Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides
Abstract
:1. Introduction
2. Results
2.1. Growth Performance
2.2. Morphological Analysis of Jejunum
2.3. Immunoglobulins
2.4. Serum Inflammatory Factors
2.5. Short-Chain Fatty Acids in Colon Morphology
2.6. Summary of Microbial Community in Caecum Contents of Broilers
3. Discussion
4. Materials and Methods
4.1. Animals, Treatment, and Designation
4.2. Sample Collection
4.3. Growth Performance
4.4. Serum Immunologic Indexes
4.5. Morphological Analysis of Jejunum
4.6. Analysis of Short-Chain Fatty Acids
4.7. 16S rRNA Sequencing of Cecal Microflora
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boerlin, P.; Wissing, A.; Aarestrup, F.M.; Frey, J.; Nicolet, J. Antimicrobial growth promoter ban; resistance to macrolides and vancomycin in enterococci from pigs. J. Clin. Microbiol. 2001, 39, 4193–4195. [Google Scholar] [CrossRef] [Green Version]
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef]
- Miles, R.D.; Butcher, G.D.; Henry, P.R.; Littell, R.C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult. Sci. 2006, 85, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, Z.; Zhao, W.; Liu, C.X.; Qian, X.X.; Zhang, M.; Wei, G.; Eakalak, K.; Ng, Y.H.; Ok, Y.S. Recent advances in photodegradation of antibiotic residues in water. Chem. Eng. J. 2020, 405, 126806–126830. [Google Scholar] [CrossRef] [PubMed]
- Vinner, G.K.; Richards, K.; Leppanen, M.; Sagona, A.P.; Malik, D.J. Microencapsulation of enteric bacteriophages in a pH-responsive solid Oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 2019, 11, 475. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, E.; Ron, E.Z. High- and low- molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Sha, R.Y.; Jiang, L.F.; Meng, Q.; Zhang, G.L.; Song, Z.R. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J. Basic Microbiol. 2011, 52, 458–466. [Google Scholar] [CrossRef]
- Marchant, R.; Banat, I.M. Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends Biotechnol. 2012, 30, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Z.; Zhang, Y.M.; Lin, J.Z.; Wang, W.D.; Li, S. High-Yield Di-Rhamnolipid Production by Pseudomonas aeruginosa YM4 and its Potential Application in MEOR. Molecules 2019, 24, 1433. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yi, L.; Ye, R. Effect of alcohols on the phase behavior of microemulsions formed by a biosurfactant—rhamnolipid. J. Dispers. Sci. Technol. 2005, 26, 455–461. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Youssef, N.H.; McInerney, M.J.; Sabatini, D.A. Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res. 2008, 42, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.M.; Desai, A.J. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. J. Basic Microbiol. 1997, 37, 281–286. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Q.; Hua, Y.; Chen, J.; Zhang, H.; Wang, H. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl. Microbiol. Biotechnol. 2017, 101, 8309–8319. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Costa, S.G. Biosurfactants in food industry. Trends Food Sci. Technol. 2017, 18, 252–259. [Google Scholar] [CrossRef]
- Haba, E.; Pinazo, A.; Jauregui, O.; Espuny, M.J.; Infante, M.R.; Manresa, A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 2013, 81, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Meng, Q.; Feng, X.; Tang, X.; Jia, A.; Feng, J.; Zhang, S.; Zhang, H. Probing the molecular regulation of lipopolysaccharide stress in piglet liver by comparative proteomics analysis. Electrophoresis 2018, 39, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Rietschel, E.T. Invited review: Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 2001, 7, 167–202. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C.A. Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296, 298–300. [Google Scholar] [CrossRef] [Green Version]
- Kosaric, N. Biosurfactants and Their Application for soil bioremediation. Food Tech. Biotechnol. 2001, 39, 295–304. [Google Scholar]
- Makkar, R.S.; Rockne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 2003, 22, 2280–2292. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Natural surfactants used in cosmetics: Glycolipids. Int. J. Cosmet. Sci. 2009, 31, 255–261. [Google Scholar] [CrossRef]
- Rekadwad, B.; Maske, V.; Khobragade, C.N.; Kasbe, P.S. Production and evaluation of mono- and di-rhamnolipids produced by Pseudomonas aeruginosa VM011. Data Brief 2019, 24, 103890–103895. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smith, T.J.; et al. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2020, 87, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Jiang, L.F.; Long, X.W.; Dahl, K.N.; Meng, Q. Cells with higher cortical membrane tension are more sensitive to lysis by biosurfactant di-rhamnolipids. ACS Biomater. Sci. Eng. 2020, 6, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, G.; Zhang, H.; Lan, J.; Yang, C. Effects of rhamnolipids on growth performance and intestinal health parameters in Linnan yellow broilers. Poult. Sci. 2021, 100, 810–819. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Lv, Y.; Li, P.; Yi, D.; Wang, L.; Zhao, D.; Chen, H.; Gong, J.; Hou, Y. Beneficial impact and molecular mechanism of Bacillus Coagulans on Piglets Intestine. Int. J. Mol. Sci. 2018, 19, 2084. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Xun, W.; Peng, W.; Hu, H.; Cao, T.; Hou, G. Effect of the Single and Combined Use of Curcumin and Piperine on Growth Performance, Intestinal Barrier Function, and Antioxidant Capacity of Weaned Wuzhishan Piglets. Front. Vet. Sci. 2020, 7, 418–428. [Google Scholar] [CrossRef]
