The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolates and Susceptibility Characteristics
2.2. Molecular Typing by Multilocus Sequencing Typing—MLST
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates and Species Identification
4.2. Antimicrobial Susceptibility-Related Assays
4.3. Molecular Screening of β-Lactamase-Encoding Genes
4.4. Genetic Diversity Assessment by MLST
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos, J.C.D.M.; Antunes, L.C.M.; Ferreira, R.B.R. Global Priority Pathogens: Virulence, Antimicrobial Resistance and Prospective Treatment Options. Future Microbiol. 2020, 15, 649–677. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; Agnew, E., Dolecek, C., Hasan, R., Lahra, M., Merk, H., Perovic, O., Sievert, D., Smith, R., Taylor, A., Turner, P., Eds.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Amarsy, R.; Jacquier, H.; Munier, A.L.; Merimèche, M.; Berçot, B.; Mégarbane, B. Outbreak of NDM-1-Producing Klebsiella pneumoniae in the Intensive Care Unit during the COVID-19 Pandemic: Another Nightmare. Am. J. Infect. Control 2021, 49, 1324–1326. [Google Scholar] [CrossRef] [PubMed]
- Nori, P.; Szymczak, W.; Puius, Y.; Sharma, A.; Cowman, K.; Gialanella, P.; Fleischner, Z.; Corpuz, M.; Torres-Isasiga, J.; Bartash, R.; et al. Emerging Co-Pathogens: New Delhi Metallo-beta-lactamase producing Enterobacterales Infections in New York City COVID-19 Patients. Int. J. Antimicrob. Agents 2020, 56, 106179. [Google Scholar] [CrossRef]
- García-Betancur, J.C.; Appel, T.M.; Esparza, G.; Gales, A.C.; Levy-Hara, G.; Cornistein, W.; Vega, S.; Nuñez, D.; Cuellar, L.; Bavestrello, L.; et al. Update on the Epidemiology of Carbapenemases in Latin America and the Caribbean. Expert Rev. Anti-Infect. Ther. 2021, 19, 197–213. [Google Scholar] [CrossRef]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of Carbapenem-Resistant Klebsiella pneumoniae in Europe Is Driven by Nosocomial Spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella Pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, J.L.M.; Gales, A.C. Antimicrobial Resistance in Enterobacteriaceae in Brazil: Focus on β-Lactams and Polymyxins. Braz. J. Microbiol. 2016, 47, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.H.Y.; Porto, W.F.; de Faria Jr, C.; Dias, S.C.; Alencar, S.A.; Pickard, D.J.; Hancock, R.E.W.; Franco, O.L. Genomic Insights into the Diversity, Virulence and Resistance of Klebsiella pneumoniae Extensively Drug Resistant Clinical Isolates. Microb. Genom. 2021, 7, 000613. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population Genomics of Klebsiella Pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- Silveira, M.C.; Rocha-de-Souza, C.M.; de Oliveira Santos, I.C.; Pontes, L.d.S.; Oliveira, T.R.T.e.; Tavares-Teixeira, C.B.; Cossatis, N.d.A.; Pereira, N.F.; da Conceição-Neto, O.C.; da Costa, B.S.; et al. Genetic Basis of Antimicrobial Resistant Gram-Negative Bacteria Isolated From Bloodstream in Brazil. Front. Med. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Aires, C.A.M.; Araujo, C.F.M.d.; Chagas, T.P.G.; Oliveira, J.C.R.; Buonora, S.N.; Albano, R.M.; Carvalho-Assef, A.P.D.; Asensia, M.D. Multiclonal Expansion of Klebsiella pneumoniae Isolates Producing NDM-1 in Rio de Janeiro, Brazil. Antimicrob. Agents Chemother. 2017, 61, e01048-16. [Google Scholar] [CrossRef] [Green Version]
