Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing
Abstract
:1. Introduction
2. Antimicrobial Agents
2.1. Ceftazidime-Avibactam
Ambler Class Classification | ꞵ-Lactamase Reference | Pathogen | Mutations and/or Modifications |
---|---|---|---|
A | KPC-3 | Enterobacterales | V240G: Ala for Val substitution at amino acid position 240 [15] D179Y: Tyr-for-Asp acid substitution at amino acid position 179 within the KPC-3V loop [22,23,24] V240G: Gly for Val substitution at amino acid position 240 [22] A177E: Glu for Ala substitutions at KPC-3 177 positions 177 [24] T243M: Met for Thr substitution at position 243 [33] 165–166 EL: Glu and Leu insertion between positions 165 and 166 [33] V240A: Ala for Val substitution at amino acid position 240 [35] A179T: Thr-for-Ala substitution at amino acid position 179 [49] R164S: Arg-for-Ser substitution at amino acid position 164 [49] S272insKDD: KDD triplet insertion at position 272 [50,51] S272insKDDKDD: KDDKDD triplet insertion at position 272 [50,51] L167delEL: EL residue deletion at position 167 [51] S182insSS: SS amino acid residue duplication at position 182 [51] 269-ProAsnLys-270: 3-amino-acid insertion between positions 269 and 270 [52] 276-Glu-Ala-Val-277: 3-amino-acid insertion between positions 276 and 277 [53] L168insLE: LE amino acid residue duplication at position 168 [54] L168insLELE: two copies of LE amino acid residue duplication at position 168 [54] |
KPC-2 | Enterobacterales | D179N: Asn for Asp acid substitution at amino acid position 179 [28] D179V: Val for Asp acid substitution at amino acid position 179 [28] D179A: Ala for Asp acid substitution at amino acid position 179 [28] L169P: Pro for Leu substitution at amino acid position 169 [35] D179Y: Tyr for Asp acid substitution at amino acid position 179 [33,55] Δ242-GT-243: GT deletion at positions 242 and 243 [56] | |
CTX-M | Enterobacterales | D182Y: CTX-M-15 mutation: Asp for Tyr substitution at amino acid position 182 [41]; L169Q and S130G: Gln for Leu substitution at amino acid position 169 and Gly for Ser substitution at amino acid position 130 [42] P170S and T264I: CTX-M-14 mutation: Pro for Ser substitution at amino acid position 170; Thr for Ile substitution at amino acid position 264 [43] | |
SHV | Enterobacterales | S130G: Ser130Gly: lack of a hydroxyl group at position 130 slows carbamylation of the enzyme by avibactam [44]. | |
VEB | K. pneumoniae | K234R: Arg for Lys acid substitution at amino acid position 234 [57] | |
P. aeruginosa | |||
C | AmpC | P. aeruginosa | The changes in the V loop are expected to influence both ceftazidime hydrolysis and avibactam inhibition [45]. Mutations in positions such as amino acids 168, 176, 309–314 and 366 lead to non-susceptibility; G168R: Arg168His (and Gly176Arg/Asp) raised CAZ-AVI MICs [41]. |
Enterobacterales | |||
Enterobacterales | Structural alterations in the R2 binding site and H-9 and H-10 helices, which are secondary structures surrounding the R2 binding site [47]. | ||
CHE: contains a six-residue deletion in the H-10 helix in close proximity to the active site [46]. | |||
N346Y and Y150S: Asn for Tyr substitution at amino acid position 346 or a Tyr for Ser substitution at amino acid position 150, which results in a steric clash with the sulphate group of avibactam, thus influencing the binding affinity of the inhibitor [48]. | |||
Y150 C: CMY-6: Tyr for Cys substitution at amino acid position 150 [48] | |||
N346I: CMY-10: Asn for Ile substitution in helix H-11 position 346 [42] | |||
D | OXA-2 | P. aeruginosa | OXA-539: duplication of the key residue Asp149 [58] |
OXA-48-family | Enterobacterales | P68A and Y211S: Ala for Pro substitution at amino acid position 68 and Ser for Tyr substitution at amino acid position 211 coexist [59]. | |
OXA-51 | A. baumannii | [46] |
2.2. Meropenem-Vaborbactam
2.3. Imipenem-Relebactam
3. Susceptibility Test for Novel β-Lactams/β-Lactamase Inhibitor
3.1. Ceftazidime/Avibactam Susceptibility Testing
3.2. Meropenem/Vaborbactam Susceptibility Testing
3.3. Imipenem/Relebactam Susceptibility Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Theuretzbacher, U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; p. 232. Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 1 January 2022).
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment options for carbapenem-resistant Enterobacteriales infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [Green Version]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-lactam–β-lactamase inhibitor combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Falcone, M.; Paterson, D. Spotlight on ceftazidime/avibactam: A new option for MDR gram-negative infection. J. Antimicrob. Chemother. 2016, 71, 2713–2722. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Park, T.E.; Moy, S. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination for the treatment of resistant Gram-negative organisms. Clin. Ther. 2016, 38, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, P.; Girard, A.M.; Miossec, C.; Pace, J.; Coleman, K. In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacteriales, including strains with well-characterized β-lactamases. Antimicrob. Agents Chemother. 2015, 59, 1931–1934. [Google Scholar] [CrossRef] [Green Version]
- Ehmann, D.E.; Jahic, H.; Ross, P.L.; Gu, R.-F.; Hu, J.; Kern, G.; Walkup, G.K.; Fisher, S.L. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc. Natl. Acad. Sci. USA 2012, 109, 11663–11668. [Google Scholar] [CrossRef] [Green Version]
- Lohans, C.T.; Brem, J.; Schofield, C.J. New Delhi metallo-β-lactamase 1 catalyzes avibactam and aztreonam hydrolysis. Antimicrob. Agents Chemother. 2017, 61, e01224-17. [Google Scholar] [CrossRef] [Green Version]
- Karlowsky, J.A.; Biedenbach, D.J.; Kazmierczak, K.M.; Stone, G.G.; Sahm, D.F. Activity of ceftazidime-avibactam against extended-spectrum- and AmpC β-lactamase-producing Enterobacteriales collected in the INFORM global surveillance study from 2012 to 2014. Antimicrob. Agents Chemother. 2016, 60, 2849–2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Castanheira, M.; Duncan, L.R.; Flamm, R.K. Antimicrobial susceptibility of Enterobacteriales and Pseudomonas aeruginosa isolates from United States medical centers stratified by infection type: Results from the international network for optimal resistance monitoring (INFORM) surveillance program, 2015–2016. Diagn. Microbiol. Infect. Dis. 2018, 92, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulou, I.; Kazmierczak, K.; Stone, G.G. In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriales collected during the INFORM global surveillance programme (2015–17). J. Antimicrob. Chemother. 2020, 75, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snydel, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of Carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control (ECDC). Emergence of Resistance to Ceftazidime-Avibactam in Carbapenem-Resistant Enterobacteriales; ECDC: Stockholm, Sweden, 2018. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). Risk Assessment on the Spread of Carbapenemase-Producing Enterobacteriales (CPE) Through Patient Transfer between Healthcare Facilities, with Special Emphasis on Cross-Border Transfer; ECDC: Stockholm, Sweden, 2011; Available online: http://ecdc.europa.eu/en/publications/Publications/110913_Risk_assessment_resistant_CPE.pdf (accessed on 1 January 2022).
