Trueperella pyogenes Isolates from Livestock and European Bison (Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants
Abstract
:1. Introduction
2. Results
2.1. Susceptibility to Tetracycline
2.2. Prevalence of Tetracycline Resistance Genes
2.3. Sequence and Phylogenetic Analysis of the tet Genes
2.4. Occurrence of tetW-3 Linked to the ATE-1 Transposon Among T. pyogenes Isolates
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates and Culture Conditions
4.2. Tetracycline Susceptibility Testing
4.3. DNA Extraction
4.4. Detection of Tetracycline Resistance Genes
4.5. Sequencing and Phylogenetic Analysis
4.6. Detection of tetW-3 Linkage with the ATE-1 T. pyogenes Transposon
4.7. Developing of New Primers for tetW Detection
4.8. Nucleotide Sequence Accession Numbers
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jost, B.H.; Billington, S.J. Arcanobacterium pyogenes: Molecular pathogenesis of an animal opportunist. Antonie Leeuwenhoek 2005, 88, 87–102. [Google Scholar] [CrossRef]
- Rzewuska, M.; Kwiecień, E.; Chrobak-Chmiel, D.; Kizerwetter-Świda, M.; Stefańska, I.; Gieryńska, M. Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int. J. Mol. Sci. 2019, 20, 2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, H.; Kojima, A.; Ishimaru, M. Antimicrobial susceptibility of Arcanobacterium pyogenes isolated from cattle and pigs. J. Vet. Med. B Infect. Dis. Vet. Public Health 2000, 47, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.G.; Risset, R.M.; Bolaños, C.A.; Caffaro, K.A.; de Morais, A.C.; Lara, G.H.; Zamprogna, T.O.; Paes, A.C.; Listoni, F.J.; Franco, M.M. Trueperella pyogenes multispecies infections in domestic animals: A retrospective study of 144 cases (2002 to 2012). Vet. Q. 2015, 35, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzewuska, M.; Czopowicz, M.; Gawryś, M.; Markowska-Daniel, I.; Bielecki, W. Relationships between antimicrobial resistance, distribution of virulence factor genes and the origin of Trueperella pyogenes isolated from domestic animals and European bison (Bison bonasus). Microb. Pathog. 2016, 96, 35–41. [Google Scholar] [CrossRef]
- Galán-Relaño, Á.; Gómez-Gascón, L.; Barrero-Domínguez, B.; Luque, I.; Jurado-Martos, F.; Vela, A.I.; Sanz-Tejero, C.; Tarradas, C. Antimicrobial susceptibility of Trueperella pyogenes isolated from food-producing ruminants. Vet. Microbiol. 2020, 242, 108593. [Google Scholar] [CrossRef]
- Billington, S.J.; Post, K.W.; Jost, B.H. Isolation of Arcanobacterium (Actinomyces) pyogenes from cases of feline otitis externa and canine cystitis. J. Vet. Diagn. Investig. 2002, 14, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Trinh, H.T.; Billington, S.J.; Field, A.C.; Songer, J.G.; Jost, B.H. Susceptibility of Arcanobacterium pyogenes from different sources to tetracycline, macrolide and lincosamide antimicrobial agents. Vet. Microbiol. 2002, 85, 353–359. [Google Scholar] [CrossRef]
- Wareth, G.; El-Diasty, M.; Melzer, F.; Murugaiyan, J.; Abdulmawjood, A.; Sprague, L.D.; Neubauer, H. Trueperella pyogenes and Brucella abortus coinfection in a dog and a cat on a dairy farm in Egypt with recurrent cases of mastitis and abortion. Vet. Med. Int. 2018, 2056436. [Google Scholar] [CrossRef] [Green Version]
