Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.2. Bacterial Isolation
5.3. Molecular Analyses
5.4. Serotyping by Slide Agglutination (Kauffmann–White–Le Minor Scheme)
5.5. Antimicrobial Susceptibility Testing
5.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, R.O.; Lobato, F.C. Clostridium perfringens: A review of enteric diseases in dogs, cats and wild animals. Anaerobe 2015, 33, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pérez, S.; Blanco, J.L.; Harmanus, C.; Kuijper, E.J.; García, M.E. Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe 2017, 48, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Samir, A.; Abdel-Moein, K.A.; Zaher, H.M. Molecular Detection of Toxigenic Clostridioides difficile among Diarrheic Dogs and Cats: A Mounting Public Health Concern. Vet. Sci. 2021, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Thépault, A.; Rose, V.; Queguiner, M.; Chemaly, M.; Rivoal, K. Dogs and Cats: Reservoirs for Highly Diverse Campylobacter jejuni and a Potential Source of Human Exposure. Animals 2020, 10, 838. [Google Scholar] [CrossRef]
- Vajda, Á.; Ózsvári, L.; Szakos, D.; Kasza, G. Estimation of the Impact of Foodborne Salmonellosis on Consumer Well-Being in Hungary. Int. J. Environ. Res. Public Health 2021, 18, 10131. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [Green Version]
- Adesiji, Y.O.; Deekshit, V.K.; Karunasagar, I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci. Nutr. 2014, 2, 436–442. [Google Scholar] [CrossRef]
- Garganom, V.; Gambino, D.; Migliore, S.; Vitale, M.; Sciortino, S.; Costa, A.; Vicari, D. Can Human Handling Increase the Presence of Multidrug Resistance (MDR) in Salmonella spp. Isolated from Food Sources? Microorganisms 2021, 9, 2018. [Google Scholar] [CrossRef]
- Li, I.C.; Wu, R.; Hu, C.W.; Wu, K.M.; Chen, Z.W.; Chou, C.H. Comparison of Conventional Molecular and Whole-Genome Sequencing Methods for Differentiating Salmonella enterica serovar Schwarzengrund Isolates Obtained from Food and Animal Sources. Microorganisms 2021, 9, 2046. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Pasmans, F.; De Buck, J.; Rychlik, I.; Hradecka, H.; Collard, J.M.; Wildemauwe, C.; Heyndrickx, M.; Ducatelle, R.; Haesebrouck, F. Cats as a risk for transmission of antimicrobial drug-resistant Salmonella. Emerg. Infect. Dis. 2004, 10, 2169–2174. [Google Scholar] [CrossRef]
- Hoelzer, K.; Moreno Switt, A.I.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 34. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moein, K.A.; Ahmed, S. Occurrence of extended spectrum β–lactamase-producing Enterobacteriaceae among pet dogs and cats: An emerging public health threat outside health care facilities. Am. J. Infect. Control. 2014, 42, 796–798. [Google Scholar] [CrossRef]
- Damborg, P.; Broens, E.M.; Chomel, B.B.; Guenther, S.; Pasmans, F.; Wagenaar, J.A.; Weese, J.S.; Wieler, L.H.; Windahl, U.; Vanrompay, D.; et al. Bacterial Zoonoses Transmitted by Household Pets: State-of-the-Art and Future Perspectives for Targeted Research and Policy Actions. J. Comp. Pathol. 2016, 155 (Suppl. S1), S27–S40. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson-Ahomaa, M.; Heikkilä, T.; Pernu, N.; Kovanen, S.; Hielm-Björkman, A.; Kivistö, R. Raw Meat-Based Diets in Dogs and Cats. Vet. Sci. 2017, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef]
- Kerr, K.R.; Vester Boler, B.M.; Morris, C.L.; Liu, K.J.; Swanson, K.S. Apparent total tract energy and macronutrient digestibility and fecal fermentative end-product concentrations of domestic cats fed extruded, raw beef-based, and cooked beef-based diets. J. Anim. Sci. 2012, 90, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Kerr, K.R.; Dowd, S.E.; Swanson, K.S. Salmonellosis impacts the proportions of faecal microbial populations in domestic cats fed 1-3-d-old chicks. J. Nutr. Sci. 2014, 3, e30. [Google Scholar] [CrossRef] [Green Version]