- Ehmann, D.E.; Jahic, H.; Ross, P.L.; Gu, R.-F.; Hu, J.; Durand-Réville, T.F.; Lahiri, S.; Thresher, J.; Livchak, S.; Gao, N.; et al. Kinetics of avibactam inhibition against class A, C, and D β-lactamases. J. Biol. Chem. 2013, 288, 27960–27971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, M.L.; Papp-Wallace, K.M.; Bonomo, R.A. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J. Antimicrob. Chemother. 2015, 70, 2279–2286. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriales Infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef] [Green Version]
- Rapid Risk Assessment: Emergence of Resistance to Ceftazidime-Avibactam in Carbapenem-Resistant Enterobacteriales. 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-emergence-resistance-ceftazidime-avibactam-carbapenem (accessed on 26 June 2021).
- Di Bella, S.; Giacobbe, D.R.; Maraolo, A.E.; Viaggi, V.; Luzzati, R.; Bassetti, M.; Luzzaro, F.; Principe, L. Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing Enterobacterales: A systematic review of observational clinical studies. J. Glob. Antimicrob. Resist. 2021, 25, 268–281. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and renal replacement therapy are risk factors for ceftazidime- avibactam treatment failures and resistance among patients with carbapenemresistant Enterobacteriales infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. Emergence of ceftazidime-avibactam resistance and restoration of carbapenem susceptibility in Klebsiella pneumoniae carbapenemase-producing K pneumoniae: A case report and review of literature. Open Forum Infect. Dis. 2017, 4, ofx101. [Google Scholar] [CrossRef]
- Gaibani, P.; Campoli, C.; Lewis, R.E.; Volpe, S.L.; Scaltriti, E.; Giannella, M.; Pongolini, S.; Berlingeri, A.; Cristini, F.; Bartoletti, M.; et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J. Antimicrob. Chemother. 2018, 73, 1525–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giddins, M.J.; Macesic, N.; Annavajhala, M.K.; Stump, S.; Khan, S.; McConville, T.H.; Mehta, M.; Gomez-Simmonds, A.; Uhlemann, A.-C. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob. Agents Chemother. 2018, 62, e02101-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, Á.; Guzmán-Puche, J.; García-Gutiérrez, M.; Castón, J.J.; Gracia-Ahufinger, I.; Pérez-Nadales, E.; Recio, M.; Natera, A.M.; Marfil-Pérez, E.; Martínez-Martínez, L.; et al. Use of carbapenems in the combined treatment of emerging ceftazidime/avibactam-resistant and carbapenem-susceptible KPC-producing Klebsiella pneumoniae infections: Report of a case and review of the literature. J. Glob. Antimicrob. Resist. 2019, 22, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Venditti, C.; Nisii, C.; D’Arezzo, S.; Vulcano, A.; Capone, A.; Antonini, M.; Ippolito, G.; Di Caro, A. Molecular and phenotypical characterization of two cases of antibiotic-driven ceftazidime-avibactam resistance in blaKPC-3-harboring Kleb. Pneumoniae. Infect. Drug Resist. 2019, 12, 1935–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonelli, A.; Giani, T.; Di Pilato, V.; Riccobono, E.; Perriello, G.; Mencacci, A.; Rossolini, G.M. KPC-31 expressed in a ceftazidime/avibactam-resistant Klebsiella pneumoniae is associated with relevant detection issues. J. Antimicrob. Chemother. 2019, 74, 2464–2466. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Lombardo, D.; Foschi, C.; Re, M.C.; Ambretti, S. Evaluation of five carbapenemase detection assays for Enterobacteriales harbouring blaKPC variants associated with ceftazidime/avibactam resistance. J. Antimicrob. Chemother. 2020, 75, 2010–2013. [Google Scholar] [CrossRef]
- Savov, E.; Trifonova, A.; Kovachka, K.; Kjosseva, E.; Strateva, T. Antimicrobial in vitro activities of ceftazidime-avibactam, meropenem-vaborbactam and plazomicin against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa—A pilot Bulgarian study. Infect. Dis. 2019, 51, 870–873. [Google Scholar] [CrossRef]
- Humphries, R.M.; Hemarajata, P. Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3. Antimicrob. Agents Chemother. 2017, 61, e00537-17. [Google Scholar] [CrossRef] [Green Version]
- Haidar, G.; Clancy, C.J.; Shields, R.K.; Hao, B.; Cheng, S.; Nguyen, M.H. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 2017, 61, e02534-16. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Antoniadou, A.; Karaiskos, I.; Kontopoulou, K.; Giamarellou, H.; Souli, M. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin. Microbiol. Infect. 2019, 25, 763.e5–763.e8. [Google Scholar] [CrossRef]
- Hemarajata, P.; Humphries, R.M. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J. Antimicrob. Chemother. 2019, 74, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.D.; Winkler, M.L.; Taracila, M.A.; Page, M.G.; Desarbre, E.; Kreiswirth, B.N.; Shields, R.K.; Nguyen, M.-H.; Clancy, C.; Spellberg, B.; et al. Klebsiella pneumoniae carbapenemase-2 (KPC-2), substitutions at Ambler position asp179, and resistance to ceftazidime-avibactam: Unique antibiotic- resistant phenotypes emerge from β-lactamase protein engineering. MBio 2017, 8, e00528-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compain, F.; Arthur, M. Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 β-lactamase. Antimicrob. Agents Chemother. 2017, 61, e00451-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppi, M.; Di Pilato, V.; Monaco, F.; Giani, T.; Conaldi, P.G.; Rossolini, G.M. Ceftazidime-Avibactam Resistance Associated with Increased blaKPC-3 Gene Copy Number Mediated by pKpQIL Plasmid Derivatives in Sequence Type 258 Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e01816-19. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Wang, Q.; Liu, Y.; Cao, B. Increased gene expression and copy number of mutated blaKPC lead to high-level ceftazidime/avibactam resistance in Klebsiella pneumoniae. BMC Microbiol. 2021, 21, 230. [Google Scholar] [CrossRef]