- Bowers, J.R.; Kitchel, B.; Driebe, E.M.; MacCannell, D.R.; Roe, C.; Lemmer, D.; De Man, T.; Rasheed, J.K.; Engelthaler, D.M.; Keim, P.; et al. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic. PLoS ONE 2015, 10, e133727. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.S.; De araujo, C.F.M.; Seki, L.M.; Zahner, V.; Carvalho-Assef, A.P.D.A.; Asensi, M.D. Update of the Molecular Epidemiology of KPC-2-Producing Klebsiella pneumoniae in Brazil: Spread of Clonal Complex 11 (ST11, ST437 and ST340). J. Antimicrob. Chemother. 2013, 68, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Vivas, R.; Dolabella, S.S.; Barbosa, A.A.T.; Jain, S. Prevalence of Klebsiella pneumoniae Carbapenemase-and New Delhi Metallo-Beta-Lactamase-Positive k. Pneumoniae in Sergipe, Brazil, and Combination Therapy as a Potential Treatment Option. Rev. Soc. Bras. Med. Trop. 2020, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, I.R.; Aires, C.A.M.; Conceição-Neto, O.C.; De Oliveira Santos, I.C.; Ferreira Pereira, N.; Moreno Senna, J.P.; Carvalho-Assef, A.P.D.A.; Asensi, M.D.; Rocha-De-Souza, C.M. Distribution of Clinical NDM-1-Producing Gram-Negative Bacteria in Brazil. Microb. Drug Resist. 2019, 25, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.B.; Furlan, J.P.R.; Vespero, E.C.; Pelisson, M.; Stehling, E.G.; Pitondo-Silva, A. Spread of Multidrug-Resistant High-Risk Klebsiella pneumoniae Clones in a Tertiary Hospital from Southern Brazil. Infect. Genet. Evol. 2017, 56, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Boszczowski, I.; Salomão, M.C.; Moura, M.L.; Freire, M.P.; Guimarães, T.; Cury, A.P.; Rossi, F.; Rizek, C.F.; Ruedas Martins, R.C.; Costa, S.F. Multidrug-Resistant Klebsiella Pneumoniae: Genetic Diversity, Mechanisms of Resistance to Polymyxins and Clinical Outcomes in a Tertiary Teaching Hospital in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e29. [Google Scholar] [CrossRef] [PubMed]
- Agencia Nacional de Vigilância Sanitária. Boletim Segurança do Paciente e Qualidade em Serviços de Saúde nº 22-Avaliação Nacional dos Indicadores de IRAS e RM-2019; ANVISA: Brasilia, Brazil, 2020; p. 6. Available online: https://app.powerbi.com/view?r=eyJrIjoiZjQ5ZDhjZmEtNDdhOC00MDk3LWFiNDEtNzg0MmE4MmE2MjlhIiwidCI6ImI2N2FmMjNmLWMzZjMtNGQzNS04MGM3LWI3MDg1ZjVlZGQ4MSJ9&pageName=ReportSectionac5c0437dbe709793b4b (accessed on 21 October 2021).
- Dos Santos, A.L.S.; Rodrigues, Y.C.; de Melo, M.V.H.; dos Santos, P.A.S.; da Costa Oliveira, T.N.; Sardinha, D.M.; Lima, L.N.G.C.; Brasiliense, D.M.; Lima, K.V.B. First Insights into Clinical and Resistance Features of Infections by Klebsiella pneumoniae among Oncological Patients from a Referral Center in Amazon Region, Brazil. Infect. Dis. Rep. 2020, 12, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.L.; Da Silva, B.C.M.; Rezende, G.S.; Nakamura-Silva, R.; Pitondo-Silva, A.; Campanini, E.B.; Brito, M.C.A.; Da Silva, E.M.L.; De Melo Freire, C.C.; Da Cunha, A.F.; et al. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front. Microbiol. 2019, 9, 3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, C.M. Molecular Epidemiology of KPC-2 Producing Klebsiella Pneumoniae. SOJ Microbiol. Infect. Dis. 2017, 5, 1–3. [Google Scholar] [CrossRef]