- Herstad, K.; Gajardo, K.; Bakke, A.M.; Moe, L.; Ludvigsen, J.; Rudi, K.; Rud, I.; Sekelja, M.; Skancke, E. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res. 2017, 13, 147. [Google Scholar] [CrossRef]
- Butowski, C.F.; Thomas, D.G.; Young, W.; Cave, N.J.; McKenzie, C.M.; Rosendale, D.I.; Bermingham, E.N. Addition of plant dietary fibre to a raw red meat high protein, high fat diet, alters the faecal bacteriome and organic acid profiles of the domestic cat (Felis catus). PLoS ONE 2019, 14, e0216072. [Google Scholar] [CrossRef]
- De Vito, D.; Monno, R.; Nuccio, F.; Legretto, M.; Oliva, M.; Coscia, M.F.; Dionisi, A.M.; Calia, C.; Capolongo, C.; Pazzani, C. Diffusion and Persistence of Multidrug Resistant Salmonella Typhimurium Strains Phage Type DT120 in Southern Italy. BioMed Res. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- Kuehn, B. Multidrug-Resistant Salmonella. JAMA 2019, 322, 1344. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Molecular Detection of Multidrug-Resistant Salmonella Isolated from Livestock Production Systems in South Africa. Infect. Drug Resist. 2019, 12, 3537–3548. [Google Scholar] [CrossRef] [Green Version]
- Morar, A.; Sala, C.; Imre, K. Occurrence and antimicrobial susceptibility of Salmonella isolates recovered from the pig slaughter process in Romania. J. Infect. Dev. Ctries 2015, 9, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Tîrziu, E.; Lazăr, R.; Sala, C.; Nichita, I.; Morar, A.; Şereş, M.; Imre, K. Salmonella in raw chicken meat from the Romanian seaside: Frequency of isolation and antibiotic resistance. J. Food Prot. 2015, 78, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Imre, K.; Herman, V.; Morar, A. Scientific achievements in the study of the occurrence and antimicrobial susceptibility profile of major food-borne pathogenic bacteria in foods and food processing environments in Romania: Review of the last decade. BioMed Res. Int. 2020, 2020, 5134764. [Google Scholar] [CrossRef] [PubMed]
- Tîrziu, E.; Bărbălan, G.; Morar, A.; Herman, V.; Cristina, R.T.; Imre, K. Occurrence and antimicrobial susceptibility profile of Salmonella spp. in raw and ready-to-eat foods and Campylobacter spp. in retail raw chicken meat in Transylvania, Romania. Foodborne Pathog Dis. 2020, 17, 479–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Maaten, T.S.; Turner, D.; Van Tilburg, J.; Vaarten, J. Benefits and risks for people and livestock of keeping companion animals: Searching for a healthy balance. J. Comp. Pathol. 2016, 155, S8–S17. [Google Scholar] [CrossRef] [Green Version]
- Overgaauw, P.A.M.; Vinke, C.M.; Hagen, M.A.E.V.; Lipman, L.J.A. A One Health Perspective on the Human-Companion Animal Relationship with Emphasis on Zoonotic Aspects. Int. J. Environ. Res. Public Health 2020, 27, 3789. [Google Scholar] [CrossRef]
- Reimschuessel, R.; Grabenstein, M.; Guag, J.; Nemser, S.M.; Song, K.; Qiu, J.; Clothier, K.A.; Byrne, B.A.; Marks, S.L.; Cadmus, K.; et al. Multilaboratory Survey To Evaluate Salmonella Prevalence in Diarrheic and Nondiarrheic Dogs and Cats in the United States between 2012 and 2014. J. Clin. Microbiol. 2017, 55, 1350–1368. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Vargas, F.M.; Abu-El-Haija, M.A.; Gomez-Duarte, O.G. Salmonella infections: An update on epidemiology, management, and prevention. Travel Med. Infect. Dis. 2011, 9, 263–277. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Enteric Disease Surveillance: Salmonella Annual Report. 2016. Available online: https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf (accessed on 28 August 2021).