- Gaibani, P.; Gatti, M.; Rinaldi, M.; Pesce, C.C.; Lazzarotto, T.; Giannella, M.; Lombardo, D.; Amadesi, S.; Viale, P.; Pea, F.; et al. Suboptimal drug exposure leads to selection of different subpopulations of ceftazidime-avibactam-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in a critically ill patient. Int. J. Infect. Dis. 2021, 113, 213–217. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Doumith, M.; Jamrozy, D.; Nichols, W.W.; Woodford, N. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESΒL- and AmpC-producing Enterobacteriales. J. Antimicrob. Chemother. 2018, 73, 3336–3345. [Google Scholar] [CrossRef]
- Compain, F.; Dorchene, D.; Arthur, M. Combination of amino acid substitutions leading to CTX-M-15-mediated resistance to the ceftazidime-avibactam combination. Antimicrob. Agents Chemother. 2018, 62, e00357-18. [Google Scholar] [CrossRef] [Green Version]
- Both, A.; Büttner, H.; Huang, J.; Perbandt, M.; Campos, C.B.; Christner, M.; Maurer, F.P.; Kluge, S.; König, C.; Aepfelbacher, M.; et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2017, 72, 2483–2488. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.L.; Papp-Wallace, K.M.; Taracila, M.A.; Bonomo, R.A. Avibactam and inhibitor-resistant SHV β-lactamases. Antimicrob. Agents Chemother. 2015, 59, 3700–3709. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, S.D.; Walkup, G.K.; Whiteaker, J.D.; Palmer, T.; McCormack, K.; Tanudra, M.A.; Nash, T.J.; Thresher, J.; Johnstone, M.R.; Hajec, L.; et al. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J. Antimicrob. Chemother. 2015, 70, 1650–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahiri, S.D.; Giacobbe, R.A.; Johnstone, M.R.; Alm, R.A. Activity of avibactam against Enterobacter cloacae producing an extended-spectrum class C β-lactamase enzyme. J. Antimicrob. Chemother. 2014, 69, 2942–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porres-Osante, N.; Dupont, H.; Torres, C.; Ammenouche, N.; de Champs, C.; Mammeri, H. Avibactam activity against extended-spectrum AmpC β-lactamases. J. Antimicrob. Chemother. 2014, 69, 1715–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahiri, S.D.; Johnstone, M.R.; Ross, P.L.; McLaughlin, R.E.; Olivier, N.B.; Alm, R.A. Avibactam and class C β-lactamases: Mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob. Agents Chemother. 2014, 58, 5704–5713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-García, M.; Sánchez-López, J.; Martínez-García, L.; Becerra-Aparicio, F.; Morosini, M.I.; Ruiz-Garbajosa, P.; Cantón, R. Emergence of the new KPC-49 variant conferring an ESΒL phenotype with resistance to ceftazidime-avibactam in the ST131-H30R1 Escherichia coli high-riskclone. Pathogens 2021, 10, 67. [Google Scholar] [CrossRef]
- Hobson, C.A.; Bonacorsi, S.; Jacquier, H.; Choudhury, A.; Magnan, M.; Cointe, A.; Bercot, B.; Tenaillon, O.; Birgy, A. KPC β-lactamases are permissive to insertions and deletions conferring substrate spectrum modifications and resistance to ceftazidime-avibactam. Antimicrob. Agents Chemother. 2020, 64, e01175-20. [Google Scholar] [CrossRef]
- Carattoli, A.; Arcari, G.; Bibbolino, G.; Sacco, F.; Tomolillo, D.; Di Lella, M.; Trancassini, M.; Faino, L.; Venditti, M.; Antonelli, G.; et al. Evolutionary Trajectories toward Ceftazidime-Avibactam Resistance in Klebsiella pneumoniae Clinical Isolates. Antimicrob. Agents Chemother. 2021, 65, e00574-21. [Google Scholar] [CrossRef]
- Mueller, L.; Masseron, A.; Prod’Hom, G.; Galperine, T.; Greub, G.; Poirel, L.; Nordmann, P. Phenotypic, biochemical and genetic analysis of KPC-41, a KPC-3 variant conferring resistance to ceftazidime-avibactam and exhibiting reduced carbapenemase activity. Antimicrob. Agents Chemother. 2019, 63, e01111-9. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Vuillemin, X.; Juhas, M.; Masseron, A.; Bechtel-Grosch, U.; Tiziani, S.; Mancini, S.; Nordmann, P. KPC-50 confers resistance to ceftazidime-avibactam associated with reduced carbapenemase activity. Antimicrob. Agents Chemother. 2020, 64, e00321-20. [Google Scholar] [CrossRef]
- Di Pilato, V.; Aiezza, N.; Viaggi, V.; Antonelli, A.; Principe, L.; Giani, T.; Luzzaro, F.; Rossolini, G.M. KPC-53, a KPC-3 Variant of Clinical Origin Associated with Reduced Susceptibility to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2020, 65, e01429-20. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Cavallo, R.; Costa, C. Bloodstream infection by two subpopulations of Klebsiella pneumoniae ST1685 carrying KPC-33 or KPC-14 following ceftazidime/avibactam treatment: Considerations regarding acquired heteroresistance and choice of carbapenemase detection assay. J. Antimicrob. Chemother. 2020, 75, 3075–3076. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Guo, Y.; Ji, Y.; Wang, B.; Zhou, K. Epidemiology and Mechanisms of Ceftazidime–Avibactam Resistance in Gram-Negative Bacteria. Engineering 2021, in press. [Google Scholar] [CrossRef]