- Theuretzbacher, U. Global Antimicrobial Resistance in Gram-Negative Pathogens and Clinical Need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Sartelli, M.; Mckimm, J.; Abu Bakar, M. Infection and Drug Resistance Dovepress Health Care-Associated Infections-an Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, J.; Li, Y.; Shen, Q.; Jiang, W.; Zhao, K.; He, Y.; Dai, P.; Nie, Z.; Xu, X.; et al. Diversity and Frequency of Resistance and Virulence Genes in BlaKPC and BlaNDM Co-Producing Klebsiella pneumoniae Strains from China. Infect. Drug Resist. 2019, 12, 2819–2826. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Price, L.S.; Poirel, L.; Bonomo, R.A.; Schwaber, M.J.; Daikos, G.L.; Cormican, M.; Cornaglia, G.; Garau, J.; Gniadkowski, M.; Hayden, M.K.; et al. Clinical Epidemiology of the Global Expansion of Klebsiella pneumoniae Carbapenemases. Lancet Infect. Dis. 2013, 13, 785–796. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, É.M.; Beltrão, E.M.B.; Scavuzzi, A.M.L.; Barros, J.F.; Lopes, A.C.S. High Plasmid Variability, and the Presence of Incfib, Incq, Inca/c, Inchi1b, and Incl/m in Clinical Isolates of Klebsiella pneumoniae with Blakpc and Blandm from Patients at a Public Hospital in Brazil. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200397. [Google Scholar] [CrossRef]
- Palmeiro, J.K.; de Souza, R.F.; Schörner, M.A.; Passarelli-Araujo, H.; Grazziotin, A.L.; Vidal, N.M.; Venancio, T.M.; Dalla-Costa, L.M. Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Isolates in a Brazilian Tertiary Hospital. Front. Microbiol. 2019, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Vivan, A.C.P.; Rosa, J.F.; Rizek, C.F.; Pelisson, M.; Costa, S.F.; Hungria, M.; Kobayashi, R.K.T.; Vespero, E.C. Molecular Characterization of Carbapenem-Resistant Klebsiella pneumoniae Isolates from a University Hospital in Brazil. J. Infect. Dev. Ctries. 2017, 11, 379–386. [Google Scholar] [CrossRef]
- Biberg, C.A.; Rodrigues, A.C.S.; do Carmo, S.F.; Chaves, C.E.V.; Gales, A.C.; Chang, M.R. KPC-2-Producing Klebsiella pneumoniae in a Hospital in the Midwest Region of Brazil. Braz. J. Microbiol. 2015, 46, 501–504. [Google Scholar] [CrossRef] [Green Version]
- Nava, R.G.; Oliveira-Silva, M.; Nakamura-Silva, R.; Pitondo-Silva, A.; Vespero, E.C. New Sequence Type in Multidrug-Resistant Klebsiella pneumoniae Harboring the Bla NDM-1 -Encoding Gene in Brazil. Int. J. Infect. Dis. 2019, 79, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Brasiliense, D.; Cayô, R.; Streling, A.P.; Nodari, C.S.; Barata, R.R.; Lemos, P.S.; Massafra, J.M.; Correa, Y.; Magalhães, I.; Gales, A.C.; et al. Diversity of Metallo-β-Lactamase-Encoding Genes Found in Distinct Species of Acinetobacter Isolated from the Brazilian Amazon Region. Mem. Inst. Oswaldo Cruz 2019, 114, e190020. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.C. Characterization of Tn3000, a Transposon Responsible for BlaNDM-1 Dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrob. Agents Chemother. 2015, 59, 7387–7395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillonetto, M.; Arend, L.; Vespero, E.C.; Pelisson, M.; Chagas, T.P.G.; Carvalho-Assef, A.P.D.A.; Asensi, M.D. First Report of NDM-1-Producing Acinetobacter Baumannii Sequence Type 25 in Brazil. Antimicrob. Agents Chemother. 2014, 58, 7592–7594. [Google Scholar] [CrossRef] [Green Version]
