Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model
Abstract
:1. Introduction
2. HFIM in Anti-Mycobacterial Drug Discovery—The Working Model
3. Application of HFIM in Detecting Novel or Repurposed Anti-Mycobacterial Compounds
4. Application of HFIM in Dose and Dosing Interval Selection
5. Application of HFIM in Evaluating Combination Therapy
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jarlier, V.; Nikaido, H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett. 1994, 123, 11–18. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.E.A.; Von Groll, A.; Martin, A.; Palomino, J.C. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 2011, 63, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, N.D.; Dolganov, G.M.; Garcia, B.J.; Worodria, W.; Andama, A.; Musisi, E.; Ayakaka, I.; Van, T.T.; Voskuil, M.I.; de Jong, B.C. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J. Infect. Dis. 2015, 212, 990–998. [Google Scholar] [CrossRef] [Green Version]
- Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev. 2019, 43, 548–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergne, I.; Chua, J.; Lee, H.-H.; Lucas, M.; Belisle, J.; Deretic, V. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2005, 102, 4033–4038. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 2012, 12, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Snider, D.E.; Cohn, D.L.; Davidson, P.T.; Hershfield, E.S.; Smith, M.H.; Sutton, F.D. Standard therapy for tuberculosis 1985. Chest 1985, 87, 117S–124S. [Google Scholar] [CrossRef]
- Tweed, C.D.; Wills, G.H.; Crook, A.M.; Amukoye, E.; Balanag, V.; Ban, A.Y.L.; Bateson, A.L.C.; Betteridge, M.C.; Brumskine, W.; Caoili, J. A partially randomised trial of pretomanid, moxifloxacin and pyrazinamide for pulmonary TB. Int. J. Tuberc. Lung Dis. 2021, 25, 305–314. [Google Scholar] [CrossRef]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Schiff, H.F.; Jones, S.; Achaiah, A.; Pereira, A.; Stait, G.; Green, B. Clinical relevance of non-tuberculous mycobacteria isolated from respiratory specimens: Seven year experience in a UK hospital. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Lipman, M.; Cleverley, J.; Fardon, T.; Musaddaq, B.; Peckham, D.; van der Laan, R.; Whitaker, P.; White, J. Current and future management of non-tuberculous mycobacterial pulmonary disease (NTM-PD) in the UK. BMJ Respir. Res. 2020, 7, e000591. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM drug discovery: Status, gaps and the way forward. Drug Discov. Today 2018, 23, 1502–1519. [Google Scholar] [CrossRef]
- Van Ingen, J.; Ferro, B.E.; Hoefsloot, W.; Boeree, M.J.; Van Soolingen, D. Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: The evidence. Expert Rev. Anti. Infect. Ther. 2013, 11, 1065–1077. [Google Scholar] [CrossRef]
- Sadouki, Z.; McHugh, T.D.; Aarnoutse, R.; Ortiz Canseco, J.; Darlow, C.; Hope, W.; van Ingen, J.; Longshaw, C.; Manissero, D.; Mead, A.; et al. Application of the hollow fibre infection model (HFIM) in antimicrobial development: A systematic review and recommendations of reporting. J. Antimicrob. Chemother. 2021, 76, 2252–2259. [Google Scholar] [CrossRef]
- Gloede, J.; Scheerans, C.; Derendorf, H.; Kloft, C. In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J. Antimicrob. Chemother. 2010, 65, 186–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velkov, T.; Bergen, P.J.; Lora-Tamayo, J.; Landersdorfer, C.B.; Li, J. PK/PD models in antibacterial development. Curr. Opin. Microbiol. 2013, 16, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Cadwell, J. The hollow fiber infection model: Principles and practice. Adv. Antibiot. Antibodies 2015, 1, 2. [Google Scholar]