- Galani, I.; Karaiskos, I.; Souli, M.; Papoutsaki, V.; Galani, L.; Gkoufa, A.; Antoniadou, A.; Giamarellou, H. Outbreak of KPC-2-producing Klebsiella pneumoniae endowed with ceftazidime–avibactam resistance mediated through a VEB-1-mutant (VEB-25), Greece, September to October 2019. Eurosurveillance 2020, 25, 2000028. [Google Scholar] [CrossRef] [PubMed]
- Fraile-Ribot, P.A.; Mulet, X.; Cabot, G.; Del Barrio-Tofino, E.; Juan, C.; Pérez, J.L.; Oliver, A. In vivo emergence of resistance to novel cephalosporin-β-lactamase inhibitor combinations through the duplication of amino acid D149 from OXA-2 β- lactamase (OXA-539) in sequence type 235 Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01117-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fröhlich, C.; Sørum, V.; Thomassen, A.M.; Johnsen, P.J.; Leiros, H.-K.S.; Samuelsen, Ø. OXA-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. MSphere 2019, 4, e00024-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Mendes, R.E.; Farrell, D.J.; Jones, R.N. Ceftazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. Int. J. Antimicrob. Agents 2015, 46, 53–59. [Google Scholar] [CrossRef]
- Nelson, K.; Hemarajata, P.; Sun, D.; Rubio-Aparicio, D.; Tsivkovski, R.; Yang, S.; Sebra, R.; Kasarskis, A.; Nguyen, H.; Hanson, B.M.; et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob. Agents Chemother. 2017, 61, e00989-17. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Ding, B.; Ye, M.; Wang, P.; Bi, Y.; Wu, S.; Xu, X.; Guo, Q.; Wang, M. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2017, 72, 1930–1936. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Clancy, C.J.; Hao, B.; Chen, L.; Press, E.G.; Iovine, N.M.; Kreiswirth, B.N.; Nguyen, M.H. Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum βlactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae. Antimicrob. Agents Chemother. 2015, 59, 5793–5797. [Google Scholar] [CrossRef] [Green Version]
- Zamudio, R.; Hijazi, K.; Joshi, C.; Aitken, E.; Oggioni, M.R.; Gould, I.M. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients. Int. J. Antimicrob. Agents 2019, 53, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.L.; Papp-Wallace, K.M.; Hujer, A.M.; Domitrovic, T.N.; Hujer, K.M.; Hurless, K.N.; Tuohy, M.; Hall, G.; Bonomo, R.A. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: Resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 1020–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagès, J.-M.; Peslier, S.; Keating, T.A.; Lavigne, J.-P.; Nichols, W.W. Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriales to ceftazidime-avibactam. Antimicrob. Agents Chemother. 2015, 60, 1349–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalhoub, H.; Sáenz, Y.; Nichols, W.W.; Tulkens, P.M.; Van Bambeke, F. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. Int. J. Antimicrob. Agents 2018, 52, 697–701. [Google Scholar] [CrossRef]
- Asli, A.; Brouillette, E.; Krause, K.M.; Nichols, W.W.; Malouin, F. Distinctive binding of avibactam to penicillin-binding proteins of Gram-negative and Gram-positive bacteria. Antimicrob. Agents Chemother. 2016, 60, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Alm, R.A.; Johnstone, M.R.; Lahiri, S.D. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: Role of a novel insertion in PBP3. J. Antimicrob. Chemother. 2015, 70, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Doyle, T.B.; Kantro, V.; Mendes, R.E.; Shortridge, D. Meropenem-Vaborbactam Activity against Carbapenem-Resistant Enterobacterales Isolates Collected in U.S. Hospitals during 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e01951-19. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Rybak, M.J. Meropenem and Vaborbactam: Stepping up the Battle against Carbapenem-resistant Enterobacteriales. Pharmacotherapy 2018, 38, 444–461. [Google Scholar] [CrossRef]
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; Dudley, M.N. Vaborbactam: Spectrum of β-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriales. Antimicrob. Agents Chemother. 2017, 61, e01443-17. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibioticsfor MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Petty, L.A.; Henig, O.; Patel, T.S.; Pogue, J.M.; Kaye, K.S. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriales. Infect. Drug Resist. 2018, 11, 1461–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, A.; Del Giacomo, P.; Rossolini, G.M.; Tumbarello, M. Meropenem/vaborbactam: A next generation β-lactam β-lactamase inhibitor combination. Expert Rev. Anti-Infect. Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Yang, Q.; Lomovskaya, O.; Sun, D.; Kudinha, T.; Xu, Z.; Zhang, G.; Chen, X.; Xu, Y. In vitro activity of meropenem combined with vaborbactam againstKPC-producing Enterobacteriales in China. J. Antimicrob. Chemother. 2018, 73, 2789–2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackel, M.A.; Lomovskaya, O.; Dudley, M.N.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriales. Antimicrob. Agents Chemother. 2017, 62, e01904-17. [Google Scholar] [CrossRef] [Green Version]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Quale, J.; Landman, D. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob. Agents Chemother. 2015, 59, 4856–4860. [Google Scholar] [CrossRef] [Green Version]