- Tell, L.A.; Brooks, J.W.; Lintner, V.; Matthews, T.; Kariyawasam, S. Antimicrobial susceptibility of Arcanobacterium pyogenes isolated from the lungs of white-tailed deer (Odocoileus virginianus) with pneumonia. J. Vet. Diagn. Investig. 2011, 23, 1009–1013. [Google Scholar] [CrossRef] [Green Version]
- Rzewuska, M.; Stefańska, I.; Osińska, B.; Kizerwetter-Świda, M.; Chrobak, D.; Kaba, J.; Bielecki, W. Phenotypic characteristics and virulence genotypes of Trueperella (Arcanobacterium) pyogenes strains isolated from European bison (Bison bonasus). Vet. Microbiol. 2012, 160, 69–76. [Google Scholar] [CrossRef]
- Salleng, K.J.; Burton, B.J.; Apple, T.M.; Sanchez, S. Isolation of Trueperella pyogenes in a case of thoracic and abdominal abscess in a galago (Otolemur garnettii). J. Med. Primatol. 2016, 45, 198–201. [Google Scholar] [CrossRef]
- Tarazi, Y.H.; Al-Ani, F.K. An Outbreak of dermatophilosis and caseous lymphadenitis mixed infection in camels (Camelus dromedaries) in Jordan. J. Infect. Dev. Ctries. 2016, 10, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Nagib, S.; Glaeser, S.P.; Eisenberg, T.; Sammra, O.; Lämmler, C.; Kämpfer, P.; Schauerte, N.; Geiger, C.; Kaim, U.; Prenger-Berninghoff, E.; et al. Fatal infection in three Grey Slender Lorises (Loris lydekkerianus nordicus) caused by clonally related Trueperella pyogenes. BMC Vet. Res. 2017, 13, 273. [Google Scholar] [CrossRef] [Green Version]
- Ülbegi-Mohyla, H.; Hijazin, M.; Alber, J.; Lämmler, C.; Hassan, A.A.; Abdulmawjood, A.; Prenger-Berninghoff, E.; Weiß, R.; Zschöck, M. Identification of Arcanobacterium pyogenes isolated by post mortem examinations of a bearded dragon and a gecko by phenotypic and genotypic properties. J. Vet. Sci. 2010, 11, 265–267. [Google Scholar] [CrossRef] [Green Version]
- Galán-Relaño, Á.; Gómez-Gascón, L.; Luque, I.; Barrero-Domínguez, B.; Casamayor, A.; Cardoso-Toset, F.; Vela, A.I.; Fernández-Garayzábal, J.F.; Tarradas, C. Antimicrobial susceptibility and genetic characterization of Trueperella pyogenes isolates from pigs reared under intensive and extensive farming practices. Vet. Microbiol. 2019, 232, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Plamondon, M.; Martinez, G.; Raynal, L.; Touchette, M.; Valiquette, L. A fatal case of Arcanobacterium pyogenes endocarditis in a man with no identified animal contact: Case report and review of the literature. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, K.; Latha, R.; Udayashankar, C.; Jayanthi, K.; Oudeacoumar, P. Three Cases of Arcanobacterium Pyogenes-Associated Soft Tissue Infection. J. Med. Microbiol. 2010, 59, 736–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- di Cerbo, A.; Pezzuto, F.; Guidetti, G.; Canello, S.; Corsi, L. Tetracyclines: Insights and updates of their use in human and animal pathology and their potential toxicity. Open Biochem. J. 2019, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lees, P.; Pelligand, L.; Giraud, E.; Toutain, P.L. A history of antimicrobial drugs in animals: Evolution and revolution. J. Vet. Pharmacol. Therap. 2020, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Michalova, E.; Novotna, P.; Schlegelova, J. Tetracyclines in veterinary medicine and bacterial resistance to them. Vet. Med. Czech 2004, 49, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Patyra, E.; Przeniosło-Siwczyńska, M.; Grelik, A.; Kwiatek, K. Występowanie tetracyklin w paszach—Przyczyny i skutki. Med. Weter. 2019, 75, 280–286. [Google Scholar] [CrossRef]