- Bulitta, J.B.; Hope, W.W.; Eakin, A.E.; Guina, T.; Tam, V.H.; Louie, A.; Drusano, G.L.; Hoover, J.L. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob. Agents Chemother. 2019, 63, e02307-18. [Google Scholar] [CrossRef] [Green Version]
- Zinner, S.H.; Husson, M.; Klastersky, J. An artificial capillary in vitro kinetic model of antibiotic bactericidal activity. J. Infect. Dis. 1981, 144, 583–587. [Google Scholar] [CrossRef]
- Bilello, J.A.; Bauer, G.; Dudley, M.N.; Cole, G.A.; Drusano, G.L. Effect of 2′, 3′-didehydro-3′-deoxythymidine in an in vitro hollow-fiber pharmacodynamic model system correlates with results of dose-ranging clinical studies. Antimicrob. Agents Chemother. 1994, 38, 1386–1391. [Google Scholar] [CrossRef] [Green Version]
- Gumbo, T.; Pasipanodya, J.G.; Romero, K.; Hanna, D.; Nuermberger, E. Forecasting accuracy of the hollow fiber model of tuberculosis for clinical therapeutic outcomes. Clin. Infect. Dis. 2015, 61, S25–S31. [Google Scholar] [CrossRef] [Green Version]
- Romero, K.; Clay, R.; Hanna, D. Strategic regulatory evaluation and endorsement of the hollow fiber tuberculosis system as a novel drug development tool. Clin. Infect. Dis. 2015, 61, S5–S9. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency Qualification Opinion In-vitro Hollow Fiber System Model of Tuberculosis (HSF-TB). Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-opinion-vitro-hollow-fibre-system-model-tuberculosis-hfs-tb_en.pdf (accessed on 17 August 2021).
- Cavaleri, M.; Manolis, E. Hollow fiber system model for tuberculosis: The European Medicines Agency experience. Clin. Infect. Dis. 2015, 61, S1–S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louie, A.; Duncanson, B.; Myrick, J.; Maynard, M.; Nole, J.; Brown, D.; Schmidt, S.; Neely, M.; Scanga, C.A.; Peloquin, C. Activity of moxifloxacin against Mycobacterium tuberculosis in acid phase and nonreplicative-persister phenotype phase in a hollow-fiber infection model. Antimicrob. Agents Chemother. 2018, 62, e01470-18. [Google Scholar] [CrossRef] [Green Version]
- Kloprogge, F.; Hammond, R.; Kipper, K.; Gillespie, S.H.; Della Pasqua, O. Mimicking in-vivo exposures to drug combinations in-vitro: Anti-tuberculosis drugs in lung lesions and the hollow fiber model of infection. Sci. Rep. 2019, 9, 1–8. [Google Scholar]
- Aranzana-Climent, V.; Chauzy, A.; Grégoire, N. HF-App: A R-Shiny Application to Streamline Hollow-Fibre Experiments. R Application Version 1.0.0. Available online: https://varacli.shinyapps.io/hollow_fiber_app/ (accessed on 9 December 2021).
- Honeyborne, I.; McHugh, T.D.; Phillips, P.P.J.; Bannoo, S.; Bateson, A.; Carroll, N.; Perrin, F.M.; Ronacher, K.; Wright, L.; Van Helden, P.D. Molecular bacterial load assay, a culture-free biomarker for rapid and accurate quantification of sputum Mycobacterium tuberculosis bacillary load during treatment. J. Clin. Microbiol. 2011, 49, 3905–3911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendon-Dunn, C.L.; Doris, K.S.; Thomas, S.R.; Allnutt, J.C.; Marriott, A.A.N.; Hatch, K.A.; Watson, R.J.; Bottley, G.; Marsh, P.D.; Taylor, S.C. A flow cytometry method for rapidly assessing Mycobacterium tuberculosis responses to antibiotics with different modes of action. Antimicrob. Agents Chemother. 2016, 60, 3869–3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloprogge, F.; Hammond, R.; Copas, A.; Gillespie, S.H.; Della Pasqua, O. Can phenotypic data complement our understanding of antimycobacterial effects for drug combinations? J. Antimicrob. Chemother. 2019, 74, 3530–3536. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.A.; Kamdolozi, M.; Nishihara, Y.; Ndhlovu, V.; Khonga, M.; Davies, G.R.; Sloan, D.J. Serial image analysis of Mycobacterium tuberculosis colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB. Tuberculosis 2016, 98, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Nuermberger, E.; Pasipanodya, J.G.; Swaminathan, S.; Gumbo, T. A faropenem, linezolid, and moxifloxacin regimen for both drug-susceptible and multidrug-resistant tuberculosis in children: FLAME path on the Milky Way. Clin. Infect. Dis. 2016, 63, S95–S101. [Google Scholar] [CrossRef]
- Mallick, I.; Santucci, P.; Poncin, I.; Point, V.; Kremer, L.; Cavalier, J.-F.; Canaan, S. Intrabacterial lipid inclusions in mycobacteria: Unexpected key players in survival and pathogenesis? FEMS Microbiol. Rev. 2021, 45, fuab029. [Google Scholar] [CrossRef]
- Maitra, A.; Bates, S.; Kolvekar, T.; Devarajan, P.V.; Guzman, J.D.; Bhakta, S. Repurposing-a ray of hope in tackling extensively drug resistance in tuberculosis. Int. J. Infect. Dis. 2015, 32, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Maitra, A.; Bates, S.D.S.; Shaik, M.; Evangelopoulos, D.; Abubakar, I.; McHugh, T.D.; Lipman, M.; Bhakta, S. Repurposing drugs for treatment of tuberculosis: A role for non-steroidal anti-inflammatory drugs. Br. Med. Bull. 2016, 118, 138. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Chapagain, M.; Magombedze, G.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Koeuth, T.; Dheda, K.; Gumbo, T. Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Sci. Adv. 2017, 3, e1701102. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Bendet, P.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Pasipanodya, J.G.; Dheda, K.; Gumbo, T. Antibacterial and sterilizing effect of benzylpenicillin in tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e02232-17. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Pasipanodya, J.G.; Srivastava, S.; Martin, K.R.; Athale, S.; van Zyl, J.; Antiabong, J.; Koeuth, T.; Lee, P.S.; Dheda, K. Minocycline immunomodulates via sonic hedgehog signaling and apoptosis and has direct potency against drug-resistant tuberculosis. J. Infect. Dis. 2019, 219, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Srivastava, S.; Gumbo, T. A programme to create short-course chemotherapy for pulmonary Mycobacterium avium disease based on pharmacokinetics/pharmacodynamics and mathematical forecasting. J. Antimicrob. Chemother. 2017, 72, i54–i60. [Google Scholar] [CrossRef]
- Fukushima, K.; Kitada, S.; Komukai, S.; Kuge, T.; Matsuki, T.; Kagawa, H.; Tsujino, K.; Miki, M.; Miki, K.; Kida, H. First line treatment selection modifies disease course and long-term clinical outcomes in Mycobacterium avium complex pulmonary disease. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Deshpande, D.; Gumbo, T. Failure of the azithromycin and ethambutol combination regimen in the hollow-fibre system model of pulmonary Mycobacterium avium infection is due to acquired resistance. J. Antimicrob. Chemother. 2017, 72, i20–i23. [Google Scholar] [CrossRef] [Green Version]
- Ruth, M.M.; Raaijmakers, J.; van den Hombergh, E.; Aarnoutse, R.; Svensson, E.M.; Susanto, B.O.; Simonsson, U.S.H.; Wertheim, H.; Hoefsloot, W.; van Ingen, J. Standard therapy of Mycobacterium avium complex pulmonary disease shows limited efficacy in an open source hollow fibre system that simulates human plasma and epithelial lining fluid pharmacokinetics. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Srivastava, S.; Chapagain, M.L.; Lee, P.S.; Cirrincione, K.N.; Pasipanodya, J.G.; Gumbo, T. The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J. Antimicrob. Chemother. 2017, 72, i36–i42. [Google Scholar] [CrossRef] [PubMed]