- Sabet, M.; Tarazi, Z.; Nolan, T.; Parkinson, J.; Rubio-Aparicio, D.; Lomovskaya, O.; Dudley, M.N.; Griffith, D.C. Activity of meropenem-vaborbactam in mouse models of infection due to KPC-producing carbapenem-resistant Enterobacteriales. Antimicrob. Agents Chemother. 2018, 62, e01446-17. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Lorenzo, M.; Farghaly, S.; Kaur, K.; Housman, S.T. What’s new in the treatment of multidrug-resistant gram-negative infections? Diagn. Microbiol. Infect. Dis. 2019, 93, 171–181. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Carrara, E.; Conti, M.; Tacconelli, E. Role of new antibiotics for KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2021, 76, i47–i54. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Mack, A.R.; Taracila, M.A.; Bonomo, R.A. Resistance to Novel β-Lactam–β-Lactamase Inhibitor Combinations. Infect. Dis. Clin. N. Am. 2020, 34, 773–819. [Google Scholar] [CrossRef]
- Dulyayangkul, P.; Ismah, W.A.K.W.N.; Douglas, E.J.A.; Avison, M.B. Mutation of kvrA causes OmpK35 and OmpK36 porin downregulation and reduced meropenem-vaborbactam susceptibility in KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e02208-19. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, B.R.; Casapao, A.M.; Venugopalan, V. Update on Existing and Emerging Data forMeropenem-Vaborbactam. Clin. Ther. 2020, 42, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Re, M.C.; Campoli, C.; Viale, P.L.; Ambretti, S. Bloodstream infection caused by KPC-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam: Epidemiology and genomic characterization. Clin. Microbiol. Infect. 2020, 26, 516.e1–516.e4. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; McCreary, E.K.; Marini, R.V.; Kline, E.G.; Jones, C.E.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Doi, Y.; Clancy, C.J.; et al. Early Experience with Meropenem-Vaborbactam for Treatment of Carbapenem-resistant Enterobacteriales Infections. Clin. Infect. Dis. 2020, 71, 667–671. [Google Scholar] [CrossRef]
- Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Dudley, M.N.; Lomovskaya, O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2017, 61, e01694-17. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.F.; D’Souza, A.W.; Dantas, G. The rapid spread of carbapenem-resistant Enterobacteriales. Drug Resist. Updat. 2016, 29, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Merck & Co., Inc. RECARBRIO (Imipenem, Cilastatin, and Relebactam) for Injection, for Intravenous Use; Merck & Co., Inc.: Kenilworth, NJ, USA, 2019. [Google Scholar]
- European Medicines Agency. Recabrio, Imipenem/Cilastatin/Relebactam. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/recarbrio (accessed on 1 January 2022).
- Campanella, T.A.; Gallagher, J.C. A Clinical Review and Critical Evaluation of Imipenem-Relebactam: Evidence to Date. Infect. Drug Resist. 2020, 13, 4297–4308. [Google Scholar] [CrossRef]
- Smith, J.R.; Rybak, J.M.; Claeys, K.C. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam–β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy 2020, 40, 343–356. [Google Scholar] [CrossRef]
- Olsen, I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1303–1308. [Google Scholar] [CrossRef]
- Livermore, D.M.; Warner, M.; Mushtaq, S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2013, 68, 2286–2290. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Simmonds, A.; Stump, S.; Giddins, M.J.; Annavajhala, M.K.; Uhlemann, A.-C. Clonal background, resistance gene profile, and porin gene mutations modulate in vitro susceptibility to imipenem-relebactam in diverse Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e00573-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canver, M.C.; Satlin, M.J.; Westblade, L.F.; Kreiswirth, B.N.; Chen, L.; Robertson, A.; Fauntleroy, K.; La Spina, M.; Callan, K.; Jenkins, S.G. Activity of imipenem-relebactam and comparator agents against genetically characterized isolates of carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e00672-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A.; et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother. 2016, 60, 6234–6243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.L.; Motsch, J.; Kaye, K.S.; File, T.M.; Boucher, H.W.; Vendetti, N.; Aggrey, A.; Joeng, H.-K.; Tipping, R.W.; Du, J.; et al. Evaluation of Renal Safety Between Imipenem/Relebactam and Colistin Plus Imipenem in Patients with Imipenem-Nonsusceptible Bacterial Infections in the Randomized, Phase 3 RESTORE-IMI 1 Study. Open Forum Infect. Dis. 2020, 7, ofaa054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Gonzalez, D.R.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults with Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2020, 73, e4539–e4548. [Google Scholar] [CrossRef]
- Galani, I.; Souli, M.; Nafplioti, K.; Adamou, P.; Karaiskos, I.; Giamarellou, H.; Antoniadou, A.; Study Collaborators. In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015–2016. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1143–1150. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: http://www.eucast.org (accessed on 1 January 2022).
