Microbial Fuel Cell-Based Biosensors
Abstract
:1. Introduction
2. MFC-Based Biosensors for BOD Detection
2.1. Environmental Parameters
2.2. Upper Limit of Measurement
2.3. Oxygen Diffusion
2.4. Detection Limit
2.5. Response Time
2.6. Cost-Effectiveness
3. MFC-Based Biosensors for Toxicity Detection
3.1. Heavy Metals
3.2. Antibiotics
3.3. Organic Toxicants
3.4. Acidic Toxicity
4. Other Applications
4.1. DO Detection
4.2. Microbial Activities Detection
4.3. Other Parameters
4.4. Powering External Sensors
5. Challenges and Perspective
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, J.D.; Kim, D.J.; Byun, H.G.; Ham, Y.K.; Jung, W.S.; Han, D.W.; Park, J.S.; Lee, H.L. The definition of basic TEDS of IEEE 1451.4 for sensors for an electronic tongue and the proposal of new template TEDS for electrochemical devices. Talanta 2007, 71, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.B. Sensors in medicine. BMJ 1999, 319, 1288. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Lopez De Alda, M.J.; Barceló, D. Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 2006, 386, 1025–1041. [Google Scholar] [CrossRef] [PubMed]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Conroy, P.J.; Hearty, S.; Leonard, P.; O’Kennedy, R.J. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 2009, 20, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Soldatkin, O.O.; Kucherenko, I.S.; Pyeshkova, V.M.; Kukla, A.L.; Jaffrezic-Renault, N.; El’skaya, A.V.; Dzyadevych, S.V.; Soldatkin, A.P. Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 2012, 83, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Chang, Y.H.; Lin, H.P.; Chang, T.C.; Lin, Y.C. A newly developed optical biochip for bacteria detection based on DNA hybridization. Sens. Actuators B Chem. 2012, 161, 1168–1175. [Google Scholar] [CrossRef]
- Melamed, S.; Elad, T.; Belkin, S. Microbial sensor cell arrays. Curr. Opin. Biotechnol. 2012, 23, 2–8. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ye, Z.Z.; Si, C.Y.; Ying, Y.B. Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin. J. Anal. Chem. 2012, 40, 634–642. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.B.; Chen, J.P. Development of biosensor technologies for analysis of environmental contaminants. Trends Environ. Anal. Chem. 2014, 2, 25–32. [Google Scholar] [CrossRef]
- Lagarde, F.; Jaffrezic-Renault, N. Cell-based electrochemical biosensors for water quality assessment. Anal. Bioanal. Chem. 2011, 400, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Tsai, S.L.; Chen, W. Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors 2013, 13, 5777–5795. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Kim, J.R.; Cheng, S.; Oh, S.E.; Logan, B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41, 1004–1009. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Han, H.W.; Liu, P.; Xiong, J.; Tian, F.; Li, X.K. Microbial fuels cell-based biosensor for toxicity detection: A review. Sensors 2017, 17, 2230. [Google Scholar] [CrossRef]
- Abrevaya, X.C.; Sacco, N.J.; Bonetto, M.C.; Hilding-Ohlsson, A.; Cortón, E. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosens. Bioelectron. 2015, 63, 580–590. [Google Scholar] [CrossRef]
- Chouler, J.; Di Lorenzo, M. Water quality monitoring in developing countries; Can microbial fuel cells be the answer? Biosensors 2015, 5, 450–470. [Google Scholar] [CrossRef]
- Ivars-Barceló, F.; Zuliani, A.; Fallah, M.; Mashkour, M.; Rahimnejad, M.; Luque, R. Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. Appl. Sci. 2018, 8, 1184. [Google Scholar] [CrossRef]
- Alferov, S.V.; Arlyapov, V.A.; Alferov, V.A.; Reshetilov, A.N. Biofuel cell based on bacteria of the genus Gluconobacter as a sensor for express analysis of biochemical oxygen demand. Appl. Biochem. Microbiol. 2018, 54, 689–694. [Google Scholar] [CrossRef]