- Quiles, M.G.; Rocchetti, T.T.; Fehlberg, L.C.; Kusano, E.J.U.; Chebabo, A.; Pereira, R.M.G.; Gales, A.C.; Pignatari, A.C.C. Unusual Association of NDM-1 with KPC-2 and ArmA among Brazilian Enterobacteriaceae Isolates. Braz. J. Med. Biol. Res. 2015, 48, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Góttig, S.; Hamprecht, A.G.; Christ, S.; Kempf, V.A.J.; Wichelhaus, T.A. Detection of NDM-7 in Germany, a New Variant of the New Delhi Metallo-β-Lactamase with Increased Carbapenemase Activity. J. Antimicrob. Chemother. 2013, 68, 1737–1740. [Google Scholar] [CrossRef] [Green Version]
- Cuzon, G.; Bonnin, R.A.; Nordmann, P. First Identification of Novel NDM Carbapenemase, NDM-7, in Escherichia Coli in France. PLoS ONE 2013, 8, e61322. [Google Scholar] [CrossRef]
- Shao, C.; Hao, Y.; Wang, Y.; Jiang, M.; Jin, Y. Genotypic and Phenotypic Characterization of BlaNDM–7-Harboring IncX3 Plasmid in a ST11 Klebsiella pneumoniae Isolated From a Pediatric Patient in China. Front. Microbiol. 2020, 11, 576823. [Google Scholar] [CrossRef]
- Mizuno, Y.; Yamaguchi, T.; Matsumoto, T. A First Case of New Delhi Metallo-β-Lactamase-7 in an Escherichia Coli ST648 Isolate in Japan. J. Infect. Chemother. 2014, 20, 814–816. [Google Scholar] [CrossRef]
- Shankar, C.; Kumar, S.; Venkatesan, M.; Veeraraghavan, B. Emergence of ST147 Klebsiella pneumoniae Carrying BlaNDM-7 on IncA/C2 with OmpK35 and OmpK36 Mutations in India. J. Infect. Public Health 2019, 12, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ali, S.M.; Khan, A.U. Detection of New Delhi Metallo-β-Lactamase Variants NDM-4, NDM-5, and NDM-7 in Enterobacter Aerogenes Isolated from a Neonatal Intensive Care Unit of a North India Hospital: A First Report. Microb. Drug Resist. 2018, 24, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, J.; Wu, S.; Yang, Y.; Yu, D.; Wang, X.; Wu, M. Characterization of the IncX3 Plasmid Producing BlaNDM–7 From Klebsiella pneumoniae ST34. Front. Microbiol. 2020, 11, 1885. [Google Scholar] [CrossRef]
- Kumarasamy, K.; Kalyanasundaram, A. Emergence of Klebsiella pneumoniae Isolate Co-Producing NDM-1 with KPC-2 from India. J. Antimicrob. Chemother. 2012, 67, 243–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, R.; Shi, Q.; Wu, S.; Yin, D.; Peng, M.; Dong, D.; Zheng, Y.; Guo, Y.; Zhang, R.; Hu, F. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Front. Cell. Infect. Microbiol. 2020, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Sattar, H.; Toleman, M.; Nahid, F.; Zahra, R. Co-Existence of BlaNDM-1 and BlaKPC-2 in Clinical Isolates of Klebsiella pneumoniae from Pakistan. J. Chemother. 2016, 28, 346–349. [Google Scholar] [CrossRef]
- Tekeli, A.; Dolapci, I.; Evren, E.; Oguzman, E.; Karahan, Z.C. Characterization of Klebsiella pneumoniae Coproducing KPC and NDM-1 Carbapenemases from Turkey. Microb. Drug Resist. 2020, 26, 118–125. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Wang, R.; Wang, Q.; Jin, L.; Wang, H. The Transferability and Evolution of NDM-1 and KPC-2 Co-Producing Klebsiella pneumoniae from Clinical Settings. EBioMedicine 2020, 51, 102599. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Poirel, L.; Carrër, A.; Toleman, M.A.; Walsh, T.R. How to Detect NDM-1 Producers. J. Clin. Microbiol. 2011, 49, 718–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Programa Nacional de Control de Calidad en Bacteriologia INEI_ANLIS “Dr. Carlos G. Malbran”. Available online: http://antimicrobianos.com.ar/programa-latinoamericano-de-control-de-calidad-en-bacteriologia-y-resistencia-a-los-antimicrobianos/ (accessed on 21 October 2021).
