Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Growth Media and Chemicals
2.2. Isolation and Sequencing of Bacteria
2.3. Plant Material
2.4. Chromatographic Analysis
2.4.1. HPLC-DAD Analysis
2.4.2. HPLC-DAD-QToF Analysis
2.4.3. GC-MS Analysis
2.5. Molecular Docking
2.6. Biological Activities
2.6.1. Determination of MIC and MBC (Minimum Inhibitory and Bactericidal Concentrations)
2.6.2. Antibiofilm Activity
2.6.3. Antiquorum-Sensing
2.6.4. Violacein Inhibition Assay
3. Results and Discussion
3.1. Screening of Plant Extracts
3.2. GC-MS and HPLC-DAD-MS-QToF Analysis
3.3. Molecular Docking of Compounds
3.4. Biological Activities of Pure Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef]
- Schuster, G.S. Oral flora and pathogenic organisms. Oral Infect. 1999, 13, 757–774. [Google Scholar] [CrossRef]
- Popova, C.; Dosseva-Panova, V.; Panov, V. Microbiology of Periodontal Diseases. A Review. Biotechnol. Biotechnol. Equip. 2013, 27, 3754–3759. [Google Scholar] [CrossRef]
- Tang, B.; Gong, T.; Cui, Y.; Wang, L.; He, C.; Lu, M.; Chen, J.; Jing, M.; Zhang, A.; Li, Y. Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. Int. J. Oral Sci. 2020, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S.; Kotey, F.C. Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. Infect. Dis. 2020, 13, 1178633720976581. [Google Scholar] [CrossRef]
- Naranjo, A.A.; Triviño, M.L.; Jaramillo, A.; Betancourth, M.; Botero, J.E. Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 275.e17–275.e22. [Google Scholar] [CrossRef]
- Murshid, E.Z. Diet, oral hygiene practices and dental health in autistic children in Riyadh, Saudi Arabia. Oral Health Dent. Manag. 2014, 13, 91–96. [Google Scholar]
- Bradshaw, D.J.; Marsh, P.D. Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res. 1998, 32, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Lalla, E.; Cheng, B.; Lal, S.; Kaplan, S.; Softness, B.; Greenberg, S.E.; Goland, R.S.; Lamster, I.B. Diabetes mellitus promotes periodontal destruction in children. J. Clin. Periodont. 2007, 34, 294–298. [Google Scholar] [CrossRef]
- Kim, J.; Amar, S. Periodontal disease and systemic conditions: A bidirectional relationship. Odontology 2006, 94, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.G.; Lee, H.J.; Gwon, G.; Kim, S.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, D.; Helmerhorst, E.; Oppenheim, F. Saliva and Serum Protein Exchange at the Tooth Enamel Surface. J. Dent. Res. 2016, 96, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Weerkamp, A.H.; Uyen, H.M.; Busscher, H.J. Effect of zeta potential and surface energy on bacterial adhesion to uncoated and salivacoated human enamel and dentin. J. Dent. Res. 1988, 67, 1483–1487. [Google Scholar] [CrossRef] [PubMed]
- Jones, A. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter associated urinary tract infection. Infect. Immun. 2014, 72, 3941–3950. [Google Scholar] [CrossRef] [Green Version]
- Waters, C.M.; Bassler, B.L. Quorum Sensing: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [Green Version]
- Gibot, A.S. Fighting the enemy properly. Critical. Care. Med. 2004, 32, 1223–1224. [Google Scholar] [CrossRef] [PubMed]
- Musthafa, K.S.; Ravi, A.V.; Annapoorani, A.; Packiavathy, S.V.; Pandian, S.K. Evaluation of Anti-Quorum-Sensing Activity of Edible Plants and Fruits through Inhibition of the N-Acyl-Homoserine Lactone System in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 2010, 56, 333–339. [Google Scholar] [CrossRef]