- Ruth, M.M.; Magombedze, G.; Gumbo, T.; Bendet, P.; Sangen, J.J.N.; Zweijpfenning, S.; Hoefsloot, W.; Pennings, L.; Koeken, V.A.C.M.; Wertheim, H.F.L. Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. J. Antimicrob. Chemother. 2019, 74, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Magombedze, G.; Srivastava, S.; Bendet, P.; Lee, P.S.; Cirrincione, K.N.; Martin, K.R.; Dheda, K.; Gumbo, T. Once-a-week tigecycline for the treatment of drug-resistant TB. J. Antimicrob. Chemother. 2019, 74, 1607–1617. [Google Scholar] [CrossRef]
- Ferro, B.E.; Srivastava, S.; Deshpande, D.; Pasipanodya, J.G.; van Soolingen, D.; Mouton, J.W.; van Ingen, J.; Gumbo, T. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob. Agents Chemother. 2016, 60, 2895–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Modongo, C.; Siyambalapitiyage Dona, C.W.; Pasipanodya, J.G.; Deshpande, D.; Gumbo, T. Amikacin optimal exposure targets in the hollow-fiber system model of tuberculosis. Antimicrob. Agents Chemother. 2016, 60, 5922–5927. [Google Scholar] [CrossRef] [Green Version]
- Conradie, F.; Everitt, D.; Olugbosi, M.; Wills, G.; Fabiane, S.; Timm, J.; Spigelman, M. High rate of successful outcomes treating highly resistant TB in the ZeNix study of pretomanid, bedaquiline and alternative doses and durations of linezolid. J. Int. AIDS Soc. 2021, 24, 70–71. [Google Scholar]
- Brown, A.N.; Drusano, G.L.; Adams, J.R.; Rodriquez, J.L.; Jambunathan, K.; Baluya, D.L.; Brown, D.L.; Kwara, A.; Mirsalis, J.C.; Hafner, R. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. MBio 2015, 6, e01741-15. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Magombedze, G.; Koeuth, T.; Sherman, C.; Pasipanodya, J.G.; Raj, P.; Wakeland, E.; Deshpande, D.; Gumbo, T. Linezolid dose that maximizes sterilizing effect while minimizing toxicity and resistance emergence for tuberculosis. Antimicrob. Agents Chemother. 2017, 61, e00751-17. [Google Scholar] [CrossRef] [Green Version]
- Nyang’wa, B.T.; Motta, I.; Kazounis, E.; Berry, C. Early termination of randomisation into TB-PRACTECAL, a novel six months all-oral regimen Drug Resistant TB study. J. Int. AIDS Soc. 2021, 24, 70–71. [Google Scholar]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Bush, S.J.; Nuermberger, E.; Swaminathan, S.; Gumbo, T. Linezolid for infants and toddlers with disseminated tuberculosis: First steps. Clin. Infect. Dis. 2016, 63, S80–S87. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Nuermberger, E.; Koeuth, T.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Gumbo, T. Multiparameter responses to tedizolid monotherapy and moxifloxacin combination therapy models of children with intracellular tuberculosis. Clin. Infect. Dis. 2018, 67, S342–S348. [Google Scholar] [CrossRef]
- Srivastava, S.; Deshpande, D.; Nuermberger, E.; Lee, P.S.; Cirrincione, K.; Dheda, K.; Gumbo, T. The sterilizing effect of intermittent tedizolid for pulmonary tuberculosis. Clin. Infect. Dis. 2018, 67, S336–S341. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Gumbo, T. Linezolid as treatment for pulmonary Mycobacterium avium disease. J. Antimicrob. Chemother. 2017, 72, i24–i29. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Srivastava, S.; Pasipanodya, J.G.; Lee, P.S.; Gumbo, T. Tedizolid is highly bactericidal in the treatment of pulmonary Mycobacterium avium complex disease. J. Antimicrob. Chemother. 2017, 72, i30–i35. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.; Alffenaar, J.-W.C.; Köser, C.U.; Dheda, K.; Chapagain, M.L.; Simbar, N.; Schön, T.; Sturkenboom, M.G.G.; McIlleron, H.; Lee, P.S. d-Cycloserine pharmacokinetics/pharmacodynamics, susceptibility, and dosing implications in multidrug-resistant tuberculosis: A Faustian deal. Clin. Infect. Dis. 2018, 67, S308–S316. [Google Scholar] [CrossRef]
