Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. COC Chips
2.2.1. Chip Fabrication
2.2.2. Design of the Presumptive Color Test Chips
2.2.3. Design of the MDA Chips
2.3. Presumptive Color Test
2.3.1. Reagents and Analytes
2.3.2. UV-VIS Spectroscopy
2.4. MDA
2.4.1. MDA Protocol
2.4.2. DNA Quantification
3. Results and Discussion
3.1. Presumptive Color Test Chips
3.1.1. Food Dyes
3.1.2. Drug Analogues
3.2. MDA Chips
3.3. Additional Remarks and Future Perspectives
3.3.1. Drug Chips
3.3.2. MDA Chips
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tachibana, H.; Saito, M.; Tsuji, K.; Yamanaka, K.; Hoa, L.Q.; Tamiya, E. Self-propelled continuous-flow PCR in capillary-driven microfluidic device: Microfluidic behavior and DNA amplification. Sens. Actuators B Chem. 2015, 206, 303–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Yao, B.; Fang, Q. Nanolitre droplet array for real time reverse transcription polymerase chain reaction. Lab Chip 2011, 11, 1545–1549. [Google Scholar] [CrossRef] [PubMed]
- Northrup, M.A.; Benett, B.; Hadley, D.; Landre, P.; Lehew, S.; Richards, J.; Stratton, P. A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers. Anal. Chem. 1998, 70, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Price, C.W.; Leslie, D.C.; Landers, J.P. Nucleic acid extraction techniques and application to the microchip. Lab Chip 2009, 9, 2484. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.R.M.; Price, C.W.; Augustine, B.H.; Carrilho, E.; Landers, J.P. Dynamic Solid Phase DNA Extraction and PCR Amplification in Polyester-Toner Based Microchip. Anal. Chem. 2011, 83, 5182–5189. [Google Scholar] [CrossRef]
- Marasso, S.L.; Puliafito, A.; Mombello, D.; Benetto, S.; Primo, L.; Bussolino, F.; Pirri, C.F.; Cocuzza, M. Optimized design and fabrication of a microfluidic platform to study single cells and multicellular aggregates in 3D. Microfluid. Nanofluid. 2017, 21, 29. [Google Scholar] [CrossRef]
- Lee, T.Y.; Han, K.; Barrett, D.O.; Park, S.; Soper, S.A.; Murphy, M.C. Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules. Sens. Actuators B Chem. 2018, 254, 1249–1258. [Google Scholar] [CrossRef]
- Potrich, C.; Lunelli, L.; Cocuzza, M.; Marasso, S.; Pirri, C.; Pederzolli, C. Simple PDMS microdevice for biomedical applications. Talanta 2019, 193, 44–50. [Google Scholar] [CrossRef]
- Marasso, S.L.; Giuri, E.; Canavese, G.; Castagna, R.; Quaglio, M.; Ferrante, I.; Perrone, D.; Cocuzza, M. A multilevel Lab on chip platform for DNA analysis. Biomed. Microdevices 2011, 13, 19–27. [Google Scholar] [CrossRef]
- Alrifaiy, A.; Lindahl, O.A.; Ramser, K. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers 2012, 4, 1349–1398. [Google Scholar] [CrossRef]
- Nunes, P.S.; Ohlsson, P.D.; Ordeig, O.; Kutter, J.P. Cyclic olefin polymers: Emerging materials for lab-on-a-chip applications. Microfluid. Nanofluid. 2010, 9, 145–161. [Google Scholar] [CrossRef]
- Kuo, J.S.; Chiu, D.T. Disposable microfluidic substrates: Transitioning from the research laboratory into the clinic. Lab Chip 2011, 11, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- TOPAS TOPAS. Available online: https://topas.com/products/topas-coc-polymers (accessed on 29 March 2019).