- Brackman, G.; Defoirdt, T.; Miyamoto, C.; Bossier, P.; Van Calenbergh, S.; Nelis, H.; Coenye, T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Naseem, S.; Hashmi, K.; Fasih, F.; Sharafat, S.; Khanani, R. In vitro evaluation of antimicrobial effect of miswak against common oral pathogens. Pak. J. Med. Sci. 2014, 30, 398–403. [Google Scholar] [CrossRef]
- Almas, K. The antimicrobial effects of seven different types of Asian chewing sticks. Odonto-Stomatol. Trop. 2001, 24, 17–20. [Google Scholar]
- Al Lafi, T.; Ababneh, H. The effect of the extract of the miswak (chewing sticks) used in Jordan and the Middle East on oral bacteria. Int. Dent. J. 1995, 45, 218–222. [Google Scholar] [PubMed]
- Marwat, S.K.; Khan, M.A.; Ahmad, M.; Zafar, M.; Rehman, F.U. Ethanophytomedicine for the treatment of various Diseases in D.I.Khan District. Sarhad. J. Agric. 2008, 24, 33–39. [Google Scholar]
- Carrol, D.H.; Chassagne, F.; Dettweiler, M.; Quave, C.L. Antibacterial activity of plant species used for oral health against Porphyromonas gingivalis. PLoS ONE 2020, 15, e0239316. [Google Scholar] [CrossRef]
- Lewis, W.; Elvin-Lewis, M. Oral hygiene. In Medical Botany, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Niazi, F.; Naseem, M.; Khurshid, Z.; Zafar, M.; Almas, K. Role of Salvadora persica chewing stick (miswak): A natural toothbrush for holistic oral health. Eur. J. Dent. 2016, 10, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, T.; Krishnan, V.; Rajendran, R.; Madhusudhanan, N. Azadirachta indica: A herbal panacea in dentistry—An update. Pharmacogn. Rev. 2015, 9, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Nagesh, L.; Amith, H. Effect of Oil Pulling on Plaque and Gingivitis. JOHCD 2007, 1, 12–18. [Google Scholar] [CrossRef] [Green Version]
- El-Aziz, G.S.A.; El-Fark, M.O.; Hamdy, R.M. Protective effect of Eruca sativa seed oil against oral nicotine induced testicular damage in rats. Tissue Cell 2016, 48, 340–348. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.; Huang, H.; Guan, Y.; Mi, Q.; Yao, J. The Efficacy of a Chewing Gum Containing Phyllanthus emblica Fruit Extract in Improving Oral Health. Curr. Microbiol. 2018, 75, 604–610. [Google Scholar] [CrossRef]
- Kaliamoorthy, S.; Pzahani, A.; Nagarajan, M.; Mayyappan, A.; Rayar, S. Comaparing the effect of coconut oil pulling practice with oil pulling using sesame oil in plaque-induced gingivitis: A prospective comparative interventional study. J. Nat. Sc. Biol. Med. 2018, 9, 165–168. [Google Scholar] [CrossRef]
- Kumar, V.; Shanbhag, L. Oil pulling for maintaining oral hygiene—A review. J. Trad. Complement. Med. 2017, 7, 106–109. [Google Scholar]
- Katsure, H.; Tsuliyama, R.; Suzuki, A.; Kobayashi, M. In Vitro Antimicrobial Activities of Bakuchiol against Oral Microorganisms. Amtimicrob. Agent. Chemother. 2001, 45, 3009–3013. [Google Scholar] [CrossRef] [Green Version]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Ben Kahla-Nakbi, A.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Kimura, S.S.; Tung, Y.C.; Pan, M.H.; Weisu, N.; Lai, N.W.; Cheng, K. CBlack garlic: A critical review of its production, bioactivity, and application. J. Food. Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.A.; Bhat, S.S.; Hegde, S.; Jhamb, V. Efficacy of garlic extract and chlorhexidine mouthwash in reduction of oral salivary microorganisms, an in vitro study. Anc. Sci. Life 2014, 34, 85–88. [Google Scholar] [CrossRef]