- Lob, S.H.; Karlowsky, J.A.; Young, K.; Motyl, M.R.; Hawser, S.; Kothari, N.D.; Sahm, D.F. In vitro activity of imipenem-relebactam against resistant phenotypes of Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples—SMART Surveillance Europe 2015–2017. J. Med. Microbiol. 2020, 69, 207–217. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Hawser, S.P.; Magnet, S.; Young, K.; Motyl, M.R.; Sahm, D.F. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J. Antimicrob. Chemother. 2018, 73, 1872–1879. [Google Scholar] [CrossRef]
- Carpenter, J.; Neidig, N.; Campbell, A.; Thornsberry, T.; Truex, T.; Fortney, T.; Zhang, Y.; Bush, K. Activity of imipenem/relebactam against carbapenemase-producing Enterobacteriaceae with high colistin resistance. J. Antimicrob. Chemother. 2019, 74, 3260–3263. [Google Scholar] [CrossRef]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of imipenem with relebactam against Gram-negative pathogens from New York City. Antimicrob. Agents Chemother. 2015, 59, 5029–5031. [Google Scholar] [CrossRef] [Green Version]
- Balabanian, G.; Rose, M.; Manning, N.; Landman, D.; Quale, J. Effect of Porins and blaKPC Expression on Activity of Imipenem with Relebactam in Klebsiella pneumoniae: Can Antibiotic Combinations Overcome Resistance? Microb. Drug Resist. 2018, 24, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Bovo, F.; Bussini, L.; Lazzarotto, T.; Amadesi, S.; Bartoletti, M.; Viale, P.; Ambretti, S. Dynamic evolution of imipenem/relebactam-resistance in a KPC-producing Klebsiella pneumoniae from single patient during ceftazidime/avibactam-based treatment. J. Antimicrob. Chemother. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Bianco, G.; Amadesi, S.; Boattini, M.; Ambretti, S.; Costa, C. Increased blaKPC copy number and OmpK35 and OmpK36 porins disruption mediated resistance to imipenem/relebactam and meropenem/vaborbactam in a KPC-producing Klebsiella pneumoniae clinical isolate. Antimicrob. Agents Chemother. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Bussini, L.; Amadesi, S.; Bartoletti, M.; Bovo, F.; Lazzarotto, T.; Viale, P.L.; Ambretti, S. Successful treatment of bloodstream infection due to a KPC-producing Klebsiella pneumoniae resistant to imipenem/relebactam in a hematological patient. Microorganisms 2022, 10, 778. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Deshpande, L.M.; Mendes, R.E.; Sader, H.S. Activity of ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam against carbapenemase-negative carbapenem-resistant Enterobacterales isolates from US hospitals. Int. J. Antimicrob. Agents 2021, 58, 106439. [Google Scholar] [CrossRef]
- Fraile-Ribot, P.A.; Zamorano, L.; Orellana, R.; Del Barrio-Tofiño, E.; Sánchez-Diener, I.; Cortes-Lara, S.; López-Causapé, C.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; et al. Activity of imipenem-relebactam against a large collection of Pseudomonas aeruginosa clinical isolates and isogenic β-lactam-resistant mutants. Antimicrob. Agents Chemother. 2020, 64, e02165-19. [Google Scholar] [CrossRef]
- Mushtaq, S.; Meunier, D.; Vickers, A.; Woodford, N.; Livermore, D.M. Activity of imipenem/relebactam against Pseudomonas aeruginosa producing ESΒLs and carbapenemases. J. Antimicrob. Chemother. 2020, 76, 434–442. [Google Scholar] [CrossRef]
- Livermore, D.M. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [Green Version]
- López-Pérez, M.; Haro-Moreno, J.M.; Molina-Pardines, C.; Ventero, M.P.; Rodríguez, J.C. Genomic Characterization of Imipenem- and Imipenem-Relebactam-Resistant Clinical Isolates of Pseudomonas aeruginosa. MSphere 2021, 6, e0083621. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; M100-S32 Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- ISO 20776-1; Clinical Laboratory Testing and In Vitro Diagnostic Test System-Sdsusceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devicesd—Part 1: Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. ISO: Geneva, Switzerland, 2019.
- Kresken, M.; Körber-Irrgang, B. Performance of the Etest for Susceptibility Testing of Enterobacterales (Enterobacteriaceae) and Pseudomonas aeruginosa toward Ceftazidime-Avibactam. J. Clin. Microbiol. 2018, 56, e00528-18. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Clancy, C.J.; Pasculle, A.W.; Press, E.G.; Haidar, G.; Hao, B.; Chen, L.; Kreiswirth, B.N.; Nguyen, M.H. Verification of Ceftazidime-Avibactam and Ceftolozane-Tazobactam Susceptibility Testing Methods against Carbapenem-Resistant Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2018, 56, e01093-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, F.; Wang, Z.; Chen, H.; Wang, X.; Zhang, Y.; Li, S.; Wang, H. Evaluation of the Etest and disk diffusion method for detection of the activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa in China. BMC Microbiol. 2020, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Lee, M.; Wu, T.J.; Meyer, K.A.; Shields, R.K.; Nguyen, M.H.; Clancy, C.J.; Humphries, R.M.; Harrington, A.T. Performance of ceftazidime/avibactam susceptibility testing methods against clinically relevant Gram-negative organisms. J. Antimicrob. Chemother. 2019, 74, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, G.; Zhang, G.; Kang, W.; Duan, S.; Wang, T.; Li, J.; Huangfu, Z.; Yang, Q.; Xu, Y.; et al. Performance Evaluation of the Gradient Diffusion Strip Method and Disk Diffusion Method for Ceftazidime-Avibactam Against Enterobacterales and Pseudomonas aeruginosa: A Dual-Center Study. Front. Microbiol. 2021, 12, 710526. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, F.; Bletz, S.; Mellmann, A.; Becker, K.; Idelevich, E.A. Comparison of methods to analyse susceptibility of German MDR/XDR Pseudomonas aeruginosa to ceftazidime/avibactam. Int. J. Antimicrob. Agents 2019, 54, 255–260. [Google Scholar] [CrossRef]