- Flores, C.; Bianco, K.; De Filippis, I.; Clementino, M.M.; Romão, C.M.C.P.A. Genetic Relatedness of NDM-Producing Klebsiella pneumoniae Co-Occurring VIM, KPC, and OXA-48 Enzymes from Surveillance Cultures from an Intensive Care Unit. Microb. Drug Resist. 2020, 26, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-Negative Bacteria: The Role of High-Risk Clones in the Dissemination of Antibiotic Resistance. FEMS Microbiol. Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef] [Green Version]
- Andrade, L.N.; Novais, Â.; Stegani, L.M.M.; Ferreira, J.C.; Rodrigues, C.; Darini, A.L.C.; Peixe, L. Virulence Genes, Capsular and Plasmid Types of Multidrug-Resistant CTX-M(-2, -8, -15) and KPC-2-Producing Klebsiella pneumoniae Isolates from Four Major Hospitals in Brazil. Diagn. Microbiol. Infect. Dis. 2018, 91, 164–168. [Google Scholar] [CrossRef]
- Fuga, B.; Ferreira, M.L.; Cerdeira, L.T.; de Campos, P.A.; Dias, V.L.; Rossi, I.; Machado, L.G.; Lincopan, N.; Gontijo-Filho, P.P.; Ribas, R.M. Novel Small IncX3 Plasmid Carrying the BlaKPC-2 Gene in High-Risk Klebsiella pneumoniae ST11/CG258. Diagn. Microbiol. Infect. Dis. 2020, 96, 114900. [Google Scholar] [CrossRef]
- Raro, O.H.F.; da Silva, R.M.C.; Filho, E.M.R.; Sukiennik, T.C.T.; Stadnik, C.; Dias, C.A.G.; Oteo Iglesias, J.; Pérez-Vázquez, M. Carbapenemase-Producing Klebsiella pneumoniae From Transplanted Patients in Brazil: Phylogeny, Resistome, Virulome and Mobile Genetic Elements Harboring BlaKPC–2 or BlaNDM–1. Front. Microbiol. 2020, 11, 1563. [Google Scholar] [CrossRef]
- Chen, L.; Mathema, B.; Chavda, K.D.; DeLeo, F.R.; Bonomo, R.A.; Kreiswirth, B.N. Carbapenemase-Producing Klebsiella Pneumoniae: Molecular and Genetic Decoding. Trends Microbiol. 2014, 22, 686–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.M.; Li, B.B.; Zhang, Y.Y.; Zhang, W.; Shen, H.; Li, H.; Cao, B. Clinical and Molecular Characteristics of Emerging Hypervirulent Klebsiella pneumoniae Bloodstream Infections in Mainland China. Antimicrob. Agents Chemother. 2014, 58, 5379–5385. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, M.; Wyres, K.L.; Mirande, C.; Qiang, Z.; Liyan, Y.; Gang, C.; Goossens, H.; van Belkum, A.; Ping, L.Y. Genomic Evolution and Local Epidemiology of Klebsiella pneumoniae from a Major Hospital in Beijing, China, over a 15 Year Period: Dissemination of Known and Novel High-Risk Clones. Microb. Genomics 2021, 7, 520. [Google Scholar] [CrossRef]
- Monteiro, J.; Inoue, F.M.; Lobo, A.P.T.; Ibanes, A.S.; Tufik, S.; Kiffer, C.R.V. A Major Monoclonal Hospital Outbreak of NDM-1-Producing Klebsiella pneumoniae ST340 and the First Report of ST2570 in Brazil. Infect. Control Hosp. Epidemiol. 2019, 40, 492–494. [Google Scholar] [CrossRef] [Green Version]
- Heinz, E.; Ejaz, H.; Bartholdson Scott, J.; Wang, N.; Gujaran, S.; Pickard, D.; Wilksch, J.; Cao, H.; Haq, I.u.; Dougan, G.; et al. Resistance Mechanisms and Population Structure of Highly Drug Resistant Klebsiella in Pakistan during the Introduction of the Carbapenemase NDM-1. Sci. Rep. 2019, 9, 2392. [Google Scholar] [CrossRef] [Green Version]
- Chung The, H.; Karkey, A.; Pham Thanh, D.; Boinett, C.J.; Cain, A.K.; Ellington, M.; Baker, K.S.; Dongol, S.; Thompson, C.; Harris, S.R.; et al. A High-resolution Genomic Analysis of Multidrug-resistant Hospital Outbreaks of Klebsiella pneumoniae. EMBO Mol. Med. 2015, 7, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Martins, W.; Nicolas, M.F.; Yu, Y.; Li, M.; Dantas, P.; Sands, K.; Portal, E.; Almeida, L.; Vasconcelos, A.; Medeiros, E.A.; et al. Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. mSphere 2020, 5, e00756-20. [Google Scholar] [CrossRef]