- Jalayer-Naderi, N.; Niakan, E.; Mohamadi-Motlagh, M. The antibacterial activity of methanolic Anacyclus pyrethrum and Pistacia lentiscus L. extract on Escherichia coli. Iran. J. Microbiol. 2016, 8, 372–376. [Google Scholar]
- Sharma, M.; Tandon, S.; Nayak, U.A.; Kappadi, D.; Rathore, A.S.; Goyal, A. Calotropis gigantea extract as a potential anticariogenic agents against Streptococcus mutans: An in vivo comparative evaluation. J. Conserv. Dent. 2017, 20, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Gohil, K.; Patel, J.; Gajjar, A. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci. 2010, 72, 546–556. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, S.P.; Chavannavar, S.V.; Kanchanashri, B.; Niveditha, S.B. Pharmaceutical Perspectives of Spices and Condiments as Alternative Antimicrobial Remedy. J. Evid. Based Integr. Med. 2017, 22, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, Z.; Shuhairi, N.N.; Yap, N.M.F.S.; Sibungkil, C.-A.H.; Latip, J. Antibacterial Activity of Myristica fragransagainst Oral Pathogens. Evid. Based Complement. Altern. Med. 2012, 2012, 825362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, D.; Kunnaiah, R. Punica granatum: A review on its potential role in treating periodontal disease. J. Indian Soc. Periodontol. 2014, 18, 428. [Google Scholar] [CrossRef]
- Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med. 2016, 7, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules 2018, 23, 1664. [Google Scholar] [CrossRef] [Green Version]
- Pardeep, K.R. Ethno medicinal plants used for oral health care in India. Int. J. Herb. Med. 2014, 2, 81–87. [Google Scholar]
- Cariri, M.; Givisiez, P.E.N.; Sousa, F.G.; Magnani, M.; Souza, E.L.; Spricigo, D.A.S. Biofilm-forming and antimicrobial resistance traits of staphylococci from goat dairy plants. J. Infect. Dev. Ctries. 2016, 10, 932–938. [Google Scholar]
- Amin, A.; Hanif, M.; Abbas, K.; Raman, M.; Rasheed, A.; Zaman, A.; Pieters, L. Studies on effects of umbelliferon derivatives against periodontal bacteria; antibiofilm, inhibition of quorum sensing and molecular docking analysis. Microb. Pathog. 2020, 144, 104184. [Google Scholar] [CrossRef]
- Pitcher, D.G.; Saunders, N.A.; Owen, R.J. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 1989, 8, 151–156. [Google Scholar] [CrossRef]
- Joshi, M.; Deshpande, J.D. Polymerase chain reaction: Methods, principles an application. Int. J. Biomed. Res. 2010, 2, 81–97. [Google Scholar] [CrossRef]
- Yu, S.; Jensen, V.; Seeliger, J.; Feldmann, I.; Weber, S.; Schleicher, E.; Häussler, S.; Blankenfeldt, W. Structure Elucidation and Preliminary Assessment of Hydrolase Activity of PqsE, the Pseudomonas Quinolone Signal (PQS) Response Protein. Biochemistry 2009, 48, 10298–10307. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Swem, L.R.; Swem, D.L.; Stauff, D.L.; O’Loughlin, C.T.; Jeffrey, P.D.; Bassler, B.; Hughson, F.M. A Strategy for Antagonizing Quorum Sensing. Mol. Cell 2011, 42, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Discovery Studio Visualizer, version 2.0.; Accelrys Software Inc.: San Diego, CA, USA, 2012.