- Spigarelli, L.; Bertana, V.; Marchisio, D.; Scaltrito, L.; Ferrero, S.; Cocuzza, M.; Marasso, S.; Canavese, G.; Pirri, C. A passive two-way microfluidic device for low volume blood-plasma separation. Microelectron. Eng. 2019, 209, 28–34. [Google Scholar] [CrossRef]
- Bertana, V.; Potrich, C.; Scordo, G.; Scaltrito, L.; Ferrero, S.; Lamberti, A.; Perrucci, F.; Pirri, C.F.; Pederzolli, C.; Cocuzza, M.; et al. 3D-printed microfluidics on thin poly(Methyl methacrylate) substrates for genetic applications. J. Vac. Sci. Technol. B 2017, 36, 01A106. [Google Scholar] [CrossRef]
- Reedy, C.R.; Price, C.W.; Sniegowski, J.; Ferrance, J.P.; Begley, M.; Landers, J.P. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(Methyl methacrylate) (PMMA) microdevice. Lab Chip 2011, 11, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Wang, X.; Chen, T.; Ma, X.; Zuo, T. Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation. Microsyst. Technol. 2009, 15, 1027–1030. [Google Scholar] [CrossRef]
- Marasso, S.L.; Mombello, D.; Cocuzza, M.; Casalena, D.; Ferrante, I.; Nesca, A.; Poiklik, P.; Rekker, K.; Aaspõllu, A.; Ferrero, S.; et al. A polymer Lab-on-a-Chip for genetic analysis using the arrayed primer extension on microarray chips. Biomed. Microdevices 2014, 16, 661–670. [Google Scholar] [CrossRef] [PubMed]
- El-Ali, J.; Perch-Nielsen, I.; Poulsen, C.; Bang, D.D.; Telleman, P.; Wolff, A. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor. Sens. Actuators A Phys. 2004, 110, 3–10. [Google Scholar] [CrossRef]
- Schaerli, Y.; Wootton, R.C.; Robinson, T.; Stein, V.; Dunsby, C.; Neil, M.A.A.; French, P.M.W.; Demello, A.J.; Abell, C.; Hollfelder, F. Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets. Anal. Chem. 2009, 81, 302–306. [Google Scholar] [CrossRef]
- Qin, K.; Lv, X.; Xing, Q.; Li, R.; Deng, Y. A BSA coated NOA81 PCR chip for gene amplification. Anal. Methods 2016, 8, 2584–2591. [Google Scholar] [CrossRef]
- Hung, L.-H.; Lin, R.; Lee, A.P. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Lab Chip 2008, 8, 983. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.; Ingram, P.; Kodzius, R.; Conchouso, D.; Yoon, E.; Foulds, I. Characterization of solid UV cross-linked PEGDA for biological applications. In Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 457–460. [Google Scholar]
- Urrios, A.; Parra-Cabrera, C.; Bhattacharjee, N.; Gonzalez-Suarez, A.M.; Rigat-Brugarolas, L.G.; Nallapatti, U.; Samitier, J.; Deforest, C.A.; Posas, F.; Garcia-Cordero, J.L.; et al. 3D-Printing of Transparent Bio-Microfluidic Devices in Peg-Da. Lab Chip 2016, 16, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; DeVoe, D.L. Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 2009, 6, 1–16. [Google Scholar] [CrossRef]
- Guckenberger, D.J.; De Groot, T.E.; Wan, A.M.D.; Beebe, D.J.; Young, E.W.K. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015, 15, 2364–2378. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.; Pereiro, I.; Yamada, A.; Viovy, J.-L.; Descroix, S.; Ferraro, D. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab Chip 2017, 17, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Office on Drugs and Crime. Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and Their Ring-Substituted Analogues in Seized Materials. Available online: https://www.unodc.org/%0A255 pdf/scientific/stnar34.pdf (accessed on 18 April 2019).
- O’Neal, C.L.; Crouch, D.J.; Fatah, A.A. Validation of Twelve Chemical Spot Tests for the Detection of Drugs of Abuse. In Encyclopedia of Forensic Sciences: Second Edition; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780123821652. [Google Scholar]
- Philp, M.; Fu, S. A review of chemical ‘spot’ tests: A presumptive illicit drug identification technique. Drug Test. Anal. 2018, 10, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Krauss, S.T.; Remcho, T.P.; Lipes, S.M.; Aranda, R.; Maynard, H.P.; Shukla, N.; Tontarski, R.E.; Landers, J.P.; Li, J. Objective Method for Presumptive Field-Testing of Illicit Drug Possession Using Centrifugal Microdevices and Smartphone Analysis. Anal. Chem. 2016, 88, 8689–8697. [Google Scholar] [CrossRef]
- Burks, R.M.; Pacquette, S.E.; Guericke, M.A.; Wilson, M.V.; Symonsbergen, D.J.; Lucas, K.A.; Holmes, A.E. DETECHIP®: A Sensor for Drugs of Abuse. J. Forensic Sci. 2010, 55, 723–727. [Google Scholar] [CrossRef]
- De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K. Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders. Chem. Sci. 2016, 7, 2364–2370. [Google Scholar] [CrossRef] [Green Version]
- Al-Hetlani, E.; Al-Hetlani, E. Forensic drug analysis and microfluidics. Electrophoresis 2013, 34, 1262–1272. [Google Scholar] [CrossRef]
- McCord, B.; Turner, C.; Blas, M.; Bishop, S.; Lerch, M.; Dehere, S.; Pannepucci, R. The Development of Microfluidic Devices for the Rapid Isolation and Detection of Drugs of Abuse; National Institute of Justice: Washington, DC, USA, 2009.