- Deshpande, D.; Pasipanodya, J.G.; Mpagama, S.G.; Srivastava, S.; Bendet, P.; Koeuth, T.; Lee, P.S.; Heysell, S.K.; Gumbo, T. Ethionamide pharmacokinetics/pharmacodynamics-derived dose, the role of MICs in clinical outcome, and the resistance arrow of time in multidrug-resistant tuberculosis. Clin. Infect. Dis. 2018, 67, S317–S326. [Google Scholar] [CrossRef]
- Deshpande, D.; Pasipanodya, J.G.; Srivastava, S.; Bendet, P.; Koeuth, T.; Bhavnani, S.M.; Ambrose, P.G.; Smythe, W.; McIlleron, H.; Thwaites, G. Gatifloxacin pharmacokinetics/pharmacodynamics–based optimal dosing for pulmonary and meningeal multidrug-resistant tuberculosis. Clin. Infect. Dis. 2018, 67, S274–S283. [Google Scholar] [CrossRef]
- Deshpande, D.; Pasipanodya, J.G.; Mpagama, S.G.; Bendet, P.; Srivastava, S.; Koeuth, T.; Lee, P.S.; Bhavnani, S.M.; Ambrose, P.G.; Thwaites, G. Levofloxacin pharmacokinetics/pharmacodynamics, dosing, susceptibility breakpoints, and artificial intelligence in the treatment of multidrug-resistant tuberculosis. Clin. Infect. Dis. 2018, 67, S293–S302. [Google Scholar] [CrossRef] [PubMed]
- Mallikaarjun, S.; Chapagain, M.L.; Sasaki, T.; Hariguchi, N.; Deshpande, D.; Srivastava, S.; Berg, A.; Hirota, K.; Inoue, Y.; Matsumoto, M. Cumulative fraction of response for once-and twice-daily delamanid in patients with pulmonary multidrug-resistant tuberculosis. Antimicrob. Agents Chemother. 2021, 65, e01207-20. [Google Scholar] [CrossRef] [PubMed]
- Merle, C.S.; Fielding, K.; Sow, O.B.; Gninafon, M.; Lo, M.B.; Mthiyane, T.; Odhiambo, J.; Amukoye, E.; Bah, B.; Kassa, F. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 2014, 371, 1588–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, S.H.; Crook, A.M.; McHugh, T.D.; Mendel, C.M.; Meredith, S.K.; Murray, S.R.; Pappas, F.; Phillips, P.P.J.; Nunn, A.J. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 2014, 371, 1577–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Deshpande, D.; Magombedze, G.; van Zyl, J.; Cirrincione, K.; Martin, K.; Bendet, P.; Berg, A.; Hanna, D.; Romero, K. Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. J. Antimicrob. Chemother. 2020, 75, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Srivastava, S.; Nuermberger, E.; Pasipanodya, J.G.; Swaminathan, S.; Gumbo, T. Concentration-dependent synergy and antagonism of linezolid and moxifloxacin in the treatment of childhood tuberculosis: The dynamic duo. Clin. Infect. Dis. 2016, 63, S88–S94. [Google Scholar] [CrossRef]
- Gumbo, T.; Sherman, C.M.; Deshpande, D.; Alffenaar, J.-W.; Srivastava, S. Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. Int. J. Infect. Dis. 2021, 104, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Cirrincione, K.N.; Deshpande, D.; Gumbo, T. Tedizolid, Faropenem, and Moxifloxacin Combination with Potential Activity Against Nonreplicating Mycobacterium tuberculosis. Front. Pharmacol. 2021, 11, 2195. [Google Scholar] [CrossRef]
- Heinrichs, M.T.; Drusano, G.L.; Brown, D.L.; Maynard, M.S.; Sy, S.K.B.; Rand, K.H.; Peloquin, C.A.; Louie, A.; Derendorf, H. Dose optimization of moxifloxacin and linezolid against tuberculosis using mathematical modeling and simulation. Int. J. Antimicrob. Agents 2019, 53, 275–283. [Google Scholar] [CrossRef]