- Campana, E.H.; Montezzi, L.F.; Paschoal, R.P.; Picão, R.C. NDM-Producing Klebsiella pneumoniae ST11 Goes to the Beach. Int. J. Antimicrob. Agents 2017, 49, 119–121. [Google Scholar] [CrossRef] [PubMed]
- D’Apolito, D.; Arena, F.; Conte, V.; De Angelis, L.H.; Di Mento, G.; Carreca, A.P.; Cuscino, N.; Russelli, G.; Iannolo, G.; Barbera, F.; et al. Phenotypical and Molecular Assessment of the Virulence Potential of KPC-3-Producing Klebsiella pneumoniae ST392 Clinical Isolates. Microbiol. Res. 2020, 240, 126551. [Google Scholar] [CrossRef] [PubMed]
- Di Mento, G.; Cuscino, N.; Carcione, C.; Cardinale, F.; Conaldi, P.G.; Douradinha, B. Emergence of a Klebsiella pneumoniae ST392 Clone Harbouring KPC-3 in an Italian Transplantation Hospital. J. Hosp. Infect. 2018, 98, 313–314. [Google Scholar] [CrossRef]
- Bocanegra-Ibarias, P.; Garza-González, E.; Morfín-Otero, R.; Barrios, H.; Villarreal-Treviño, L.; Rodríguez-Noriega, E.; Garza-Ramos, U.; Petersen-Morfin, S.; Silva-Sanchez, J. Molecular and Microbiological Report of a Hospital Outbreak of NDM-1-Carrying Enterobacteriaceae in Mexico. PLoS ONE 2017, 12, e179651. [Google Scholar] [CrossRef]
- Rojas, L.J.; Wright, M.S.; De La Cadena, E.; Motoa, G.; Hujer, K.M.; Villegas, M.V.; Adams, M.D.; Bonomo, R.A. Initial Assessment of the Molecular Epidemiology of BlaNDM-1 in Colombia. Antimicrob. Agents Chemother. 2016, 60, 4346–4350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajand, O.; Darabi, N.; Arab, M.; Ghorbani, R.; Bameri, Z.; Ebrahimi, A.; Hojabri, Z. The Emergence of the Hypervirulent Klebsiella pneumoniae (HvKp) Strains among Circulating Clonal Complex 147 (CC147) Harbouring Bla NDM/OXA-48 Carbapenemases in a Tertiary Care Center of Iran. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 12. [Google Scholar] [CrossRef]
- Mills, J.P.; Rojas, L.J.; Marshall, S.H.; Rudin, S.D.; Hujer, A.M.; Nayak, L.; Bachman, M.A.; Bonomo, R.A.; Kaye, K.S. Risk Factors for and Mechanisms of COlistin Resistance among Enterobacterales: Getting at the CORE of the Issue. Open Forum Infect. Dis. 2021, 8, ofab145. [Google Scholar] [CrossRef] [PubMed]
- Flores-Valdez, M.; Ares, M.A.; Rosales-Reyes, R.; Torres, J.; Girón, J.A.; Weimer, B.C.; Mendez-Tenorio, A.; De la Cruz, M.A. Whole Genome Sequencing of Pediatric Klebsiella pneumoniae Strains Reveals Important Insights Into Their Virulence-Associated Traits. Front. Microbiol. 2021, 12, 711577. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.R.; Lemmer, D.; Sahl, J.W.; Pearson, T.; Driebe, E.M.; Wojack, B.; Saubolle, M.A.; Engelthaler, D.M.; Keim, P. KlebSeq, a Diagnostic Tool for Surveillance, Detection, and Monitoring of Klebsiella Pneumoniae. J. Clin. Microbiol. 2016, 54, 2582–2596. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Peirano, G.; Lynch, T.; Chavda, K.D.; Gregson, D.B.; Church, D.L.; Conly, J.; Kreiswirth, B.N.; Pitout, J.D. Molecular Characterization by Using Next-Generation Sequencing of Plasmids Containing BlaNDM-7in Enterobacteriaceae from Calgary, Canada. Antimicrob. Agents Chemother. 2016, 60, 1258–1263. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Xiao, L.; Hong, D.; Zhao, Y.; Hu, X.; Shi, S.; Chen, F. Epidemiology of Resistance of Carbapenemase-Producing Klebsiella pneumoniae to Ceftazidime-Avibactam in a Chinese Hospital. J. Appl. Microbiol. 