- Han, R.; Yang, X.; Yang, Y.; Guo, Y.; Yin, D.; Ding, L.; Wu, S.; Zhu, D.; Hu, F. Assessment of Ceftazidime-Avibactam 30/20-μg Disk, Etest versus Broth Microdilution Results When Tested against Enterobacterales Clinical Isolates. Microbiol. Spectr. 2022, 10, e0109221. [Google Scholar] [CrossRef]
- Daragon, B.; Fournier, D.; Plésiat, P.; Jeannot, K. Performance of disc diffusion, MIC gradient tests and Vitek 2 for ceftolozane/tazobactam and ceftazidime/avibactam susceptibility testing of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2021, 76, 2586–2592. [Google Scholar] [CrossRef]
- Huang, Y.T.; Kuo, Y.W.; Teng, L.J.; Liao, C.H.; Hsueh, P.R. Comparison of Etest and broth microdilution for evaluating the susceptibility of Staphylococcus aureus and Streptococcus pneumoniae to ceftaroline and of carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa to ceftazidime/avibactam. J. Glob. Antimicrob. Resist. 2021, 26, 301–307. [Google Scholar] [CrossRef]
- Sader, H.S.; Rhomberg, P.R.; Huband, M.D.; Critchley, I.A.; Stone, G.G.; Flamm, R.K.; Jones, R.N. Assessment of 30/20-Microgram Disk Content versus MIC Results for Ceftazidime-Avibactam Tested against Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2018, 56, e01960-17. [Google Scholar] [CrossRef] [Green Version]
- Humphries, R.; Campeau, S.; Davis, T.E.; Nagaro, K.J.; LaBombardi, V.J.; Franklin, S.; Heimbach, L.; Dwivedi, H.P. Multicenter Evaluation of Ceftazidime-Avibactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa on the Vitek 2 System. J. Clin. Microbiol. 2021, 59, e01870-20. [Google Scholar] [CrossRef]
- Park, B.Y.; Mourad, D.; Hong, J.S.; Yoon, E.J.; Kim, D.; Lee, H.; Jeong, S.H. Performance Evaluation of the Newly Developed BD Phoenix NMIC-500 Panel Using Clinical Isolates of Gram-Negative Bacilli. Ann. Lab. Med. 2019, 39, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, W.R.; Kline, E.G.; Jones, C.E.; Morder, K.T.; Mettus, R.T.; Doi, Y.; Nguyen, M.H.; Clancy, C.J.; Shields, R.K. Effects of KPC Variant and Porin Genotype on the In Vitro Activity of Meropenem-Vaborbactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02048-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, S.; Garrett, S.; Anglade, C.; Bridon, L.; Davies, L.; Garner, O.B.; Richards, J.; Wallace, M.; Wootton, M.; Burnham, C.A. Multicenter Clinical Evaluation of Etest Meropenem-Vaborbactam (bioMérieux) for Susceptibility Testing of Enterobacterales Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2019, 58, e01205-19. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, H.P.; Franklin, S.; Chandrasekaran, S.; Garner, O.; Traczewski, M.M.; Beasley, D.; Procop, G.W.; Tuohy, M.; Wilson, D.; Bala, Y.; et al. Multicenter Clinical Evaluation of Vitek 2 Meropenem-Vaborbactam for Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa. J. Clin. Microbiol. 2022, 60, e0161021. [Google Scholar] [CrossRef] [PubMed]
- Hakvoort, H.; Bovenkamp, E.; Greenwood-Quaintance, K.E.; Schmidt-Malan, S.M.; Mandrekar, J.N.; Schuetz, A.N.; Patel, R. Imipenem-Relebactam Susceptibility Testing of Gram-Negative Bacilli by Agar Dilution, Disk Diffusion, and Gradient Strip Methods Compared with Broth Microdilution. J. Clin. Microbiol. 2020, 58, e00695-20. [Google Scholar] [CrossRef] [PubMed]
Antibiotic Molecule | Evaluated Method | Tested Species (Number; Principal Phenotype If Present) | Evaluation Result a | References |
---|---|---|---|---|
CAZ-AVI | Etest (bioMérieux) | Enterobacterales (n = 140; 28 ESβL, 23 CP b); P. aeruginosa (n = 60; 18 CP b) | EA = 99% for Enterobacterales EA = 98% for P. aeruginosa CA = 100% for Enterobacterales (ME = 0; VME = 0) CA = 98% for P. aeruginosa (ME = 0; VME = 1) | [119] |
CAZ-AVI | Etest (bioMérieux) | Enterobacterales (n = 74; 74 CR c) | EA =89% CA = 97% (ME = 0; VME = 2) | [120] |
CAZ-AVI | Etest (bioMérieux) | Enterobacterales (n = 194); P. aeruginosa (n = 77) | EA = 96% for Enterobacterales EA = 95% for P. aeruginosa CA = 99% for Enterobacterales (ME = 1; VME = 0) CA = 96% for P. aeruginosa (ME = 3; VME = 0) | [121] |
CAZ-AVI | Etest (bioMérieux) | Gram-negatives (n = 102; 69 CR c) | EA =77% CA = 95% (ME = 6.3%; VME = 0) | [122] |
CAZ-AVI | Etest (bioMérieux) | Enterobacterales (n = 228); P. aeruginosa (n = 74) | EA = 97% for Enterobacterales EA = 99% for P. aeruginosa CA = 100% for Enterobacterales CA = 99% for P. aeruginosa (ME = 1; VME = 0) | [123] |
CAZ-AVI | Etest (bioMérieux) | N = 192 P. aeruginosa | EA = 95% CA = 94% (ME = 6; VME = 5) | [124] |