- Yang, G.X.; Sun, Y.M.; Kong, X.Y.; Zhen, F.; Li, Y.; Li, L.H.; Lei, T.Z.; Yuan, Z.H.; Chen, G.Y. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor. Water Sci. Technol. 2013, 68, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Jang, J.K.; Gil, G.C.; Kim, M.; Kim, H.J.; Cho, B.W.; Kim, B.H. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 2004, 19, 607–613. [Google Scholar] [CrossRef]
- Ayyaru, S.; Dharmalingam, S. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal. Chim. Acta 2014, 818, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Modin, O.; Wilén, B.M. A novel bioelectrochemical BOD sensor operating with voltage input. Water Res. 2012, 46, 6113–6120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Self-powered, autonomous Biological oxygen demand biosensor for online water quality monitoring. Sens. Actuators B. Chem. 2017, 244, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhao, Y.Q.; Fan, C.; Fan, Z.R.; Zhao, F.C. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. Bioresour. Technol. 2017, 243, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Scott, K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res. 2009, 43, 3145–3154. [Google Scholar] [CrossRef]
- Kretzschmar, J.; Koch, C.; Liebetrau, J.; Mertig, M.; Harnisch, F. Electroactive biofilms as sensor for volatile fatty acids: Cross sensitivity, response dynamics, latency and stability. Sens. Actuators B Chem. 2017, 241, 466–472. [Google Scholar] [CrossRef]
- Jin, X.D.; Li, X.H.; Zhao, N.N.; Angelidaki, I.; Zhang, Y.F. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Res. 2017, 111, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.F.; Angelidaki, I. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens. Bioelectron. 2012, 38, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Yan, Z.S.; Xu, H.C.; Yao, Z.B.; Wang, C.H.; Chen, M.; Zhao, Z.W.; Peng, Z.L.; Wang, C.L.; Jiang, H.L. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Sci. Total Environ. 2019, 673, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Stein, N.E.; Hamelers, H.V.M.; Buisman, C.N.J. Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. Sens. Actuators B Chem. 2012, 163, 1–7. [Google Scholar] [CrossRef]
- Kim, M.; Hyun, M.S.; Gadd, G.M.; Kim, H.J. A novel biomonitoring system using microbial fuel cells. J. Environ. Monit. 2007, 9, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.C.; Lei, Y.; Li, B.K. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens. Bioelectron. 2014, 62, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.J.; Wang, M.; Chang, I.S.; Ng, H.Y. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresour. Technol. 2013, 136, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.B.; Li, X.Y.; Shi, Y.R.; Qi, Y.F.; Huang, D.Q.; Tadé, M.; Wang, S.B.; Liu, S.M. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Stein, N.E.; Hamelers, H.V.M.; Buisman, C.N.J. The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sens. Actuators B Chem. 2012, 171, 816–821. [Google Scholar] [CrossRef]
- Chen, Z.J.; Niu, Y.Y.; Zhao, S.; Khan, A.; Ling, Z.M.; Chen, Y.; Liu, P.; Li, X.K. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens. Bioelectron. 2016, 85, 860–868. [Google Scholar] [CrossRef]
- Schneider, G.; Czeller, M.; Rostás, V.; Kovács, T. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics. Enzyme Microb. Technol. 2015, 73, 59–64. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, P.; Liu, P.P.; Wang, D.L.; Miao, B.; Huang, X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens. Bioelectron. 2017, 94, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.F.; Angelidaki, I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnol. Bioeng. 2011, 108, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemist for terms used in biotechnology. Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar] [CrossRef]
- Karube, I.; Matsunaga, T.; Mitsuda, S.; Suzuki, S. Microbial electrode BOD sensors. Biotechnol. Bioeng. 1977, 19, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Suzuki, H.; Sasaki, S.; Karube, I. Disposable sensor for biochemical oxygen demand. Appl. Microbiol. Biotechnol. 1996, 46, 10–14. [Google Scholar] [CrossRef]