- Mileva, R.; Karadaev, M.; Fasulkov, I.; Petkova, T.; Rusenova, N.; Vasilev, N.; Milanova, A. Oxytetracycline Pharmacokinetics after Intramuscular Administration in Cows with Clinical Metritis Associated with Trueperella pyogenes Infection. Antibiotics 2020, 9, 392. [Google Scholar] [CrossRef]
- Roberts, M.C. Tetracyclines: Mode of Action and their Bacterial Mechanisms of Resistance. In Bacterial Resistance to Antibiotics—From Molecules to Man; Bonev, B.B., Brown, N.M., Eds.; Wiley–Blackwell: Hoboken, NJ, USA, 2019; pp. 101–124. [Google Scholar]
- Sheykhsaran, E.; Baghi, H.B.; Soroush, M.H.; Ghotaslou, R. An overview of tetracyclines and related resistance mechanisms. Rev. Med. Microbiol. 2019, 30, 69–75. [Google Scholar] [CrossRef]
- Liu, M.C.; Wu, C.M.; Liu, Y.C.; Zhao, J.C.; Yang, Y.L.; Shen, J.Z. Identification, susceptibility, and detection of integron-gene cassettes of Arcanobacterium pyogenes in bovine endometritis. J. Dairy Sci. 2009, 92, 3659–3666. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.M.; Caixeta, L.S.; Machado, V.S.; Rauf, A.K.; Gilbert, R.O.; Bicalho, R.C. Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Vet. Microbiol. 2010, 145, 84–89. [Google Scholar] [CrossRef]
- Zastempowska, E.; Lassa, H. Genotypic characterization and evaluation of an antibiotic resistance of Trueperella pyogenes (Arcanobacterium pyogenes) isolated from milk of dairy cows with clinical mastitis. Vet. Microbiol. 2012, 161, 153–159. [Google Scholar] [CrossRef] [PubMed]
- de Boer, M.; Heuer, C.; Hussein, H.; McDougall, S. Minimum inhibitory concentrations of selected antimicrobials against Escherichia coli and Trueperella pyogenes of bovine uterine origin. J. Dairy Sci. 2015, 98, 4427–4438. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, D.; Turutoglu, H.; Pehlivanoglu, F.; Guler, L. Virulence Genes, Biofilm Production and Antibiotic Susceptibility in Trueperella pyogenes Isolated from Cattle. Isr. J. Vet. Med. 2016, 71, 36–42. [Google Scholar]
- Alkasir, R.; Wang, J.; Gao, J.; Ali, T.; Zhang, L.; Szenci, O.; Bajcsy, A.C.; Han, B. Properties and antimicrobial susceptibility of Trueperella pyogenes isolated from bovine mastitis in China. Acta Vet. Hung. 2016, 64, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Momtaz, H.; Ghafari, A.; Sheikh-Samani, A.; Jhazayeri, A. Detecting Virulence Factors and Antibiotic Resistance Pattern of Trueperella Pyogenes Isolated from Bovine Mastitic Milk. Int. J. Med. Lab. 2016, 3, 134–141. [Google Scholar]
- Zhang, D.; Zhao, J.; Wang, Q.; Liu, Y.; Tian, C.; Zhao, Y.; Yu, L.; Liu, M. Trueperella pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China: Tetracycline susceptibility and tetracycline-resistance gene distribution. Microb. Pathog. 2017, 105, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi Tamai, I.; Mohammadzadeh, A.; Zahraei Salehi, T.; Mahmoodi, P. Genomic characterisation, detection of genes encoding virulence factors and evaluation of antibiotic resistance of Trueperella pyogenes isolated from cattle with clinical metritis. Antonie Leeuwenhoek 2018, 111, 2441–2453. [Google Scholar] [CrossRef]
- Rezanejad, M.; Karimi, S.; Momtaz, H. Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiol. 2019, 19, 305. [Google Scholar] [CrossRef]
