Antibiotic Susceptibility of Staphylococcus Species Isolated in Raw Chicken Meat from Retail Stores
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Castro Cardoso Pereira, P.M.; dos Reis Baltazar Vicente, A.F. Meat Nutritional Composition and Nutritive Role in the Human Diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and Assessment of Healthy Properties of Meat and Meat Products Designed as Functional Foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shubham, K.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron Deficiency Anemia: A Comprehensive Review on Iron Absorption, Bioavailability and Emerging Food Fortification Approaches. Trends Food Sci. Technol. 2020, 99, 58–75. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.-J.E. Spoilage Microbiota Associated to the Storage of Raw Meat in Different Conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Lika, E. Sustainable Rural Development in Albania Through Agriculture and Livestock: Challenges in the European Union Perspective. J. Agron. Technol. Eng. Manag. 2021, 4, 577–582. [Google Scholar]
- Moretro, T.; Langsrud, S.; Heir, E. Bacteria on Meat Abattoir Process Surfaces after Sanitation: Characterisation of Survival Properties of Listeria Monocytogenes and the Commensal Bacterial Flora. Adv. Microbiol. 2013, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Møretrø, T.; Langsrud, S. Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1022–1041. [Google Scholar] [CrossRef] [Green Version]
- Lavilla Lerma, L.; Benomar, N.; Gálvez, A.; Abriouel, H. Prevalence of Bacteria Resistant to Antibiotics and/or Biocides on Meat Processing Plant Surfaces throughout Meat Chain Production. Int. J. Food Microbiol. 2013, 161, 97–106. [Google Scholar] [CrossRef]
- Nørrung, B.; Andersen, J.K.; Buncic, S. Main Concerns of Pathogenic Microorganisms in Meat. In Safety of Meat and Processed Meat; Toldrá, F., Ed.; Food Microbiology and Food Safety; Springer: New York, NY, USA, 2009; pp. 3–29. ISBN 978-0-387-89026-5. [Google Scholar]
- Van Ba, H.; Seo, H.-W.; Pil-Nam, S.; Kim, Y.-S.; Park, B.Y.; Moon, S.-S.; Kang, S.-J.; Choi, Y.-M.; Kim, J.-H. The Effects of Pre-and Post-Slaughter Spray Application with Organic Acids on Microbial Population Reductions on Beef Carcasses. Meat Sci. 2018, 137, 16–23. [Google Scholar] [CrossRef]
- Breuch, R.; Klein, D.; Siefke, E.; Hebel, M.; Herbert, U.; Wickleder, C.; Kaul, P. Differentiation of Meat-Related Microorganisms Using Paper-Based Surface-Enhanced Raman Spectroscopy Combined with Multivariate Statistical Analysis. Talanta 2020, 219, 121315. [Google Scholar] [CrossRef] [PubMed]
- Visvalingam, J.; Zhang, P.; Ells, T.C.; Yang, X. Dynamics of Biofilm Formation by Salmonella Typhimurium and Beef Processing Plant Bacteria in Mono- and Dual-Species Cultures. Microb. Ecol. 2019, 78, 375–387. [Google Scholar] [CrossRef]
- Huang, L.; Hwang, C.-A.; Fang, T. Improved Estimation of Thermal Resistance of Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes in Meat and Poultry—The Effect of Temperature and Fat and A Global Analysis. Food Control 2019, 96, 29–38. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding Spoilage Microbial Community and Spoilage Mechanisms in Foods of Animal Origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos-Castillo, A.G.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Evaluation of Bacterial Population Using Multiple Sampling Methods and the Identification of Bacteria Detected on Supermarket Food Contact Surfaces. Food Control 2021, 119, 107471. [Google Scholar] [CrossRef]