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Clinical and Laboratory Standards Institute. In Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Document M100; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Food and Drug Administration (FDA). Tigecycline–Injection Products. 2019; p. 15. Available online: https://www.fda.gov/drugs/development-resources/tigecycline-injection-products (accessed on 21 October 2021).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.E.; Castanheira, M.; Toleman, M.A.; Sader, H.S.; Jones, R.N.; Walsh, T.R. Characterization of an Integron Carrying BlaIMF-1 and a New Aminoglycoside Resistance Gene, Aac(6′)-31, and Its Dissemination among Genetically Unrelated Clinical Isolates in a Brazilian Hospital. Antimicrob. Agents Chemother. 2007, 51, 2611–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Hu, Y.Y.; Yang, X.F.; Gu, D.X.; Zhou, H.W.; Hu, Q.F.; Zhao, K.; Yu, S.F.; Chen, G.X. Emergence of NDM-Producing Non-Baumannii Acinetobacter Spp. Isolated from China. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.D.; Brisse, S. Multilocus Sequence Typing of Klebsiella pneumoniae Nosocomial Isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carriço, J.A. PHYLOViZ: Phylogenetic Inference and Data Visualization for Sequence Based Typing Methods. BMC Bioinform. 2012, 13, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolate ID | Hospital | Ward | Clinical Specimen | Date | ST | CC | HRC | NDM Subtype |
---|---|---|---|---|---|---|---|---|
46956 | (H1) | Pediatric clinic | Blood | 20 August 2018 | 4398 | Singleton | − | NDM-7 |
47098 | (H2) | Adult ICU | Bronchoalveolar lavage | 24 August 2018 | 15 | 15 | + | NDM-1 |
47398 | (H3) | Adult ICU | Urine | 11 September 2018 | 340 | 258 | + | NDM-1 |
49684 | (H4) | Adult clinic | Urine | 3 January 2019 | 15 | 15 | + | NDM-1 |
50177 | (H1) | Pediatric clinic | Blood | 19 February 2019 | 1264 | 258 | + | NDM-7 |
50467 | (H5) | Adult ICU | Rectal swab | 18 March 2019 | 15 | 15 | + | NDM-7 |
50933 | (H3) | Pediatric clinic | Urine | 27 March 2019 | 392 | 147 | + | NT |
50937 | (H3) | Pediatric clinic | Urine | 15 April 2019 | 11 | 258 | + | NDM-1 |
50938 | (H6) | Adult clinic | Abdominal abscess secretion | 10 April 2019 | 11 | 258 | + | NDM-1 |
50942 | (H2) | Adult clinic | Wound secretion | 22 April 2019 | 15 | 15 | + | NDM-1 |
51999 | (H2) | Adult clinic | Urine | 10 June 2019 | 11 | 258 | + | NDM-7 |
51887 | (H3) | Pediatric ICU | Tracheal secretion | 14 May 2019 | 11 | 258 | + | NDM-1 |
52012 | (H2) | Adult ICU | Tracheal secretion | 21 June 2019 | 3512 | Singleton | − | NDM-7 |
54200 | (H7) | Adult clinic | Urine | 29 October 2019 | 3449 | Singleton | − | NDM-7 |
56585 | (H8) | Adult ICU | Rectal swab | 29 May 2020 | 1401 | 1401 | − | NDM-7 |
57319 | (H3) | Pediatric ICU | Soft tissue secretion | 20 November 2020 | 11 | 258 | + | NDM-7 |
57351 | (H1) | Pediatric clinic | Blood | 1 February 2021 | 11 | 258 | + | NDM-7 |
57352 | (H9) | Adult clinic | Urine | 24 January 2021 | 11 | 258 | + | NDM-7 |
57387 | (H3) | Pediatric ICU | Nasopharyngeal secretion | 19 January 2021 | 11 | 258 | + | NDM-7 |
57413 | (H3) | Pediatric ICU | Rectal swab | 28 January 2021 | 11 | 258 | + | NDM-7 |
57414 | (H3) | Adult clinic | Urine | 26 January 2021 | 15 | 15 | + | NDM-1 |
57420 | (H9) | Adult ICU | Tracheal secretion | 28 January 2021 | 11 | 258 | + | NDM-7 |
57090 | (H2) | Adult clinic | Peritoneal fluid | 9 November 2020 | 138 | 138 | − | NDM-7 |