- Tan, T.C.; Li, F.; Neoh, K.G.; Lee, Y.K. Microbial membrane-modified dissolved oxygen probe for rapid biochemical oxygen demand measurement. Sens. Actuators B. Chem. 1992, 8, 167–172. [Google Scholar] [CrossRef]
- Striling, J.L.; Bennetto, H.P.; Delaney, G.M.; Mason, J.R.; Roller, S.D.; Tanaka, K.; Thurston, C.F. Microbial fuel cells. Biochem. Soc. Trans. 1983, 11, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Thurston, C.F.; Bennetto, H.P.; Delaney, G.M.; Mason, J.R.; Roller, S.D.; Striling, J.L. Glucose metabolism in a microbial fuel cell: Stoichiometry of product formation a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 1985, 131, 1393–1401. [Google Scholar] [CrossRef]
- Kim, B.H.; Chang, I.S.; Gil, G.C.; Park, H.S.; Kim, H.J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 2003, 25, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mattiasson, B. Microbial BOD sensors for wastewater analysis. Water Res. 2002, 36, 3786–3802. [Google Scholar] [CrossRef]
- Feng, Y.H.; Barr, W.; Harper, W.F. Neural network processing of microbial fuel cell signals for the identification of chemicals present in water. J. Environ. Manag. 2013, 120, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Melhuish, C.; Ieropoulos, I.; Greenman, J.; Horsfield, I. Energetically autonomous robots: Food for thought. Auton. Robots 2006, 21, 187–198. [Google Scholar] [CrossRef]
- Peixoto, L.; Min, B.; Martins, G.; Brito, A.G.; Kroff, P.; Parpot, P.; Angelidaki, I.; Nogueira, R. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 2011, 81, 99–103. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Cheng, C.Y.; Liu, M.H.; Chung, Y.C. Effects of operating parameters on measurements of biochemical oxygen demand using a mediatorless microbial fuel cell biosensor. Sensors 2015, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.I.; Marcus, A.K.; Parameswaran, P.; Rittmann, B.E. Kinetic experiments for evaluating the Nernst−Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 2008, 42, 6593–6597. [Google Scholar] [CrossRef]
- Spurr, M.W.A.; Yu, E.H.; Scott, K.; Head, I.M. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environ. Sci. Water Res. Technol. 2018, 4, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Park, H.S.; Kim, H.J.; Kim, G.T.; Chang, I.S.; Lee, J.; Phung, N.T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 2004, 63, 672–681. [Google Scholar] [CrossRef]
- Chang, I.S.; Moon, H.; Jang, J.K.; Kim, B.H. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 2005, 20, 1856–1859. [Google Scholar] [CrossRef]
- Bowler, M.W.; Montgomery, M.G.; Leslie, A.G.W.; Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 2006, 103, 8646–8649. [Google Scholar] [CrossRef] [Green Version]
- Harvey, J.; Hardy, S.C.; Ashford, M.L.J. Dual actions of the metabolic inhibitor, sodium azide on K(ATP) channel currents in the rat CRI-G1 insulinoma cell line. Br. J. Pharmacol. 1999, 126, 51–60. [Google Scholar] [CrossRef]
- Moon, H.; Chang, I.S.; Jang, J.K.; Kim, K.S.; Lee, J.; Lovitt, R.W.; Kim, B.H. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 2005, 15, 192–196. [Google Scholar]
- Kang, K.H.; Jang, J.K.; Pham, T.H.; Moon, H.; Chang, I.S.; Kim, B.H. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 2003, 25, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Reshetilov, A.; Alferov, S.; Tomashevskaya, L.; Ponamoreva, O. Testing of bacteria Gluconobacter oxydans and electron transport mediators composition for application in biofuel cell. Electroanalysis 2006, 18, 2030–2034. [Google Scholar] [CrossRef]
- Feng, Y.H.; Harper, W.F. Biosensing with microbial fuel cells and artificial neural networks: Laboratory and field investigations. J. Environ. Manag. 2013, 130, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Chang, I.S.; Kang, K.H.; Jang, J.K.; Kim, B.H. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 2004, 26, 1717–1721. [Google Scholar] [CrossRef]