- Srivastava, S.; Deshpande, D.; Sherman, C.M.; Gumbo, T. A ‘shock and awe’thioridazine and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium–intracellulare complex disease. J. Antimicrob. Chemother. 2017, 72, i43–i47. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Deshpande, D.; Magombedze, G.; Gumbo, T. Efficacy versus hepatotoxicity of high-dose rifampin, pyrazinamide, and moxifloxacin to shorten tuberculosis therapy duration: There is still fight in the old warriors yet! Clin. Infect. Dis. 2018, 67, S359–S364. [Google Scholar] [CrossRef]
- Pieterman, E.D.; van den Berg, S.; van der Meijden, A.; Svensson, E.M.; Bax, H.I.; de Steenwinkel, J.E.M. Higher Dosing of Rifamycins Does Not Increase Activity against Mycobacterium tuberculosis in the Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2021, 65, e02255-20. [Google Scholar] [CrossRef]
- Srivastava, S.; Chapagain, M.; van Zyl, J.; Deshpande, D.; Gumbo, T. Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. J. Glob. Antimicrob. Resist. 2021, 24, 403–410. [Google Scholar] [CrossRef]
- Kempker, R.R.; Heinrichs, M.T.; Nikolaishvili, K.; Sabulua, I.; Bablishvili, N.; Gogishvili, S.; Avaliani, Z.; Tukvadze, N.; Little, B.; Bernheim, A.; et al. Lung tissue concentrations of pyrazinamide among patients with drug-resistant pulmonary tuberculosis. Antimicrob. Agents Chemother. 2017, 61, e00226-17. [Google Scholar] [CrossRef] [Green Version]
- Van Heeswijk, R.P.G.; Dannemann, B.; Hoetelmans, R.M.W. Bedaquiline: A review of human pharmacokinetics and drug–Drug interactions. J. Antimicrob. Chemother. 2014, 69, 2310–2318. [Google Scholar] [CrossRef] [PubMed]
- Jindani, A.; Harrison, T.S.; Nunn, A.J.; Phillips, P.P.J.; Churchyard, G.J.; Charalambous, S.; Hatherill, M.; Geldenhuys, H.; McIlleron, H.M.; Zvada, S.P. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 2014, 371, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Plackett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, S50. [Google Scholar] [CrossRef]
- Gumbo, T.; Pasipanodya, J.G.; Nuermberger, E.; Romero, K.; Hanna, D. Correlations between the hollow fiber model of tuberculosis and therapeutic events in tuberculosis patients: Learn and confirm. Clin. Infect. Dis. 2015, 61, S18–S24. [Google Scholar] [CrossRef] [Green Version]
- Azizgolshani, H.; Coppeta, J.R.; Vedula, E.M.; Marr, E.E.; Cain, B.P.; Luu, R.J.; Lech, M.P.; Kann, S.H.; Mulhern, T.J.; Tandon, V.; et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip 2021, 21, 1454–1474. [Google Scholar] [CrossRef]
- Elkington, P.; Lerm, M.; Kapoor, N.; Mahon, R.; Pienaar, E.; Huh, D.; Kaushal, D.; Schlesinger, L.S. In vitro granuloma models of tuberculosis: Potential and challenges. J. Infect. Dis. 2019, 219, 1858–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libardo, M.D.J.; Boshoff, H.I.; Barry, C.E., III. The present state of the tuberculosis drug development pipeline. Curr. Opin. Pharm. 2019, 42, 81–94. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maitra, A.; Solanki, P.; Sadouki, Z.; McHugh, T.D.; Kloprogge, F. Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics 2021, 10, 1515. https://doi.org/10.3390/antibiotics10121515
Maitra A, Solanki P, Sadouki Z, McHugh TD, Kloprogge F. Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics. 2021; 10(12):1515. https://doi.org/10.3390/antibiotics10121515
Chicago/Turabian StyleMaitra, Arundhati, Priya Solanki, Zahra Sadouki, Timothy D. McHugh, and Frank Kloprogge. 2021. "Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model" Antibiotics 10, no. 12: 1515. https://doi.org/10.3390/antibiotics10121515
APA StyleMaitra, A., Solanki, P., Sadouki, Z., McHugh, T. D., & Kloprogge, F. (2021). Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics, 10(12), 1515. https://doi.org/10.3390/antibiotics10121515