- Jost, B.H.; Field, A.C.; Trinh, H.T.; Songer, J.G.; Billington, S.J. Tylosin Resistance in Arcanobacterium pyogenes Is Encoded by an Erm X Determinant. Antimicrob. Agents Chemother. 2003, 47, 3519–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billington, S.J.; Jost, B.H. Multiple Genetic Elements Carry the Tetracycline Resistance Gene tet(W) in the Animal Pathogen Arcanobacterium pyogenes. Antimicrob. Agents Chemother. 2006, 50, 3580–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiecień, E.; Stefańska, I.; Chrobak-Chmiel, D.; Sałamaszyńska-Guz, A.; Rzewuska, M. New Determinants of Aminoglycoside Resistance and Their Association with the Class 1 Integron Gene Cassettes in Trueperella pyogenes. Int. J. Mol. Sci. 2020, 20, 4230. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals, 1st ed.; CLSI Supplement VET06; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA. European Surveillance of Veterinary Antimicrobial Consumption; Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018; European Medicines Agency: Amsterdam, The Netherlands, 2020; p. 24309. [Google Scholar]
- Krasucka, D.; Biernacki, B.; Szumiło, J.; Burmańczuk, A. Monitoring zużycia leków przeciwdrobnoustrojowych u bydła, trzody chlewnej I koni w Polsce w latach 2014–2016 na podstawie Programu Wieloletniego. Życie Weter. 2017, 92, 578–581. [Google Scholar]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2018, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Zhang, C.; Zhang, Z.; Peng, J.; Han, Y.; Wang, P.; Kong, X.; Rizwan, H.M.; Zhang, D.; Su, P.; et al. Differences in Tetracycline Antibiotic Resistance Genes and Microbial Community Structure During Aerobic Composting and Anaerobic Digestion. Front. Microbiol. 2020, 11, 583995. [Google Scholar] [CrossRef] [PubMed]
- Pohl, A.; Lübke-Becker, A.; Heuwieser, W. Minimum inhibitory concentrations of frequently used antibiotics against Escherichia coli and Trueperella pyogenes isolated from uteri of postpartum dairy cows. J. Dairy Sci. 2018, 101, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.P.; Vela, A.I.; Las Heras, A.; Domínguez, L.; Fernández-Garayzábal, J.F.; Moreno, M.A. Antimicrobial susceptibility of corynebacteria isolated from ewe’s mastitis. Int. J. Antimicrob. Agents 2001, 18, 571–574. [Google Scholar] [CrossRef]
- Krasińska, M.; Krasiński, Z.A. European Bison—The Nature Monograph; Mammal Research Institute, Polish Academy of Sciences: Białowieża, Poland, 2007; pp. 141–191. [Google Scholar]
- Klich, D.; Łopucki, R.; Stachniuk, A.; Sporek, M.; Fornal, E.; Wojciechowska, M.; Olech, W. Pesticides and conservation of large ungulates: Health risk to European bison from plant protection products as a result of crop depredation. PLoS ONE 2020, 15, e0228243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirino-Trejo, M.; Woodbury, M.R.; Huang, F. Antibiotic sensitivity and biochemical characterization of Fusobacterium spp. and Arcanobacterium pyogenes isolated from farmed white-tailed deer (Odocoileus virginianus) with necrobacillosis. J. Zoo Wildl. Med. 2003, 34, 262–268. [Google Scholar] [CrossRef]