CAZ-AVI | Etest (bioMérieux) | N = 458 Enterobacterales | EA = 95% CA = 99% (ME = 1; VME = 1) | [125] |
CAZ-AVI | Etest (bioMérieux) | N = 200 P. aeruginosa | EA = 94% CA = 95% (ME = 5; VME = 5) | [126] |
CAZ-AVI | Etest (bioMérieux) | N = 187 CR c K. pneumoniae; n = 28 CR c E. coli; n = 81 CR c P. aeruginosa | EA = 95% for K. pneumoniae EA = 96% for E. coli EA = 86.4% for P. aeruginosa | [127] |
CAZ-AVI | MIC test Strip (Liofilchem) | N = 192 P. aeruginosa | EA = 89% CA = 86 (ME = 25; VME = 2) | [124] |
CAZ-AVI | MIC test Strip (Liofilchem) | N = 200 P. aeruginosa | EA = 95% CA = 93% (ME = 1; VME = 8) | [126] |
CAZ-AVI | DD d (30/20µg disk content, Oxoid) | Enterobacterales (n = 228); P. aeruginosa (n = 74) | CA = 100% for Enterobacterales CA = 96% for P. aeruginosa (ME = 0; VME = 3) | [123] |
CAZ-AVI | DD d (10/4µg disk content, Mast Group) | Gram-negatives (n = 102; 69 CR) | CA = 87% (ME = 16%; VME = 0) | [122] |
CAZ-AVI | DD d (30/20µg disk content, Hardy Diagnostic) | Gram-negatives (n = 102; 69 CR) | CA = 80% (ME = 25%; VME = 0) | [122] |
CAZ-AVI | DD d (30/20µg disk content, Oxoid) | Enterobacterales (n = 194); P. aeruginosa (n = 77) | CA = 98% for Enterobacterales (ME = 1; VME = 2) 93% for P. aeruginosa (ME = 4; VME = 1) | [121] |
CAZ-AVI | DD d (30/20 µg disk content, Hardy Diagnostic) | Enterobacterales (n = 74; 74 CR) | CA = 76% (ME = 18; VME = 0) | [120] |
CAZ-AVI | DD d (30/20 µg disk content, Mast Group) | n = 500 Enterobacterales; n = 349 P. aeruginosa | ME = 0; VME = 0.4% for Enterobacterales ME = 2.9%; VME = 2.3% for P. aeruginosa | [128] |
CAZ-AVI | DD d (10/4 µg disk content, Mast Group) | n = 192 P. aeruginosa | CA = 80% (ME = 38; VME = 1) | [124] |
CAZ-AVI | DD d (10/4 µg disk content, Oxoid) | n = 192 P. aeruginosa | CA = 88% (ME = 22; VME = 1) | [124] |
CAZ-AVI | DD d (30/20 µg disk content, Oxoid) | N = 458 Enterobacterales | CA = 99% (ME = 0; VME = 1) | [125] |
CAZ-AVI | DD d (10/4 µg disk content, Thermo Fisher) | n = 200 P. aeruginosa | CA = 85% (ME = 14; VME = 0) | [126] |
CAZ-AVI | DD d (10/4 µg disk content, Biorad) | n = 200 P. aeruginosa | CA = 85% (ME = 18; VME = 0) | [126] |
CAZ-AVI | Vitek 2 system (bioMérieux, AST-XN12 card) | n = 200 P. aeruginosa | EA = 89% CA = 83% (ME = 3; VME = 30) | [126] |
CAZ-AVI | Vitek 2 system (bioMérieux, AST-GN card) | n = 1073 (n = 866 Enterobacterales; n = 207 P. aeruginosa) | EA = 94% for Enterobacterales EA = 96% for P. aeruginosa CA = 99% for Enterobacterales (ME = 7; VME = 0) CA = 97% for P. aeruginosa (ME = 7; VME = 0) | [129] |
CAZ-AVI | BD Phoenix system (BD Diagnostic Systems, NMIC-500 panel) | N = 409 Enterobacterales; n = 21 P. aeruginosa | EA =87% for Enterobacterales EA = 100% for P. aeruginosa CA = 98% for Enterobacterales (ME = 6, VME = 4) CA = 100% for P. aeruginosa | [130] |
MER-VAB | Etest (bioMèrieux) | n = 120 CR-Enterobacterales | EA = 82% CA = 95% (ME = 2; VME = 1) | [131] |
MER-VAB | MIC test Strip (Liofilcheme) | n = 120 CR c-Enterobacterales | EA = 48% CA = 90% (ME = 7; VME = 0) | [131] |
MER-VAB | DD d (20/10 µg disk content, Becton, Dikinson and Company) | n = 120 CR c-Enterobacterales | CA = 90% (ME = 4; VME = 0) | [131] |
MER-VAB | Etest (bioMérieux) | n = 629 Enterobacterales n = 163 P. aeurginosa | EA = 92% for Enterobacterales EA = 93% for P. aeruginosa CA = 99% for Enterobacterales (ME = 1; VME = 2) CA = 97% for P. aeruginosa (ME = 4; VME = 0) | [132] |
MER-VAB | Vitek 2 system (bioMérieux) | N = 449 Enterobacterales n = 77 P. aeruginosa | EA = 98% for Enterobacterales EA = 92.2% for P.aeruginosa CA = 99% for Enterobacterales (ME = 3%; VME = 0.2%) CA = 97% for P. aeruginosa (ME = 3%; VME = 0) | [133] |
IMI-REL | Etest (bioMérieux) | n = 297 Gram-negatives (n = 272 Enterobacterales; n = 25 P. aeruginosa) | EA = 90% CA = 96% (ME = 0; VME = 0) | [134] |
IMI-REL | MIC Test Strip (Liofilcheme) | n = 297 Gram-negatives (n = 272 Enterobacterales; n = 25 P. aeruginosa) | EA = 85% CA = 97% (ME = 0; VME = 0) | [134] |
IMI-REL | DD d (10/25 µg disk content, MAST Group) | n = 297 Gram-negatives (n = 272 Enterobacterales; n = 25 P. aeruginosa) | CA = 74% (ME = 6; VME = 0) | [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaibani, P.; Giani, T.; Bovo, F.; Lombardo, D.; Amadesi, S.; Lazzarotto, T.; Coppi, M.; Rossolini, G.M.; Ambretti, S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics 2022, 11, 628. https://doi.org/10.3390/antibiotics11050628
Gaibani P, Giani T, Bovo F, Lombardo D, Amadesi S, Lazzarotto T, Coppi M, Rossolini GM, Ambretti S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics. 2022; 11(5):628. https://doi.org/10.3390/antibiotics11050628
Chicago/Turabian StyleGaibani, Paolo, Tommaso Giani, Federica Bovo, Donatella Lombardo, Stefano Amadesi, Tiziana Lazzarotto, Marco Coppi, Gian Maria Rossolini, and Simone Ambretti. 2022. "Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing" Antibiotics 11, no. 5: 628. https://doi.org/10.3390/antibiotics11050628
APA StyleGaibani, P., Giani, T., Bovo, F., Lombardo, D., Amadesi, S., Lazzarotto, T., Coppi, M., Rossolini, G. M., & Ambretti, S. (2022). Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics, 11(5), 628. https://doi.org/10.3390/antibiotics11050628