- Schirone, M.; Visciano, P.; Tofalo, R.; Suzzi, G. Editorial: Foodborne Pathogens: Hygiene and Safety. Front. Microbiol. 2019, 10, 1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnowski, M.; Osek, J. Microbiological Safety of Food of Animal Origin from Organic Farms. J. Vet. Res. 2021, 65, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Charlermroj, R.; Makornwattana, M.; Phuengwas, S.; Meerak, J.; Pichpol, D.; Karoonuthaisiri, N. DNA-Based Bead Array Technology for Simultaneous Identification of Eleven Foodborne Pathogens in Chicken Meat. Food Control 2019, 101, 81–88. [Google Scholar] [CrossRef]
- Smith, T.C.; Male, M.J.; Harper, A.L.; Kroeger, J.S.; Tinkler, G.P.; Moritz, E.D.; Capuano, A.W.; Herwaldt, L.A.; Diekema, D.J. Methicillin-Resistant Staphylococcus Aureus (MRSA) Strain ST398 Is Present in Midwestern U.S. Swine and Swine Workers. PLoS ONE 2009, 4, e4258. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Moodley, A.; Guardabassi, L.; Stegger, M.; Skov, R.L.; Aarestrup, F.M. Spa Type Distribution in Staphylococcus Aureus Originating from Pigs, Cattle and Poultry. Vet. Microbiol. 2010, 141, 326–331. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Y.; Sun, L.; Qu, T.; Wang, H.; Yu, Y. Prevalence of Fosfomycin Resistance in Methicillin-Resistant Staphylococcus Aureus Isolated from Patients in a University Hospital in China from 2013 to 2015. JPN J. Infect. Dis. 2018, 71, 312–314. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.E.; Sader, H.S.; Castanheira, M.; Flamm, R.K. Distribution of Main Gram-Positive Pathogens Causing Bloodstream Infections in United States and European Hospitals during the SENTRY Antimicrobial Surveillance Program (2010–2016): Concomitant Analysis of Oritavancin in Vitro Activity. J. Chemother. 2018, 30, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Hennekinne, J.-A. Chapter 7—Staphylococcus aureus as a Leading Cause of Foodborne Outbreaks Worldwide. In Staphylococcus Aureus; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 129–146. ISBN 978-0-12-809671-0. [Google Scholar]
- Ebert, M. Chapter 11—Hygiene Principles to Avoid Contamination/Cross-Contamination in the Kitchen and During Food Processing. In Staphylococcus Aureus; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 217–234. ISBN 978-0-12-809671-0. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus Aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Res. Int. 2014, 2014, e827965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Lü, Z.; An, Z.; Ji, P.; Liu, X. Antibacterial Activities of Sophorolipids and Nisin and Their Combination against Foodborne Pathogen Staphylococcus Aureus. Eur. J. Lipid Sci. Technol. 2020, 122, 1900333. [Google Scholar] [CrossRef]
- Abril, G.A.; Villa, G.T.; Barros-Velázquez, J.; Cañas, B.; Sánchez-Pérez, A.; Calo-Mata, P.; Carrera, M. Staphylococcus Aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins 2020, 12, 537. [Google Scholar] [CrossRef]
- Umeda, K.; Nakamura, H.; Yamamoto, K.; Nishina, N.; Yasufuku, K.; Hirai, Y.; Hirayama, T.; Goto, K.; Hase, A.; Ogasawara, J. Molecular and Epidemiological Characterization of Staphylococcal Foodborne Outbreak of Staphylococcus Aureus Harboring Seg, Sei, Sem, Sen, Seo, and Selu Genes without Production of Classical Enterotoxins. Int. J. Food Microbiol. 2017, 256, 30–35. [Google Scholar] [CrossRef]
- Denayer, S.; Delbrassinne, L.; Nia, Y.; Botteldoorn, N. Food-Borne Outbreak Investigation and Molecular Typing: High Diversity of Staphylococcus Aureus Strains and Importance of Toxin Detection. Toxins 2017, 9, 407. [Google Scholar] [CrossRef] [Green Version]
- Le, H.H.T.; Dalsgaard, A.; Andersen, P.S.; Nguyen, H.M.; Ta, Y.T.; Nguyen, T.T. Large-Scale Staphylococcus Aureus Foodborne Disease Poisoning Outbreak among Primary School Children. Microbiol. Res. 2021, 12, 5. [Google Scholar] [CrossRef]