- Connell, S.R.; Tracz, D.M.; Nierhaus, K.H.; Taylor, D.E. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 2003, 47, 3675–3681. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, T.M.; Scott, K.P.; Flint, H.J. Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. Environ. Microbiol. 1999, 1, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Melville, C.M.; Brunel, R.; Flint, H.J.; Scott, K.P. The Butyrivibrio fibrisolvens tet(W) Gene Is Carried on the Novel Conjugative Transposon TnB1230, Which Contains Duplicated Nitroreductase Coding Sequences. J. Bacteriol. 2004, 186, 3656–3659. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.B.; McDowall, J.S.; Rasmussen, M.A. Diverse Tetracycline Resistance Genotypes of Megasphaera elsdenii Strains Selectively Cultured from Swine Feces. Appl. Environ. Microbiol. 2004, 70, 3754–3757. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, K.A.; Flint, H.J.; Scott, K.P. Comparative Analysis of Sequences Flanking tet(W) Resistance Genes in Multiple Species of Gut Bacteria. Antimicrob. Agents Chemother. 2006, 50, 2632–2639. [Google Scholar] [CrossRef] [Green Version]
- Ammor, M.S.; Flórez, A.B.; Alvarez-Martín, P.; Margolles, A.; Mayo, B. Analysis of Tetracycline Resistance tet(W) Genes and Their Flanking Sequences in Intestinal Bifidobacterium Species. J. Antimicrob. Chemother. 2008, 62, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Billington, S.J.; Songer, J.G.; Jost, B.H. Widespread Distribution of a Tet W Determinant among Tetracycline-Resistant Isolates of the Animal Pathogen Arcanobacterium pyogenes. Antimicrob. Agents Chemother. 2002, 46, 1281–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villedieu, A.; Diaz-Torres, M.L.; Hunt, N.; McNab, R.; Spratt, D.A.; Wilson, M.; Mullany, P. Prevalence of Tetracycline Resistance Genes in Oral Bacteria. Antimicrob. Agents Chemother. 2003, 47, 878–882. [Google Scholar] [CrossRef] [Green Version]
- Tauch, A.; Götker, S.; Pühler, P.; Kalinowski, J.; Thierbach, G. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 2002, 48, 117–129. [Google Scholar] [CrossRef]
- Dong, W.L.; Xu, Q.J.; Atiah, L.A.; Odah, K.A.; Gao, Y.H.; Kong, L.C.; Ma, H.X. Genomic island type IV secretion system and transposons in genomic islands involved in antimicrobial resistance in Trueperella pyogenes. Vet. Microbiol. 2020, 242, 108602. [Google Scholar] [CrossRef] [PubMed]
- Doidge, C.; Ruston, A.; Lovatt, F.; Hudson, C.; King, L.; Kaler, J. Farmers’ Perceptions of Preventing Antibiotic Resistance on Sheep and Beef Farms: Risk, Responsibility, and Action. Front. Vet. Sci. 2020, 7, 524. [Google Scholar] [CrossRef]
- Santamaría, J.; López, L.; Soto, C.Y. Detection and Diversity Evaluation of Tetracycline Resistance Genes in Grassland-Based Production Systems in Colombia, South America. Front. Microbiol. 2011, 2, 252. [Google Scholar] [CrossRef] [Green Version]
- Girlich, D.; Bonnin, R.A.; Naas, T. Occurrence and Diversity of CTX-M-Producing Escherichia coli From the Seine River. Front. Microbiol. 2020, 11, 603578. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Aminov, R.I.; Garrigues-Jeanjean, N.; Mackie, R.I. Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities. Appl. Environ. Microbiol. 2001, 67, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyselková, M.; Jirout, J.; Vrchotová, N.; Schmitt, H.; Elhottová, D. Spread of Tetracycline Resistance Genes at a Conventional Dairy Farm. Front. Microbiol. 