- Hellgren, J.; Hästö, L.S.; Wikström, C.; Fernström, L.L.; Hansson, I. Occurrence of Salmonella, Campylobacter, Clostridium and Enterobacteriaceae in raw meat-based diets for dogs. Vet. Rec. 2019, 184, 442. [Google Scholar] [CrossRef]
- Wei, L.; Yang, C.; Shao, W.; Sun, T.; Wang, J.; Zhou, Z.; Chen, C.; Zhu, A.; Pan, Z. Prevalence and Drug Resistance of Salmonella in Dogs and Cats in Xuzhou, China. J. Vet. Res. 2020, 64, 263–268. [Google Scholar] [CrossRef]
- Thomas, J.; Slawson, R.; Taylor, W. Salmonella serotype diversity and seasonality in urban and rural streams. J. Appl. Microbiol. 2013, 114, 907–922. [Google Scholar] [CrossRef]
- Paris, J.K.; Wills, S.; Balzer, H.J.; Shaw, D.J.; Gunn-Moore, D.A. Enteropathogen co-infection in UK cats with diarrhoea. BMC Vet. Res. 2014, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Marks, S.L.; Rankin, S.C.; Byrne, B.A.; Weese, J.S. Enteropathogenic bacteria in dogs and cats: Diagnosis, epidemiology, treatment, and control. J. Vet. Intern. Med. 2011, 25, 1195–1208. [Google Scholar] [CrossRef]
- Jay-Russell, M.T.; Hake, A.F.; Bengson, Y.; Thiptara, A.; Nguyen, T. Prevalence and characterization of Escherichia coli and Salmonella strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. PLoS ONE 2014, 9, e113433. [Google Scholar] [CrossRef]
- Tupler, T.; Levy, J.K.; Sabshin, S.J.; Tucker, S.J.; Greiner, E.C.; Leutenegger, C.M. Enteropathogens identified in dogs entering a Florida animal shelter with normal feces or diarrhea. JAVMA 2012, 241, 338–343. [Google Scholar] [CrossRef]
- Seepersadsingh, N.; Adesiyun, A.A.; Seebaransingh, R. Prevalence and antimicrobial resistance of Salmonella spp. in non-diarrhoeic dogs in Trinidad. J. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 337–342. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Giacometti, F.; Magarotto, J.; Serraino, A. Highly suspected cases of salmonellosis in two cats fed with a commercial raw meat-based diet: Health risks to animals and zoonotic implications. BMC Vet. Res. 2017, 13, 224. [Google Scholar] [CrossRef]
- Tauni, M.A.; Osterlund, A. Outbreak of Salmonella typhimurium in cats and humans associated with infection in wild birds. J. Small Anim. Pract. 2000, 41, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.G.; Tengelsen, L.A.; Smith, K.E.; Bender, J.B.; Frank, R.K.; Grendon, J.H.; Rice, D.H.; Thiessen, A.M.; Gilbertson, C.J.; Sivapalasingam, S.; et al. Multidrug-resistant Salmonella typhimurium in four animal facilities. Emerg. Infect. Dis. 2005, 11, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Kozak, M.; Horosova, K.; Lasanda, V.; Bilek, J.; Kyselova, J. Do dogs and cats present a risk of transmission of salmonellosis to humans? Bratisl. Lek. Listy 2003, 104, 323–328. [Google Scholar] [PubMed]
- Cuypers, W.L.; Jacobs, J.; Wong, V.; Klemm, E.J.; Deborggraeve, S.; Van Puyvelde, S. Fluoroquinolone resistance in Salmonella: Insights by whole-genome sequencing. Microb. Genom. 2018, 4, e000195. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Guerra, B.; Rodicio, M.R. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Vet. Sci. 2018, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugas, M.; Beloeil, P. Controlling Salmonella along the food chain in the European Union—Progress over the last ten years. Eurosurveillance 2014, 19, 20804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabshin, S.J.; Levy, J.K.; Tupler, T.; Tucker, S.J.; Greiner, E.C.; Leutenegger, C.M. Enteropathogens identified in cats entering a Florida animal shelter with normal feces or diarrhea. JAVMA 2012, 241, 331–337. [Google Scholar] [CrossRef]
- Finley, R.; Reid-Smith, R.; Weese, J.S. Human health implications of Salmonella-contaminated natural pet treats and raw pet food. Clin. Infect. Dis. 2006, 42, 686–691. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.M.; Chandler, M.L.; Hamper, B.A.; Weeth, L.P. Current knowledge about the risks and benefits of raw meat–based diets for dogs and cats. JAVMA 2013, 243, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Queen, E.V.; Marks, S.L.; Farver, T.B. Prevalence of selected bacterial and parasitic agents in feces from diarrheic and healthy control cats from Northern California. J. Vet. Intern. Med. 2012, 26, 54–60. [Google Scholar] [CrossRef]
- The Commission Of The European Communities. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. EC: Special edition in Romanian. 2005. Chapter 13. Volume 51, pp. 141–166. Available online: http://data.europa.eu/eli/reg/2005/2073/oj (accessed on 28 August 2021).