Isolate ID | MIC (µg/mL) | Carbapenemase Gene | mCIM | eCIM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | SAM | TZP | CXM | FOX | CAZ | CRO | FEP | ETP | IMP | MEM | AMK | GEN | CIP | TGC | ||||
46956 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | >8 | ≤0.25 | ≤0.5 | blaNDM-7 | + | + |
47098 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | ≤0.25 | 4 | 8 | >8 | >2 | ≤0.5 | blaNDM-1 | + | + |
47398 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | >8 | >2 | 2 | blaNDM-1 | + | + |
49684 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | ≤1 | >2 | 1 | blaNDM-1 | + | + |
50177 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | >8 | >2 | 2 | blaNDM-7 | + | + |
50467 | 32 | 32 | 128 | 64 | 64 | 64 | 64 | 32 | 4 | 16 | 16 | ≤2 | 16 | ≥4 | 1 | blaNDM-7 | + | + |
50933 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | >8 | >2 | >4 | blaNDM * | + | + |
50937 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | 2 | >2 | 2 | blaNDM-1 | + | + |
50938 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | ≤1 | >2 | 4 | blaNDM-1/blaKPC-2 | + | − |
50942 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | ≤1 | >2 | 2 | blaNDM-1 | + | + |
51999 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | >32 | >8 | >2 | >4 | blaNDM-7 | + | + |
51887 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | ≤1 | >2 | 2 | blaNDM-1/blaKPC-2 | + | − |
52012 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | ≤1 | >2 | >4 | blaNDM-7 | + | + |
54200 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | ≤1 | 2 | 1 | blaNDM-7 | + | + |
56585 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | ≤1 | 1 | <0.5 | blaNDM-7 | + | + |
57319 | 32 | 32 | 128 | 64 | 64 | 64 | 64 | 64 | 8 | ≥16 | ≥16 | 16 | ≥16 | 4 | 2 | blaNDM-7 | + | + |
57351 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 4 | >8 | >2 | 2 | blaNDM-7 | + | + |
57352 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | 8 | >8 | ≤2 | >8 | >2 | 2 | blaNDM-7 | + | + |
57387 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | ≤1 | >2 | 2 | blaNDM-7/blaKPC-2 | + | − |
57413 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | ≤1 | >2 | 2 | blaNDM-7/blaKPC-2 | + | + |
57414 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | 16 | ≤1 | >2 | 2 | blaNDM-1 | + | + |
57420 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | 8 | >8 | ≤2 | 8 | >2 | 4 | blaNDM-7 | + | + |
57090 | >16 | >16 | >64 | >32 | >32 | >32 | >32 | >32 | >4 | >8 | >8 | ≤2 | ≤1 | ≤0.25 | 1 | blaNDM-7 | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, Y.C.; Lobato, A.R.F.; Quaresma, A.J.P.G.; Guerra, L.M.G.D.; Brasiliense, D.M. The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics 2021, 10, 1527. https://doi.org/10.3390/antibiotics10121527
Rodrigues YC, Lobato ARF, Quaresma AJPG, Guerra LMGD, Brasiliense DM. The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics. 2021; 10(12):1527. https://doi.org/10.3390/antibiotics10121527
Chicago/Turabian StyleRodrigues, Yan Corrêa, Amália Raiana Fonseca Lobato, Ana Judith Pires Garcia Quaresma, Lívia Maria Guimarães Dutra Guerra, and Danielle Murici Brasiliense. 2021. "The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region" Antibiotics 10, no. 12: 1527. https://doi.org/10.3390/antibiotics10121527
APA StyleRodrigues, Y. C., Lobato, A. R. F., Quaresma, A. J. P. G., Guerra, L. M. G. D., & Brasiliense, D. M. (2021). The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics, 10(12), 1527. https://doi.org/10.3390/antibiotics10121527