNA | 100 copies | - | <30 min | [127] |
mRT-LAMP-CIRN | RNA | 101/102 copies | 104–100 RNA copies/μL | ~30 min | [128] |
Other novel ideas | |||||
SAW | HA | 1 ng/mL | 1–100 ng/mL | 10 min | [132] |
GMR | NP | 1.5 × 102 TCID50/mL | 1.5 × 102–1.0 × 105 TCID50/mL | 60 min | [134] |
SD-TIRS + TG | DNA | 74 zM | 74 zM–7.4 fM | 50 ms | [137] |
conductance | DNA | 5 pM | 10 pM–100 nM | 1 h | [138] |
ECL | HA-P | 2.7 × 102 PFU/mL | 2.7 × 102–2.7 × 103 PFU/mL | 1 h | [140] |
CFT + CL | RP | 0.14 fg/mL | 0.25 fg/mL–25 ng/Ml | 2.5 h | [141] |
CNTFET | DNA | 1 pM | 1 pM–10 nM | 2 h | [142] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziąbowska, K.; Czaczyk, E.; Nidzworski, D. Detection Methods of Human and Animal Influenza Virus—Current Trends. Biosensors 2018, 8, 94. https://doi.org/10.3390/bios8040094
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus—Current Trends. Biosensors. 2018; 8(4):94. https://doi.org/10.3390/bios8040094
Chicago/Turabian StyleDziąbowska, Karolina, Elżbieta Czaczyk, and Dawid Nidzworski. 2018. "Detection Methods of Human and Animal Influenza Virus—Current Trends" Biosensors 8, no. 4: 94. https://doi.org/10.3390/bios8040094
APA StyleDziąbowska, K., Czaczyk, E., & Nidzworski, D. (2018). Detection Methods of Human and Animal Influenza Virus—Current Trends. Biosensors, 8(4), 94. https://doi.org/10.3390/bios8040094