- Qiang, W.; Zhai, C.; Lei, J.; Song, C.; Zhang, D.; Sheng, J.; Ju, H. Disposable microfluidic device with ultraviolet detection for highly resolved screening of illicit drugs. Analyst 2009, 134, 1834. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-Y.; Chen, L.-J.; Kao, T.-F.; Chang, H.-H.; Chen, H.-W.; Liu, A.-S.; Chen, Y.-C.; Wu, R.-B.; Liu, W.-S.; Chyi, J.-I.; et al. Terahertz Microchip for Illicit Drug Detection. IEEE Photon-Technol. Lett. 2006, 18, 2254–2256. [Google Scholar] [CrossRef]
- Andreou, C.; Hoonejani, M.R.; Barmi, M.R.; Moskovits, M.; Meinhart, C.D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157–7164. [Google Scholar] [CrossRef] [PubMed]
- Christodoulides, N.; De La Garza, R.; Simmons, G.W.; McRae, M.P.; Wong, J.; Newton, T.F.; Smith, R.; Iii, J.J.M.; Hohenstein, J.; Gomez, S.; et al. Application of Programmable Bio-Nano-Chip System for the Quantitative Detection of Drugs of Abuse in Oral Fluids. Drug Alcohol Depend. 2015, 153, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Musile, G.; Bottoms, J.; Mccord, B.; Wang, L.; Tagliaro, F. The development of paper microfluidic devices for presumptive drug detection. Anal. Methods 2015, 7, 8025–8033. [Google Scholar] [CrossRef]
- Wang, L.; Musile, G.; McCord, B.R. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis 2018, 39, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.B.; Pedersen, C.M.; Gröndahl, K.G.; Jensen, T.G.; Sekulovic, A.; Bang, D.D.; Wolff, A. PCR biocompatibility of lab-on-a-chip and MEMS materials. J. Micromech. Microeng. 2007, 17, 1527–1532. [Google Scholar] [CrossRef]
- Giordano, B.C.; Copeland, E.R.; Landers, J.P. Towards dynamic coating of glass microchip chambers for amplifying DNAvia the polymerase chain reaction. Electrophoresis 2001, 22, 334–340. [Google Scholar] [CrossRef]
- Felbel, J.; Bieber, I.; Pipper, J.; Köhler, J. Investigations on the compatibility of chemically oxidized silicon (SiOx)-surfaces for applications towards chip-based polymerase chain reaction. Chem. Eng. J. 2004, 101, 333–338. [Google Scholar] [CrossRef]
- Crabtree, H.J.; Lauzon, J.; Morrissey, Y.C.; Taylor, B.J.; Liang, T.; Johnstone, R.W.; Stickel, A.J.; Manage, D.P.; Atrazhev, A.; Backhouse, C.J.; et al. Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid. Nanofluid. 2012, 13, 383–398. [Google Scholar] [CrossRef]
- Koh, C.G.; Tan, W.; Zhao, M.-Q.; Ricco, A.J.; Fan, Z.H. Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection. Anal. Chem. 2003, 75, 6379. [Google Scholar] [CrossRef]
- Dean, F.B.; Hosono, S.; Fang, L.; Wu, X.; Faruqi, A.F.; Bray-Ward, P.; Sun, Z.; Zong, Q.; Du, Y.; Du, J.; et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 2002, 99, 5261–5266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GE Healthcare Product Web Protocol. illustraGenomiPhi V2 DNA Amplification Kit. Available online: https://cdn.gelifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=14718 (accessed on 12 June 2019).