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Weseler, A.H.K.; Geiss, E.; Saller, R.; Retching, J. A novel colorimetric broth microdilution method to determine the minimum inhibitory concentration (MIC) of antibiotics and essential oils against Helicobacter pylori. Pharmazie 2005, 60, 498–502. [Google Scholar] [PubMed]
- Bazargani, M.M.; Rohloff, J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016, 61, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Koh, K.H.; Tham, F.-Y. Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity. J. Microbiol. Immunol. Infect. 2011, 44, 144–148. [Google Scholar] [CrossRef] [Green Version]
- McLean, R.J.; Pierson, L.S.; Fuqua, C. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods 2004, 58, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Raafa, K. Phytochemical analysis of Juglans regia oil and kernel exploring their antinociceptive and anti-inflammatory potentials utilizing combined bio-guided GC–FID, GC–MS and HPLC analyses. Rev. Brasil. Farmacogn. 2018, 28, 358–368. [Google Scholar] [CrossRef]
- Ho, K.-V.; Lei, Z.; Sumner, L.W.; Coggeshall, M.V.; Hsieh, H.-Y.; Stewart, G.C.; Lin, C.-H. Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Melvita, A.; Ju, Y.H. Separation of azadirachtin and other limonoids from crude neem oil via solvent precipitation. Sepr. Purif. Technol. 2010, 74, 219–224. [Google Scholar] [CrossRef]
- Khoobchandani, M.; Ganesh, N.; Gabbanini, S.; Valgimigli, L.; Srivastava, M. Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth. Fitoterapia 2011, 82, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Cu, J.-Q.; Perineau, F.; Goepfert, G. GC/MS Analysis of Star Anise Oil. J. Essent. Oil Res. 1990, 2, 91–92. [Google Scholar] [CrossRef]
- Luis, A.; Sousa, S.; Wackerlig, A.; Dobusch, D.; Daurte, A.P.; Pereira, L.; Domingues, L. Star anise (Illicium verum Hook. f.) essential oil: Antioxidant properties and antibacterial activity against Acinetobacter baumannii. Flavor Frag. J. 2019, 34, 260–270. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Pruss, A.; Masiuk, H.; Mnichowska-Polanowska, M.; Kaczmarek, M.; Giedrys-Kalemba, S.; Dołęgowska, B.; Zielińska-Bliźniewska, H.; Olszewski, J.; Sienkiewicz, M. The effect of fennel essential oil and trans-anethole on antibacterial activity of mupirocin against Staphylococcus aureus isolated from asymptomatic carriers. Postepy Dermatol. Allergol. 2019, 36, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Rajaa, S.I.; Ahmada, S.I.; Irshadadb, M.; Wanid, W.A.; Siddiqia, W.A.; Shreaz, S. Anticandidal activity of ethanolic root extract of Juglans regia (L.): Effecton growth, cell morphology, and key virulence factors. J. Mycol. Méd. 2017, 27, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Matulyte, I.; Marksa, M.; Ivanauskas, L.; Kalvėnienė, Z.; Lazauskas, R.; Bernatoniene, J. GC-MS Analysis of the Composition of the Extracts and Essential Oil from Myristica fragrans Seeds Using Magnesium Aluminometasilicate as Excipient. Molecules 2019, 24, 1062. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.D.; Bansal, V.K.; Babu, V.; Maithil, N. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J. Genet. Eng. Biotechnol. 2013, 11, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, M.I.; Ahmad, M.; Rasul, A.; Samra, Z.Q.; Qadir, M.A.; Mazhar, S.; Ali, A. Chemical Composition of the Essential Oils of Nutmeg and Mace by GC-FID/MS Indigenous to Pakistan and Evaluation of their Biological Activities. Lat. Am. J. Pharm. 2016, 35, 2176–2184. [Google Scholar]