2015, 6, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira de Araujo, G.; Huff, R.; Favarini, M.O.; Mann, M.B.; Peters, F.B.; Frazzon, J.; Guedes Frazzon, A.P. Multidrug Resistance in Enterococci Isolated from Wild Pampas Foxes (Lycalopex gymnocercus) and Geoffroy’s Cats (Leopardus geoffroyi) in the Brazilian Pampa Biome. Front. Vet. Sci. 2020, 7, 606377. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Danielsen, M.; Huys, G.; Swings, J. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl. Environ. Microbiol. 2003, 69, 1270–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Y.; Bosch, T.; Roberts, M.C. Single polymerase chain reaction for the detection of tetracycline-resistant determinants Tet K and Tet L. Mol. Cell. Probes 1994, 8, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Wang, J.; Zhou, A.; Ma, C.; Wu, X.; Moore, J.E.; Millar, B.C.; Xu, J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol. 2011, 62, 1081–1090. [Google Scholar] [CrossRef]
- Gibreel, A.; Tracz, D.M.; Nonaka, L.; Ngo, T.M.; Connell, S.R.; Taylor, D.E. Incidence of Antibiotic Resistance in Campylobacter jejuni Isolated in Alberta, Canada, from 1999 to 2002, with Special Reference to tet(O)-Mediated Tetracycline Resistance. Antimicrob. Agents Chemother. 2004, 48, 3442–3450. [Google Scholar] [CrossRef] [Green Version]
- Trzciński, K.; Cooper, B.S.; Hryniewicz, W.; Dowson, C.G. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 45, 763–770. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Approved Standard. CLSI Document VET01-A4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
Isolate Origin | Number of Isolates with the Indicated MIC (µg/mL)a | MIC50 | MIC90 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤ 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | ≥128 | |||
Cattle | 1 | 1 | 2 | 4 | 9 | 21 | 32 | 32 | |||||
Swine | 1 | 3 | 1 | 1 | 1 | 11 | 6 | 2 | 1 | 4 | 8 | ||
Goat | 4 | 5 | 2 | 1 | 1 | 0.25 | 1 | ||||||
Sheep | 5 | 1 | ≤0.125 | ≤0.125 | |||||||||
European bison | 11 | 9 | 4 | 1 | 1 | 4 | 0.25 | 32 | |||||
Total | 22 | 18 | 10 | 2 | 2 | 11 | 11 | 12 | 26 | 4 | 32 |
Isolate Designation | Isolate Origin | Genea | tetW-3 Linked to ATE-1 e | MIC (µg/mL) | |||
---|---|---|---|---|---|---|---|
Tetb | tetWc | tetWd | tetA(33) | ||||
2/B | Bovine | + | + | + | + | + | 32 |
4/B | Bovine | + | + | + | + | + | 32 |
5/B | Bovine | + | + | + | - | + | 32 |
6/B | Bovine | + | + | + | - | + | 16 |
7/B | Bovine | + | + | + | + | + | 32 |
8/B | Bovine | + | + | + | - | + | 32 |
9/B | Bovine | + | + | + | - | + | 16 |
10/B | Bovine | + | + | + | - | + | 32 |
11/B | Bovine | + | + | + | - | + | 16 |
12/B | Bovine | + | + | + | - | + | 32 |
14/B | Bovine | + | + | + | - | + | 16 |
15/B | Bovine | - | - | - | + | - | 8 |
16/B | Bovine | - | - | - | - | - | 8 |
18/B | Bovine | + | + | + | - | + | 32 |
19/B | Bovine | + | + | + | - | + | 32 |
20/B | Bovine | + | + | + | - | + | 32 |
21/B | Bovine | + | + | + | + | + | 32 |
22/B | Bovine | + | + | + | - | + | 32 |
23/B | Bovine | + | + | + | + | + | 32 |
24/B | Bovine | + | + | + | - | + | 32 |
25/B | Bovine | + | + | + | - | + | 32 |
26/B | Bovine | + | + | + | + | + | 16 |
27/B | Bovine | + | + | + | - | + | 32 |
28/B | Bovine | + | + | + | - | + | 32 |
29/B | Bovine | + | + | + | - | + | 16 |
30/B | Bovine | + | + | + | - | + | 16 |
31/B | Bovine | + | + | + | - | + | 16 |
32/B | Bovine | + | + | + | + | + | 32 |
33/B | Bovine | + | + | + | + | + | 32 |
34/B | Bovine | + | + | + | - | + | 8 |