- Argudín, M.Á.; Mendoza, M.C.; Rodicio, M.R. Food Poisoning and Staphylococcus Aureus Enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef]
- Jaja, I.F.; Jaja, C.-J.I.; Chigor, N.V.; Anyanwu, M.U.; Maduabuchi, E.K.; Oguttu, J.W.; Green, E. Antimicrobial Resistance Phenotype of Staphylococcus aureus and Escherichia coli Isolates Obtained from Meat in the Formal and Informal Sectors in South Africa. BioMed Res. Int. 2020, 2020, 3979482. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Milenković, J.; Galonja Coghill, T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; Ljubojević Pelić, D.; Miljković, T. Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study. Antibiotics 2021, 10, 546. [Google Scholar] [CrossRef] [PubMed]
- Leong, H.N.; Kurup, A.; Tan, M.Y.; Kwa, A.L.H.; Liau, K.H.; Wilcox, M.H. Management of Complicated Skin and Soft Tissue Infections with a Special Focus on the Role of Newer Antibiotics. Infect. Drug Resist. 2018, 11, 1959–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The Role of the Natural Environment in the Emergence of Antibiotic Resistance in Gram-Negative Bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Omwenga, I.; Aboge, G.O.; Mitema, E.S.; Obiero, G.; Ngaywa, C.; Ngwili, N.; Wamwere, G.; Wainaina, M.; Bett, B. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus Aureus, Including Methicillin-Resistant Strains in Raw Milk of Livestock from Northern Kenya. Microb. Drug Resist. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kimera, Z.I.; Mgaya, F.X.; Misinzo, G.; Mshana, S.E.; Moremi, N.; Matee, M.I.N. Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar Es Salaam, Tanzania. Antibiotics 2021, 10, 406. [Google Scholar] [CrossRef]
- Lim, S.-K.; Nam, H.-M.; Park, H.-J.; Lee, H.-S.; Choi, M.-J.; Jung, S.-C.; Lee, J.-Y.; Kim, Y.-C.; Song, S.-W.; Wee, S.-H. Prevalence and Characterization of Methicillin-Resistant Staphylococcus Aureus in Raw Meat in Korea. J. Microbiol. Biotechnol. 2010, 20, 775–778. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.; Zwartkruis-Nahuis, J.T.M.; Wit, B.; Huijsdens, X.W.; de Neeling, A.J.; Bosch, T.; van Oosterom, R.A.A.; Vila, A.; Heuvelink, A.E. Prevalence of Methicillin-Resistant Staphylococcus Aureus in Meat. Int. J. Food Microbiol. 2009, 134, 52–56. [Google Scholar] [CrossRef]
- Konuku, S.; Rajan, M.M.; Muruhan, S. Morphological and Biochemical Characteristics and Antibiotic Resistance Pattern of Staphylococcus Aureus Isolated from Grapes. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2, 70. [Google Scholar] [CrossRef]
- Pesavento, G.; Ducci, B.; Comodo, N.; Nostro, A.L. Antimicrobial Resistance Profile of Staphylococcus Aureus Isolated from Raw Meat: A Research for Methicillin Resistant Staphylococcus Aureus (MRSA). Food Control 2007, 18, 196–200. [Google Scholar] [CrossRef]
- Waters, A.E.; Contente-Cuomo, T.; Buchhagen, J.; Liu, C.M.; Watson, L.; Pearce, K.; Foster, J.T.; Bowers, J.; Driebe, E.M.; Engelthaler, D.M.; et al. Multidrug-Resistant Staphylococcus Aureus in US Meat and Poultry. Clin. Infect. Dis. 2011, 52, 1227–1230. [Google Scholar] [CrossRef]
- Yucel, N.; Citak, S.; Bayhün, S. Antimicrobial Resistance Profile of Staphylococcus Aureus Isolated from Clinical Samples and Foods of Animal Origin. Foodborne Pathog. Dis. 2010, 8, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Pekana, A.; Green, E. Antimicrobial Resistance Profiles of Staphylococcus Aureus Isolated from Meat Carcasses and Bovine Milk in Abattoirs and Dairy Farms of the Eastern Cape, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 2223. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus Aureus Isolated From Retail Meat and Meat Products in China: Incidence, Antibiotic Resistance and Genetic Diversity. Front. Microbiol. 2018, 9, 2767. [Google Scholar] [CrossRef]