- Alma, M.H.; Ertaş, M.; Nitz, S.; Kollmannsberger, H. Chemical composition and content of essential oil from the bud of cultivated Turkish clove (Syzygium aromaticum L.). BioResources 2007, 2, 265–269. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Z.; Faung, Y.; Yin, Y.; Feng, L. Charcaterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. Eur. Food. Res. Technol. 2013, 236, 109–117. [Google Scholar] [CrossRef]
- Venkataraghavan, K.; Shah, S.; Choudhary, P.; Mohammad, S.; Trivedi, K.; Shah, S.G. Evaluation of antimicrobial effect of azadirachtin plant extract (Soluneem™) on commonly found root canal pathogenic microorganisms (viz. Enterococcus faecalis) in primary teeth: A microbiological study. J. Indian Soc. Pedod. Prev. Dent. 2016, 34, 210–216. [Google Scholar] [CrossRef]
Plant Species | Ayurvedic/Traditional Usage | References |
---|---|---|
Category A (Chewing sticks) | ||
Azadirachta indica A. Juss | Antibacterial, antibiofilm | [19] |
Olea europaea L. | Antibacterial, antibiofilm | [20] |
Citrullus colocynthis (L.) Schrad. | Antibacterial | [21] |
Echinops echinatus Roxb. | Antibacterial, | [22] |
Juglans regia L. 1 | Antibacterial | [23,24] |
Juglans regia L. 2 | Antibacterial, Stem and bark used for teeth cleaning as chewing sticks in Pakistan and India | [23,24] |
Salvadora persica L. 3 | Antibacterial, antidiabetic | [19,25] |
Salvadora persica L. 4 | Antibacterial, antidiabetic | [19,25] |
Category B (Oils) | ||
Azadirachta indica A. Juss | Antibacterial, antibiofilm | [26] |
Brassica nigra (L.) K. Koch | For oil pulling | [27] |
Eruca sativa Mill. | For oil pulling | [28] |
Lagenaria siceraria (Molina) Standl. | For oil pulling | Local trad. use |
Phyllanthus emblica L. | For oil pulling | [29] |
Prunus dulcis Mill. ex Rchb. | For oil pulling | [30,31] |
Psoralea corylifolia L. | For oil pulling | [32] |
Syzygium aromaticum (L.) Merr. & L.M. Perry | Antibacterial | [33] |
Category C (extracts) | ||
Allium sativum L. 5 | Antibacterial, antibiofilm | [34] |
Allium sativum L. 6 | Antibacterial, antibiofilm | [35] |
Anacyclus pyrethrum (L.) Lag | Antibacterial, antibiofilm | [36] |
Calotropis procera (Aiton) Dryand | Antibacterial, antibiofilm | [37] |
Centella asiatica (L.) Urb | Antibacterial, antibiofilm | [38] |
Illicium verum Hook.f. | Antibacterial, antibiofilm | [39] |
Myristica fragrans Houtt. 7 | Antibacterial, antibiofilm | [40] |
Myristica fragrans Houtt. 8 | Antibacterial, antibiofilm | [40] |
Punica granatum L. | Antibacterial, antibiofilm | [41] |
Terminalia arjuna (Roxb. ex DC) Wight & Arn. | Antibacterial, antibiofilm | [42] |
Urtica dioica L. | Antibacterial, antibiofilm | [43] |
Wrightia tinctoria R.Br. | Antibacterial, antibiofilm | [44] |
Bacterial Strain | Ciprofloxacin | Moxifloxacin | Gentamicin | Ceftriaxone | Ceftazidime | Cefipime | Amoxicillin | Coamoxiclavev | Imipenem | Meropenem | Azteronam | Metronidazole | Azithromycin | Ofloxacin | Tetracycline |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Staphylococcus aureus 1 | 20 | 80 | 100 | 100 | 100 | 100 | 90 | 80 | 60 | 60 | 100 | 100 | 100 | 90 | 90 |