- Marcy, Y.; Ishoey, T.; Lasken, R.S.; Stockwell, T.B.; Walenz, B.P.; Halpern, A.L.; Beeson, K.Y.; Goldberg, S.M.D.; Quake, S.R. Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells. PLoS Genet. 2007, 3, e155–e158. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, K.N.; Van Oorschot, R.A.; Mitchell, R.J.; Koukoulas, I. Molecular crowding increases the amplification success of multiple displacement amplification and short tandem repeat genotyping. Anal. Biochem. 2006, 355, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, K.N.; Van Oorschot, R.A.; Mitchell, R.J. Comparison of two whole genome amplification methods for STR genotyping of LCN and degraded DNA samples. Forensic Sci. Int. 2007, 166, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Bienvenue, J.M.; Legendre, L.A.; Ferrance, J.P.; Landers, J.P. An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci. Int. Genet. 2010, 4, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, X.; Greenspoon, S.A.; Scherer, J.R.; Mathies, R.A. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip 2011, 11, 1041. [Google Scholar] [CrossRef]
- Xu, J.; Lv, X.; Wei, Y.; Zhang, L.; Li, R.; Deng, Y.; Xu, X. Air bubble resistant and disposable microPCR chip with a portable and programmable device for forensic test. Sens. Actuators B Chem. 2015, 212, 472–480. [Google Scholar] [CrossRef]
- Keller, N.; Nargang, T.M.; Runck, M.; Kotz, F.; Striegel, A.; Sachsenheimer, K.; Klemm, D.; Länge, K.; Worgull, M.; Richter, C.; et al. Tacky cyclic olefin copolymer: A biocompatible bonding technique for the fabrication of microfluidic channels in COC. Lab Chip 2016, 16, 1561–1564. [Google Scholar] [CrossRef]
- Sigma-Aldrich Product Catalog. Allura Red AC. Available online: http://www.sigmaaldrich.com/catalog/product/sial/458848 (accessed on 7 May 2019).
- Bell, S. Forensic Chemistry, 1st ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Kumar, G.; Garnova, E.; Reagin, M.; Vidali, A. Improved multiple displacement amplification with Phi29 DNA polymerase for genotyping of single human cells. Biotechniques 2008, 44, 879–890. [Google Scholar] [CrossRef]
- Bruijns, B.B.; Costantini, F.; Lovecchio, N.; Tiggelaar, R.M.; Di Timoteo, G.; Nascetti, A.; de Cesare, G.; Gardeniers, J.G.E.; Caputo, D. On-Chip Real-Time Monitoring of Multiple Displacement Amplification of DNA. Sens. Actuators B Chem. 2019, 293, 16–22. [Google Scholar] [CrossRef]
- Chin, W.H.; Sun, Y.; Høgberg, J.; Hung, T.Q.; Wolff, A.; Bang, D.D. Solid-phase PCR for rapid multiplex detection of Salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR. Anal. Bioanal. Chem. 2017, 409, 2715–2726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xing, D. Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acids Res. 2007, 35, 4223–4237. [Google Scholar] [CrossRef] [PubMed]
Chip | Layer a (mm) | Layer b (mm) | Layer c (mm) | Optical Path Length |
---|---|---|---|---|
A | 1.0 | - | 1.0 | 2.0 |
B | 0.5 | 2.0 | 0.5 | 3.0 |
C | 1.0 | 2.0 | 1.0 | 4.0 |
D | 1.5 | - | 1.5 | 3.0 |
Run 1 (ng/µL) | Run 2 (ng/µL) | Run 3 (ng/µL) | Run 4 (ng/µL) | Average 1 (ng/µL) | |
---|---|---|---|---|---|
Eppendorf vial | 204 ± 7 | 218 ± 8 | 265 ± 13 | 200 ± 16 | 222 ± 30 |
Chip without BSA coating | 118 ± 6 | 209 ± 6 | 295 ± 13 | 233 ± 20 | 214 ± 73 |
Chip with BSA coating | 79 ± 3 | 2 | 86 ± 2 | 62 ± 3 | 76 ± 12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruijns, B.; Veciana, A.; Tiggelaar, R.; Gardeniers, H. Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications. Biosensors 2019, 9, 85. https://doi.org/10.3390/bios9030085
Bruijns B, Veciana A, Tiggelaar R, Gardeniers H. Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications. Biosensors. 2019; 9(3):85. https://doi.org/10.3390/bios9030085
Chicago/Turabian StyleBruijns, Brigitte, Andrea Veciana, Roald Tiggelaar, and Han Gardeniers. 2019. "Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications" Biosensors 9, no. 3: 85. https://doi.org/10.3390/bios9030085
APA StyleBruijns, B., Veciana, A., Tiggelaar, R., & Gardeniers, H. (2019). Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications. Biosensors, 9(3), 85. https://doi.org/10.3390/bios9030085