- Trapero, J.R.; Horcajada, L.; Linares, J.J.; Lobato, J. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl. Energy 2017, 185, 698–707. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. ChemSusChem 2016, 9, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Christgen, B.; Scott, K.; Dolfing, J.; Head, I.M.; Curtis, T.P. An evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLoS ONE 2015, 10, e0136108. [Google Scholar] [CrossRef] [PubMed]
- Kharkwal, S.; Tan, Y.C.; Lu, M.; Ng, H.Y. Development and long-term stability of a novel microbial fuel cell BOD sensor with MnO2 catalyst. Int. J. Mol. Sci. 2017, 18, 276. [Google Scholar] [CrossRef]
- Chouler, J.; Bentley, I.; Vaz, F.; O’Fee, A.; Cameron, P.J.; Di Lorenzo, M. Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors. Electrochim. Acta 2017, 231, 319–326. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.H.; Wang, M.Y.; Zhang, P.P.; Zong, Y.P.; Zhang, Q.F. A single-chamber microbial fuel cell for rapid determination of biochemical oxygen demand using low-cost activated carbon as cathode catalyst. Environ. Technol. 2018, 39, 3228–3237. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Gu, M.B. Toxicity biomonitoring of degradation byproducts using freeze-dried recombinant bioluminescent bacteria. Anal. Chim. Acta 2003, 481, 229–238. [Google Scholar] [CrossRef]
- Yang, H.J.; Zhou, M.H.; Liu, M.M.; Yang, W.L.; Gu, T.Y. Microbial fuel cells for biosensor applications. Biotechnol. Lett. 2015, 37, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, X.F.; Liang, P.; Liu, P.P.; Huang, X. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. Renew. Sustain. Energy Rev. 2018, 81, 292–305. [Google Scholar] [CrossRef]
- Xu, Z.H.; Liu, B.C.; Dong, Q.C.; Lei, Y.; Li, Y.; Ren, J.; McCutcheon, J.; Li, B.K. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresour. Technol. 2015, 197, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, P.; Niu, Y.Y.; Chen, Z.J.; Khan, A.; Zhang, P.Y.; Li, X.K. A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater. Sensors 2018, 18, 642. [Google Scholar] [CrossRef]
- Yang, W.Y.; Wei, X.J.; Fraiwan, A.; Coogan, C.G.; Lee, H.; Choi, S. Fast and sensitive water quality assessment: A μL-scale microbial fuel cell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality. Sens. Actuators B Chem. 2016, 226, 191–195. [Google Scholar] [CrossRef]
- Chouler, J.; Cruz-Izquierdo, Á.; Rengaraj, S.; Scott, J.L.; Di Lorenzo, M. A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens. Bioelectron. 2018, 102, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liang, P.; Liu, P.P.; Yan, X.X.; Bian, Y.H.; Huang, X. A cathode-shared microbial fuel cell sensor array for water alert system. Int. J. Hydrog. Energy 2017, 42, 4342–4348. [Google Scholar] [CrossRef] [Green Version]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [PubMed]
- Giller, K.E.; Witter, E.; Mcgrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Yu, D.B.; Bai, L.; Zhai, J.F.; Wang, Y.Z.; Dong, S.J. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta 2017, 168, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.H.; Gu, J.D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeterior. Biodegrad. 2007, 59, 8–15. [Google Scholar] [CrossRef]
- Wang, G.H.; Cheng, C.Y.; Liu, M.H.; Chen, T.Y.; Hsieh, M.C.; Chung, Y.C. Utility of Ochrobactrum anthropi YC152 in a microbial fuel cell as an early warning device for hexavalent chromium determination. Sensors 2016, 16, 1272. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Tsai, T.H.; Liu, M.H.; Kuo, J.L.; Chang, Y.C.; Chung, Y.C. A green microbial fuel cell-based biosensor for in situ chromium (VI) measurement in electroplating wastewater. Sensors 2017, 17, 2461. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.N.; Luong, T.T.T.; Nguyen, T.T.T.; Nguyen, H.Q.; Duong, H.; Kim, B.H.; Pham, H.T. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples. Environ. Sci. Process. Impacts 2015, 17, 1806–1815. [Google Scholar] [CrossRef]