- Kim, Y.B.; Seo, K.W.; Jeon, H.Y.; Lim, S.-K.; Lee, Y.J. Characteristics of the Antimicrobial Resistance of Staphylococcus Aureus Isolated from Chicken Meat Produced by Different Integrated Broiler Operations in Korea. Poult. Sci. 2018, 97, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Adzitey, F.; Ekli, R.; Abu, A. Prevalence and Antibiotic Susceptibility of Staphylococcus Aureus Isolated from Raw and Grilled Beef in Nyankpala Community in the Northern Region of Ghana. Cogent Food Agric. 2019, 5, 1671115. [Google Scholar] [CrossRef]
- Effah, C.Y.; Otoo, B.A.F.; Ntiefo, R.A. Prevalence and Phenotypic Antibiotic Bioassay of Methicillin-Resistant Staphylococcus Aureus in Raw Meats Sold at Various Retail Outlets in the Cape Coast Metropolis of Ghana. J. Food Microbiol. 2018, 2, 7–11. [Google Scholar]
- Goldberg, E.; Paul, M.; Talker, O.; Samra, Z.; Raskin, M.; Hazzan, R.; Leibovici, L.; Bishara, J. Co-Trimoxazole versus Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus Aureus Bacteraemia: A Retrospective Cohort Study. J. Antimicrob. Chemother. 2010, 65, 1779–1783. [Google Scholar] [CrossRef] [Green Version]
- Marwa, K.J.; Mushi, M.F.; Konje, E.; Alele, P.E.; Kidola, J.; Mirambo, M.M. Resistance to Cotrimoxazole and Other Antimicrobials among Isolates from HIV/AIDS and Non-HIV/AIDS Patients at Bugando Medical Centre, Mwanza, Tanzania. AIDS Res. Treat. 2015, 2015, 103874. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Lika, E.; Brkanlić, S.; Esteve, E.B.; Ilić, D.; Kika, S.; Brkić, I. The Pandemic of SARS-CoV-2 as a Worldwide Health Safety Risk. J. Agron. Technol. Eng. Manag. 2021, 4, 10. [Google Scholar]
- Kovačević, Z.; Radinović, M.; Čabarkapa, I.; Kladar, N.; Božin, B. Natural Agents against Bovine Mastitis Pathogens. Antibiotics 2021, 10, 205. [Google Scholar] [CrossRef]
- Regecová, I.; Pipová, M.; Jevinová, P.; Marušková, K.; Kmeť, V.; Popelka, P. Species Identification and Antimicrobial Resistance of Coagulase-Negative Staphylococci Isolated from the Meat of Sea Fish. J. Food Sci. 2014, 79, M898–M902. [Google Scholar] [CrossRef]
- Ljubojević, D.; Pelić, M.; Puvača, N.; Milanov, D. Resistance to Tetracycline in Escherichia coli Isolates from Poultry Meat: Epidemiology, Policy and Perspective. Worlds Poult. Sci. J. 2017, 73, 409–417. [Google Scholar] [CrossRef]
- Puvača, N.; de Llanos Frutos, R. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Britt, C. Welfare and Legal Aspects of Making Decisions on Medical Treatments of Pet Animals. Pravo—Teorija I Praksa 2020, 37, 55–64. [Google Scholar] [CrossRef]
- Thorburn, C.E.; Molesworth, S.J.; Sutherland, R.; Rittenhouse, S. Postantibiotic and Post-Beta-Lactamase Inhibitor Effects of Amoxicillin plus Clavulanate. Antimicrob. Agents Chemother. 1996, 40, 2796–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Jacobs, M.R.; Fritsche, T.R. Review of the Spectrum and Potency of Orally Administered Cephalosporins and Amoxicillin/Clavulanate. Diagn. Microbiol. Infect. Dis. 2007, 57, S5–S12. [Google Scholar] [CrossRef]
- Cowan, S.T.; Steel, K.J. Manual for the Identification of Medical Bacteria. Man. Identif. Med. Bacteria. 1965, 149, 852. [Google Scholar]
- Bergey, D.H.; Holt, J.G. Bergey’s Manual of Determinative Bacteriology; Lippincott Williams & Wilkins (LWW): Philadelphia, PA, USA, 1994; ISBN 978-0-683-00603-2. [Google Scholar]
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards—Ninth Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012.
- Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard M02-A12 2007; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2007.
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-Based 96-Well Plate Microdilution Method for the Determination of Minimum Inhibitory Concentration of Biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
Antibiotics | Isolate’s Resistance (n) |
---|---|
AUG-AMX-CXC-TET-ERY | 8 |
AUG-AMX-CXC-TET-ERY-CHL | 6 |
AUG-AMX-CXC-TET-ERY-CHL-COT | 8 |
AUG-AMX-CXC-TET-ERY-CHL-COT-GEN | 6 |
Bacteria | AUG | AMX | ERY | TET | CXC | GEN | COT | CHL |
---|---|---|---|---|---|---|---|---|
Staphylococcus spp. | R | R | R | R | R | R | I | R |
Sample | AUG | AMX | CXC | ||||||
---|---|---|---|---|---|---|---|---|---|
MIC, mg/L | MBC, mg/L | Cutoff, mg/L | MIC, mg/L | MBC, mg/L | Cutoff, mg/L | MIC, mg/L | MBC, mg/L | Cutoff, mg/L | |
S. aureus | 5.8 | 11.6 | 1.45 | 8.2 | 16.4 | 2.05 | 6.4 | 12.8 | 1.6 |
Staphylococcus spp. | 4.6 | 9.2 | 1.15 | 7.6 | 15.4 | 1.9 | 7.3 | 14.6 | 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lika, E.; Puvača, N.; Jeremić, D.; Stanojević, S.; Shtylla Kika, T.; Cocoli, S.; de Llanos Frutos, R. Antibiotic Susceptibility of Staphylococcus Species Isolated in Raw Chicken Meat from Retail Stores. Antibiotics 2021, 10, 904. https://doi.org/10.3390/antibiotics10080904
Lika E, Puvača N, Jeremić D, Stanojević S, Shtylla Kika T, Cocoli S, de Llanos Frutos R. Antibiotic Susceptibility of Staphylococcus Species Isolated in Raw Chicken Meat from Retail Stores. Antibiotics. 2021; 10(8):904. https://doi.org/10.3390/antibiotics10080904
Chicago/Turabian StyleLika, Erinda, Nikola Puvača, Dejan Jeremić, Slobodan Stanojević, Tana Shtylla Kika, Sonila Cocoli, and Rosa de Llanos Frutos. 2021. "Antibiotic Susceptibility of Staphylococcus Species Isolated in Raw Chicken Meat from Retail Stores" Antibiotics 10, no. 8: 904. https://doi.org/10.3390/antibiotics10080904
APA StyleLika, E., Puvača, N., Jeremić, D., Stanojević, S., Shtylla Kika, T., Cocoli, S., & de Llanos Frutos, R. (2021). Antibiotic Susceptibility of Staphylococcus Species Isolated in Raw Chicken Meat from Retail Stores. Antibiotics, 10(8), 904. https://doi.org/10.3390/antibiotics10080904