Staphylococcus epidermidis 1 | 20 | 90 | 100 | 100 | 100 | 100 | 100 | 80 | 60 | 60 | 100 | 100 | 100 | 100 | 100 |
Staphylococcus aureus 2 | 10 | 0 | 60 | 40 | 40 | 20 | 30 | 10 | 0 | 0 | 100 | 100 | 0 | 40 | 40 |
Pseudomonas aureginosa 2 | 10 | 0 | 100 | 40 | 40 | 20 | 40 | 10 | 0 | 0 | 100 | 100 | 0 | 50 | 30 |
Plant Species | S. aureusa | S. epidermidisb | S. aureusc | P. aerugionasad |
---|---|---|---|---|
Allium sativum1 | >100 | >100 | >100 | 1.2 |
Allium sativum2 | >100 | >100 | 0.6 | 0.6 |
Anacyclus pyrethrum | >100 | 1.2 | >100 | 1.2 |
Azadirachta indica | >100 | 0.78 | 0.024 | 0.024 |
Azadirachta indica oil | 0.39 | >100 | 0.09 | 0.78 |
Brassica nigra oil | >100 | >100 | >100 | >100 |
Calotropis procera | >100 | >100 | 1.2 | 1.2 |
Centella asiatica | >100 | >100 | 1.2 | 0.048 |
Citrullus colocynthis | >100 | >100 | 0.012 | >100 |
Echinops echinatu | >100 | >100 | 0.024 | >100 |
Eruca sativa oil | 0.012 | 0.097 | 0.024 | 0.012 |
Illicium verum | 1.2 | 0.6 | 0.048 | 0.097 |
Juglans regia 3 | 0.78 | 0.048 | 0.097 | 0.048 |
Juglans regia 4 | 0.048 | 0.78 | 0.097 | 0.097 |
Lagenaria siceraria oil | >100 | >100 | >100 | >100 |
Myristica fragrans5 | 0.097 | 0.024 | 0.097 | 0.024 |
Myristica fragrans6 | 0.097 | 0.048 | 0.78 | 0.048 |
Olea europaea | >100 | 1.2 | 0.048 | 0.048 |
Phyllanthus emblica oil | >100 | >100 | >100 | >100 |
Prunus dulcis oil | >100 | >100 | >100 | >100 |
Psoralea corylifolia oil | >100 | >100 | >100 | >100 |
Punica granatum | 0.78 | 0.39 | 0.19 | 0.39 |
Salvadora persica7 | >100 | >100 | 0.024 | 1.2 |
Salvadora persica8 | >100 | 1.2 | 0.012 | 1.2 |
Sesamum radiatum | >100 | >100 | >100 | >100 |
Syzygium aromaticum oil | 0.024 | 0.097 | 0.024 | 0.024 |
Terminalia arjuna | >100 | >100 | 0.78 | 0.78 |
Urtica dioica | >100 | >100 | >100 | 1.2 |
Wrightia tinctoria | >100 | >100 | 0.78 | 1.56 |
Ciprofloxacin | < 0.004 | < 0.004 | 0.009 | 0.009 |
Azithromycin | >100 | >100 | 0.008 | 0.002 |
Plant Species | Inhibition of Bacterial Biofilm * | Zone of Inhibition ** | Violacein Inhibition |
---|---|---|---|
Allium sativum1 | Nil a | 0 a | Nil a |
Allium sativum2 | Nil a | 0 a | Nil a |
Anacyclus pyrethrum | Nil a | 0 a | Nil a |
Azadirachta indica | Nil a | 0 a | Nil a |
Azadirachta indica oil | 54% a | 6 a | 54% a |
Brassica nigra oil | Nil a | 0 a | Nil a |
Calotropis procera | 25% a | 0 a | Nil a |
Centella asiatica | 28% a | 2 a | 26% a |
Citrullus colocynthis | Nil a | 0 a | Nil a |
Echinops echinatus | Nil a | 0 a | Nil a |
Eruca sativa oil | 58% d | 14 d | 52% d |
Illicium verum | 38% a | 2 a | 35% a |
Juglans regia 3 | 51% b | 5 b | 50% b |
Juglans regia 4 | 52% b | 7 b | 51% b |
Lagenaria siceraria oil | Nil a | 0 a | Nil a |
Myristica fragrans5 | 39% a | 2 a | 35% a |
Myristica fragrans6 | 35% a | 2 a | 32% a |
Olea europaea | 28% a | 2 a | 31% a |
Phyllanthus emblica oil | Nil a | 0 a | Nil a |
Prunus dulcis oil | Nil a | 0 a | Nil a |
Psoralea corylifolia oil | Nil a | 0 a | Nil a |
Punica granatum | 55% a | 5 a | 52% a |
Salvadora persica7 | Nil a | 0 a | Nil a |
Salvadora persica8 | Nil a | 0 a | Nil a |
Sesamum radiatum | Nil a | 0 a | Nil a |
Syzygium aromaticum oil | 72% c | 16 c | 61% c |
Terminalia arjuna | 41% a | 2 a | 38% a |
Urtica dioica | 42% a | 2 a | 41% a |