- Wu, S.S.; Deng, H.; Han, C.; Liu, L.; Zhong, W.H. A novel sediment microbial fuel cell based sensor for on-line and in situ monitoring copper shock in water. Electroanalysis 2018, 30, 2668–2675. [Google Scholar] [CrossRef]
- Prévoteau, A.; Clauwaert, P.; Kerckhof, F.M.; Rabaey, K. Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. Biosens. Bioelectron. 2019, 132, 115–121. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic pollution in the environment: A review. Clean Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Wu, W.G.; Lesnik, K.L.; Xu, S.T.; Wang, L.G.; Liu, H. Impact of tobramycin on the performance of microbial fuel cell. Microb. Cell Fact. 2014, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Yang, M. A current global view of environmental and occupational cancers. J. Environ. Sci. Heal. Part C Environ. Carcinog. Ecotoxicol. Rev. 2011, 29, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Sun, J.Z.; Kingori, G.P.; Si, R.W.; Zhai, D.D.; Liao, Z.H.; Sun, D.Z.; Zheng, T.; Yong, Y.C. Microbial fuel cell-based biosensors for environmental monitoring: A review. Water Sci. Technol. 2015, 71, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.J.; Lefebvre, O.; Tan, Z.; Ng, H.Y. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Sci. Technol. 2012, 65, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- De Schamphelaire, L.; Van Den Bossche, L.; Dang, H.S.; Höfte, M.; Boon, N.; Rabaey, K.; Verstraete, W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ. Sci. Technol. 2008, 42, 3053–3058. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Zhou, Q.X.; Liao, C.M.; Zhou, L.; Wan, L.L.; An, J.K.; Du, Q.; Li, N.; Ren, Z.Y.J. Swift acid rain sensing by synergistic Rhizospheric bioelectrochemical responses. ACS Sens. 2018, 3, 1424–1430. [Google Scholar] [CrossRef]
- Markfort, C.D.; Hondzo, M. Dissolved oxygen measurements in aquatic environments: The effects of changing temperature and pressure on three sensor technologies. J. Environ. Qual. 2009, 38, 1766–1774. [Google Scholar] [CrossRef]
- Ansa-Asare, O.D.; Marr, I.L.; Cresser, M.S. Evaluation of modelled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic pollution. Water Res. 2000, 34, 1079–1088. [Google Scholar] [CrossRef]
- Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 2006, 40, 5193–5199. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Min, B.; Logan, B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38, 4900–4904. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.S.; Zhou, Q.L.; Shang, J.G.; Shao, S.G.; Zhang, L.; Fan, C.X. Beyond hypoxia: Occurrence and characteristics of black blooms due to the decomposition of the submerged plant Potamogeton crispus in a shallow lake. J. Environ. Sci. 2014, 26, 281–288. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y.; Yang, Z.; Shi, X.L.; Kong, F.X. The distribution of phytoplankton along trophic gradients and its mediation by available light in the pelagic zone of large eutrophic lakes. Can. J. Fish. Aquat. Sci. 2012, 69, 1935–1946. [Google Scholar] [CrossRef]
- Song, N.; Jiang, H.L. Effects of initial sediment properties on start-up times for sediment microbial fuel cells. Int. J. Hydrog. Energy 2018, 43, 10082–10093. [Google Scholar] [CrossRef]
- Abrevaya, X.C.; Sacco, N.J.; Bonetto, M.C.; Hilding-Ohlsson, A.; Cortón, E. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens. Bioelectron. 2015, 63, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.G.; Oremland, R.S. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes. Extremophiles 2008, 12, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Abrevaya, X.C.; Mauas, P.J.D.; Cortón, E. Microbial fuel cells applied to the metabolically based detection of extraterrestrial life. Astrobiology 2010, 10, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Liu, J.; Zhang, S.P.; Xing, X.H.; Su, Z.G. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour. Technol. 2011, 102, 10221–10229. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.F.; Wu, S.B.; Dong, R.J.; Angelidaki, I. Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion. Sci. Total Environ. 2019, 655, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yin, L.; Jin, Q.; Zhu, Y.; Zhao, J.; Zheng, L.; Zhou, Z.; Zhu, B. Sensing performance of a self-powered electrochemical sensor for H2O2 detection based on microbial fuel cell. J. Electroanal. Chem. 2019, 832, 97–104. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, S.; Li, Y.; Zhao, N.; Li, H.; Angelidaki, I.; Zhang, Y. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring. Talanta 2018, 186, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liang, P.; Huang, X.; Ren, Z.J. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere 2018, 203, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.S.; Hernández, M.; Deng, Y.C.; Han, C.; Hong, X.; Xu, J.; Zhong, W.H.; Deng, H. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China. FEMS Microbiol. Ecol. 2019, 95, fiz018. [Google Scholar] [CrossRef]
- Zheng, Q.; Xiong, L.; Mo, B.; Lu, W.H.; Kim, S.; Wang, Z.Y. Temperature and humidity sensor powered by an individual microbial fuel cell in a power management system. Sensors 2015, 15, 23126–23144. [Google Scholar] [CrossRef] [PubMed]
- Khaled, F.; Ondel, O.; Allard, B. Microbial fuel cells as power supply of a low-power temperature sensor. J. Power Sources 2016, 306, 354–360. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, P.; Liu, P.; Bian, Y.; Miao, B.; Sun, X.; Zhang, H.; Huang, X. Enhancing signal output and avoiding BOD/toxicity combined shock interference by operating a microbial fuel cell sensor with an optimized background concentration of organic matter. Int. J. Mol. Sci. 2016, 17, 1392. [Google Scholar] [CrossRef] [PubMed]
- Buck, J.; Silver, M. Microbially-Based Sensors for Environmental Monitoring. Patent US20150300982, 22 October 2015. [Google Scholar]
Parameter | Anode | Cathode | Separator | Detection Range | Response Time | Ref. |
---|---|---|---|---|---|---|
BOD | AG | AG | PEM | 0.34–9.6 mg/L | 30–130 min | [21] |
GF | CC/Pt | – | 5–120 mg/L | 132 min | [22] | |
GF | GF/Pt | CEM | 20–200 mg/L | 5–36 min | [23] | |
CC | CC/Pt | SPEEK | 0–650 mg/L | 80 min | [24] | |
GR | CP | PF | 32–1280 mg/L | 300–1200 min | [25] | |
COD | CF | AC | Ceramic | 57.7–149.7 mg/L | 3 min | [26] |
CC | CC | PEM | 3–164 mg/L | 2.8 min | [27] rmatting Citation} | |
GG | AC | – | 0–500 mg/L | N/A | [28] | |
CC | CP/Pt | CEM | 100–500 mg/L | 31–825 min | [29] | |
VFAs | CR | CR | – | 0.5–2 mM | N/A | [30] |
CB | TWWM/Pt | AEM | 5–100 mM | 60–240 min | [31] | |
DO | CP | CP | PEM | 0–8.8 mg/L | <4 min | [32] |
GF | GF | – | 0–9 mg/L | N/A | [33] | |
Ni2+ | GP | GP | CEM | 10 mg/L | 30 min | [34] |
Pb2+ | GF | GF | CEM | 1–5 mg/L | 20–120 min | [35] |
Hg2+ | GF | GF | CEM | 1–5 mg/L | 20–120 min | [35] |
Cr6+ | CC | CC/Pt | – | 1–8 mg/L | 74 min | [36] |
Cu2+ | CC | CC/Pt | CEM | 5–7 mg/L | 240 min | [37] |
Cd2+ | CC | CC | CEM | 0.1–100 μg/L | 12 min | [27] |
Levofloxacin | SCE | CC | – | 0.1–1000 μg/L | 10 min | [38] |
SDS | GP | GP | PEM | 10–50 mg/L | N/A | [39] |
p-Nitrophenol | CF | CF | PEM | 10–50 mg/L | 27 min | [40] |
β-lactam antibiotics | ENIG | Graphite | PEM | 1–75 µg/mL | 120–240 min | [41] |
Formaldehyde | GF | CF | CEM | 0.0005–0.01% | 10–240 min | [42] |
microbial activity | CP | CP/Pt | PEM | 0–13 nmol/L | <186 min | [43] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Lai, B.; Tang, X. Microbial Fuel Cell-Based Biosensors. Biosensors 2019, 9, 92. https://doi.org/10.3390/bios9030092
Cui Y, Lai B, Tang X. Microbial Fuel Cell-Based Biosensors. Biosensors. 2019; 9(3):92. https://doi.org/10.3390/bios9030092
Chicago/Turabian StyleCui, Yang, Bin Lai, and Xinhua Tang. 2019. "Microbial Fuel Cell-Based Biosensors" Biosensors 9, no. 3: 92. https://doi.org/10.3390/bios9030092
APA StyleCui, Y., Lai, B., & Tang, X. (2019). Microbial Fuel Cell-Based Biosensors. Biosensors, 9(3), 92. https://doi.org/10.3390/bios9030092