- International Organization for Standardization. 2002, ISO 6579:2002—Microbiology of food and animal feeding stuffs—Horizontal method for the detection of Salmonella spp. (revised by ISO 6579-1:2017); ISO: Geneva, Switzerland, 2017. [Google Scholar]
- O’Hara, C.M.; Miller, J.M. Evaluation of the VITEK®2 ID-GNB assay for identification of members of the family Enterobacteriaceae and other nonenteric gram-negative bacilli and comparison with the Vitek GNI+ card. J. Clin. Microbiol. 2003, 41, 2096–2101. [Google Scholar] [CrossRef] [Green Version]
- Lampel, K.A.; Orlandi, P.A.; Kornegay, L. Improved template preparation for PCR-based assay for detection of food-borne bacterial pathogens. Appl. Environ. Microbiol. 2000, 66, 4539–4542. [Google Scholar] [CrossRef] [Green Version]
- Wattiau, P.; Boland, C.; Bertrand, S. Methodologies for Salmonella enterica subsp. enterica subtyping: Gold standards and alternatives. Appl. Environ. Microbiol. 2011, 77, 7877–7885. [Google Scholar] [CrossRef] [Green Version]
Parameters | No. of Faecal Samples Collected | Positive Coproculture from Salmonella spp. | |
---|---|---|---|
n | n | % | |
Age (years) | |||
≤3 | 28 | 5 | 5.88 |
from 3 to 6 | 53 | 7 | 8.23 |
>6 | 25 | 4 | 4.71 |
Total | 85 | 16 | 18.82 |
Gender | |||
Female | 47 | 6 | 7.05 |
Male | 38 | 10 | 11.77 |
Total | 85 | 16 | 18.82 |
Identified Strains | No. (%) of Strains Identified at the Following Probability Level | |||||||
---|---|---|---|---|---|---|---|---|
N (%) | Excellent | Very Good | Acceptable | Good | Low | Unidentified | Error | |
Salmonella enteritidis | 9 (56.25%) | 7 | 2 | - | - | - | - | - |
Salmonella typhimurium | 4 (25.00%) | 1 | 3 | |||||
Salmonella kentucky | 3 (18.75%) | 2 | 1 | |||||
Total | 16 | 10 | 6 | - | - | - | - | - |
Serotypes | O-Antigens | H-Antigens | Number of Isolates |
---|---|---|---|
Salmonella enteritidis | 1, 9, 12 | f, g, m, p 1,7 | 9 |
Salmonella typhimurium | 1, 4, 5, 12 | I, 1, 2 | 4 |
Salmonella kentucky | 8, 20 | I, z6 | 3 |
Laboratory Result | Nutrition | Habitat | Clinical Signs | |||||
---|---|---|---|---|---|---|---|---|
Commercial Food | Raw Meat Diet | Outdoor | Indoor | Partial Outdoor | Diarrhoeic | Non-Diarrhoeic | ||
Dry | Wet | |||||||
21 | 18 | 46 | 25 | 54 | 6 | 53 | 32 | |
Total samples | 85 | 85 | 85 | |||||
Positive Salmonella spp. samples | 1 (6.25%) | 5 (31.25%) | 10 (62.50%) | 8 (50.00%) | 6 (37.50%) | 2 (12.5%) | 9 (56.25%) | 7 (43.75%) |
Total | 16 | 16 | 16 |
No. | Antibiotics | Salmonella Serotype | ||
---|---|---|---|---|
Salmonella typhimurium (n = 4) | Salmonella enteritidis (n = 9) | Salmonella kentucky (n = 3) | ||
1. | amikacin (AN) | 0 | 4 | 1 |
2. | ampicillin (AM) | 0 | 8 | 2 |
3. | ampicillin/sulbactam (SAM) | 0 | 8 | 1 |
4. | cefazolin (CZ) | 4 | 9 | 3 |
5. | cefepime (FEP) | 4 | 9 | 3 |
6. | ceftazidime (CAZ) | 4 | 9 | 3 |
7. | ceftriaxone (CRO) | 4 | 9 | 3 |
8. | gentamicin (GM) | 4 | 4 | 1 |
9. | nitrofurantoin (FT) | 0 | 5 | 3 |
10. | trimethoprim/sulfamethoxazole (SXT) | 3 | 7 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dégi, J.; Imre, K.; Herman, V.; Bucur, I.; Radulov, I.; Petrec, O.-C.; Cristina, R.T. Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health? Antibiotics 2021, 10, 1404. https://doi.org/10.3390/antibiotics10111404
Dégi J, Imre K, Herman V, Bucur I, Radulov I, Petrec O-C, Cristina RT. Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health? Antibiotics. 2021; 10(11):1404. https://doi.org/10.3390/antibiotics10111404
Chicago/Turabian StyleDégi, János, Kálmán Imre, Viorel Herman, Iulia Bucur, Isidora Radulov, Oana-Cătălina Petrec, and Romeo Teodor Cristina. 2021. "Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health?" Antibiotics 10, no. 11: 1404. https://doi.org/10.3390/antibiotics10111404
APA StyleDégi, J., Imre, K., Herman, V., Bucur, I., Radulov, I., Petrec, O. -C., & Cristina, R. T. (2021). Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health? Antibiotics, 10(11), 1404. https://doi.org/10.3390/antibiotics10111404