35/B | Bovine | + | + | + | - | + | 32 |
36/B | Bovine | + | + | + | - | + | 16 |
37/B | Bovine | + | + | + | - | + | 8 |
38/B | Bovine | + | + | + | - | + | 32 |
2/S | Swine | + | - | + | - | - | 16 |
8/S | Swine | + | + | + | - | + | 32 |
10/S | Swine | + | - | + | - | - | 8 |
11/S | Swine | + | - | + | - | - | 8 |
12/S | Swine | + | - | + | - | - | 8 |
14/S | Swine | + | - | + | - | - | 8 |
16/S | Swine | + | - | + | - | - | 16 |
17/S | Swine | + | - | + | - | - | 8 |
49/S | Swine | + | - | + | - | - | 8 |
3/Z | European bison | + | + | + | - | + | 32 |
7/Z | European bison | + | + | + | - | + | 32 |
8/Z | European bison | + | + | + | - | + | 16 |
10/Z | European bison | + | + | + | - | + | 32 |
14/Z | European bison | + | + | + | - | + | 32 |
6/K | Caprine | - | - | - | + | - | 8 |
Primer Designation | Primer Sequence (5’–3’) | Target Gene | Annealing Temperature (°C) | Amplicon Size (bp) | Reference |
---|---|---|---|---|---|
plo_F plo_R | TCATCAACAATCCCACGAAGAG TTGCCTCCAGTTGACGCTTT | plo | 60 b | 150 | [27] |
DI_F DII_R | GAYACICCIGGICAYRTIGAYTT GCCCARWAIGGRTTIGGIGGIACYTC | teta | 53 b | 1100 | [66] |
TKI_F TL32_R | CCTGTTCCCTCTGATAAA CAAACTGGGTGAACACAG | tetK/ tetL | 50 b | 1050 | [67] |
tetW_F tetW_R | GACAACGAGAACGGACACTATG CGCAATAGCCAGCAATGAACGC | tetW | 58 b | 1843 | [37] |
tetM_F tetM_R | TTAAATAGTGTTCTTGGAG CTAAGATATGGCTCTAACAA | tetM | 54 c | 656 | [68] |
tetA(33)_F tetA(33)_R |
GATGCCGATTCTTCCCGCACTGC CCACGCATGATGAGAATCACGC | tetA(33) | 58 b | 1089 | [36] |
tetO_F tetO_R | GGCGTTTTGTTTATGTGCG ATGGACAACCCGACAGAAGC | tetO | 50 c | 559 | [69] |
tetK_F tetK_R | TATTTGGCTTTGTATTCTTTCAT GCTATACCTGTTCCCTCTGATAA | tetK | 50 b | 1159 | [70] |
tetL_F tetL_R | ATAAATTGTTTCGGGTCGGAAT AACCAGCCAACTAATGACAATGAT | tetL | 50 b | 1077 | [70] |
ATE-1_F ATE-1_R | TGCCTGGCAGCGTCCGTCCGTG AGGGCCAAGACCGCCGAGTTCC | tetW-3–orf110 | 55 c | 522 | [37] |
tetW-all_F tetW-all_R |
GTCTGTTCGGGATAAGCTCT TGGAATACGCATCTCTGTGA | tetW | 54 c | 466 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiecień, E.; Stefańska, I.; Chrobak-Chmiel, D.; Kizerwetter-Świda, M.; Moroz, A.; Olech, W.; Spinu, M.; Binek, M.; Rzewuska, M. Trueperella pyogenes Isolates from Livestock and European Bison (Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics 2021, 10, 380. https://doi.org/10.3390/antibiotics10040380
Kwiecień E, Stefańska I, Chrobak-Chmiel D, Kizerwetter-Świda M, Moroz A, Olech W, Spinu M, Binek M, Rzewuska M. Trueperella pyogenes Isolates from Livestock and European Bison (Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics. 2021; 10(4):380. https://doi.org/10.3390/antibiotics10040380
Chicago/Turabian StyleKwiecień, Ewelina, Ilona Stefańska, Dorota Chrobak-Chmiel, Magdalena Kizerwetter-Świda, Agata Moroz, Wanda Olech, Marina Spinu, Marian Binek, and Magdalena Rzewuska. 2021. "Trueperella pyogenes Isolates from Livestock and European Bison (Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants" Antibiotics 10, no. 4: 380. https://doi.org/10.3390/antibiotics10040380
APA StyleKwiecień, E., Stefańska, I., Chrobak-Chmiel, D., Kizerwetter-Świda, M., Moroz, A., Olech, W., Spinu, M., Binek, M., & Rzewuska, M. (2021). Trueperella pyogenes Isolates from Livestock and European Bison (Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics, 10(4), 380. https://doi.org/10.3390/antibiotics10040380