Wrightia tinctoria | Nil a | 0 a | Nil a |
Plant Species | Major Constituents |
---|---|
Azadirachta indica | Nimbidine, azadirachtin (Azadirachtin A), salannol, salannin [60] |
Eruca sativa | Bis (4-isothiocyanatobutyl) disulphide (5000 µg/g), sulforaphane (743 µg/g), 2-phenylethyl isothiocyanate (158 µg/g), 3-butenyl isothiocyanate (259.6 µg/g), erucic acid (57%) [61] |
Illicium verum | Trans-anethol (71.98%), feniculine (14.5%) [62] estragole (1.84%), limonene (1.38%), 4-allyl anisole (6.7%) [63] |
Juglans regia | Juglone, regiolone (28.6%), proceroside (9.1%) [64] glansreginin B (11.5%), glansreginin A (10.4%) [65] quercetin, quercitrin, gallic acid [58] |
Myristica fragrans1 | Myrislignan (22.59%), elemicin (13.99%), α-phellandrene (13.04%) [66] Sabinene (28%), β-pinene (9.72%), α-pinene (10.2%) [67] safrole, eugenol, caryophyllene, caryophyllene oxide, palmitic acid [68] |
Myristica fragrans2 | Safrole, sabinene (28%), β-pinene (9.72%), eugenol, caryophyllene, caryophyllene oxide, palmitic acid [68] |
Syzygium aromaticum | Eugenol (87–89%), caryophyllene (3.56%), eugenyl acetate (8.01%), α-humulene (0.04%), caryophyllene oxide (0.47%) [11,69] |
Punica granatum | Gallic acid, caffeic acid, chlorogenic acid, ellagic acid, apigenin, quercetin, pelargonidin, cyanidin, punicalin, punicalagin, granatin A, granatin B [59,70] |
Compound Name | S. aureusa | S. epidermidisb | S. aureusc | P. aeruginosaa |
---|---|---|---|---|
Juglone | 0.0058 | 0.046 | 0.75 | 0.05 |
Caryophyllene-oxide | 0.37 | 0.37 | 0.75 | 0.05 |
α-Humulene | 0.023 | 0.37 | 0.75 | 0.187 |
Eugenol | 0.0003 | 0.0003 | 0.039 | 0.019 |
2-Phenylethyl isothiocyanate | 0.0058 | 0.023 | 0.093 | 0.18 |
Caryophyllene | >0.75 | >0.75 | 0.75 | 0.14 |
Quercetin | >0.75 | 0.375 | 1.25 | 0.625 |
Gallic acid | >0.75 | >0.75 | 0.75 | 0.75 |
Apigenin | 0.25 | 0.125 | 0.125 | 0.25 |
Name | Inhibition of Bacterial Biofilm a | Inhibition of Bacterial Biofilm b | Zone of Inhibition * | Violacein Inhibition |
---|---|---|---|---|
Juglone 1 | 0% | 0% | 1 | 20% |
Caryophyllene-oxide 2 | 51% | 17% | 4 | 54% |
α-Humulene 3 | 58% | 56% | 5 | 40% |
Eugenol 4 | 55% | 52% | 15 | 57.2% |
2-Phenylethyl-isothiocyanate 5 | 57% | 56% | 9 | 55.5% |
Caryophyllene 6 | 0% | 0% | 5 | 50.8% |
Quercetin 7 | 0% | 52% | 0 | 0% |
Gallic acid 8 | 0% | 0% | 0 | 0% |
Apigenin 9 | 48% | 58% | 0 | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafey, A.; Amin, A.; Kamran, M.; Haroon, U.; Farooq, K.; Foubert, K.; Pieters, L. Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents. Antibiotics 2021, 10, 1504. https://doi.org/10.3390/antibiotics10121504
Rafey A, Amin A, Kamran M, Haroon U, Farooq K, Foubert K, Pieters L. Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents. Antibiotics. 2021; 10(12):1504. https://doi.org/10.3390/antibiotics10121504
Chicago/Turabian StyleRafey, Abdul, Adnan Amin, Muhammad Kamran, Uzma Haroon, Kainat Farooq, Kenn Foubert, and Luc Pieters. 2021. "Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents" Antibiotics 10, no. 12: 1504. https://doi.org/10.3390/antibiotics10121504
APA StyleRafey, A., Amin, A., Kamran, M., Haroon, U., Farooq, K., Foubert, K., & Pieters, L. (2021). Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents. Antibiotics, 10(12), 1504. https://doi.org/10.3390/antibiotics10121504