- Long, M.; Yang, S.; Li, P.; Song, X.; Pan, J.; He, J.; Zhang, Y.; Wu, R. Combined Use of C. butyricum Sx-01 and L. salivarius C-1-3 improves intestinal health and reduces the amount of lipids in serum via modulation of gut microbiota in mice. Nutrients 2018, 10, 810. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.J.; Wang, Y.Q.; Qi, Y.X. The protective effect of procyanidin against LPS-induced acute gut injury by the regulations of oxidative state. Springerplus 2016, 5, 1645–1656. [Google Scholar] [CrossRef] [Green Version]
- Haese, N.; Brocato, R.L.; Henderson, T.; Nilles, M.L.; Kwilas, S.A.; Josleyn, M.D.; Hammerbeck, C.D.; Schiltz, J.; Royals, M.; Ballantyne, J.; et al. Antiviral biologic produced in DNA vaccine/goose platform protects hamsters against hantavirus pulmonary syndrome when administered post-exposure. PLoS Negl. Trop. Dis. 2018, 9, 3803–3822. [Google Scholar] [CrossRef] [Green Version]
- Dávalos-Pantoja, L.; Ortega-Vinuesa, J.L.; Bastos-González, D.; Hidalgo-Álvarez, R. A comparative study between the adsorption of IgY and IgG on latex particles. J. Biomater. Sci. Polym. Ed. 2000, 11, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Li, J.; Li, Y.; Wang, L.; Wang, Q.; Fang, L.; Ding, X.; Huang, P.; Yin, J.; et al. Protective effect of chicken egg yolk immunoglobulins (IgY) against enterotoxigenic Escherichia coli K88 adhesion in weaned piglets. BMC Vet. Res. 2019, 15, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Andrä, J.; Rademann, J.; Howe, J.; Koch, M.H.J.; Heine, H.; Zähringer, U.; Brandenburg, K. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: Immune cell stimulation and biophysical characterization. Biol. Chem. 2006, 387, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Howe, J.; Bauer, J.; Andrä, J.; Schromm, A.B.; Ernst, M.; Rössle, M.; Zähringer, U.; Rademann, J.; Brandenburg, K. Biophysical characterization of synthetic rhamnolipids. FEBS J. 2006, 273, 5101–5112. [Google Scholar] [CrossRef] [Green Version]
- Gerstel, U.; Czapp, M.; Bartels, J.; Schröder, J.M. Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell. Microbiol. 2009, 11, 842–853. [Google Scholar] [CrossRef]
- Pastell, H.; Westermann, P.; Meyer, A.S.; Tuomainen, P.; Tenkanen, M. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J. Agric. Food Chem. 2009, 57, 8598–8606. [Google Scholar] [CrossRef]
- Den-Besten, G.; Van-Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhao, Q.; Jiang, J.; Wang, K.; Wei, L.; Ding, J.; Yu, H. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition. Bioresour. Technol. 2017, 243, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Ye, Q.; Yi, X.; Yang, Q.; Li, X.; Chen, H.; Liu, X.; Zeng, G. Hydrolysis and acidification of waste-activated sludge in the presence of biosurfactant rhamnolipid: Effect of pH. Appl. Microbiol. Biotechnol. 2012, 97, 5597–5604. [Google Scholar] [CrossRef]
- Yi, X.; Luo, K.; Yang, Q.; Li, X.-M.; Deng, W.G.; Cheng, H.B.; Wang, Z.L.; Zeng, G.M. Enhanced hydrolysis and acidification of waste activated sludge by biosurfactant rhamnolipid. Appl. Microbiol. Biotechnol. 2013, 171, 1416–1428. [Google Scholar] [CrossRef]
- Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 15718–15723. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.; Conway, S.; Aminov, R. Commensal gut bacteria: Mechanisms of immune modulation. Trends Immunol. 2005, 26, 326–333. [Google Scholar] [CrossRef]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef]
- Sommer, F.; Backhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Ferrocino, I.; Biasibetti, E.; Grego, E.; Dabbou, S.; Sereno, A.; Gai, F.; Gasco, L.; Schiavone, A.; Cocolin, L.; et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res. 2018, 14, 383–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef]
- Rubio, L.A.; Peinado, M.J.; Ruiz, R.; Suarez-Pereira, E.; Mellet, C.O.; Fernandez, J.M.G. Correlations between changes in intestinal microbiota composition and performance parameters in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2015, 99, 418–423. [Google Scholar] [CrossRef]
- Wolin, M.J.; Miller, T.L.; Yerry, S. Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon. Appl. Environ. Microbiol. 1999, 65, 2807–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, M.L.; Liang, H.; Ji, X.Q.; Liu, Y.; Ge, Y.L.; Hou, L.; Sun, T. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutr. Metab. 2019, 16, 87–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasco, L.; Kahala, M.; Tampio, E.; Vainio, M.; Ervasti, S.; Rasi, S. Effect of inoculum pretreatment on the composition of microbial communities in anaerobic digesters producing volatile fatty acids. Microorganisms 2020, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.J.; Chen, D.W.; Yu, B.; He, J.; Huang, Z.Q.; Zheng, P.; Mao, X.B.; Luo, Y.H.; Luo, J.Q.; Wang, Q.Y.; et al. Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets. Vet. Res. 2020, 51, 55–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, S.; Bao, D.; Doyle-Meyers, L.; Dufour, J.; Wu, Y.; Liu, Y.Z.; Ling, B.H. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Sci. Rep. 2020, 10, 10956–10969. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, K.; Verspreet, J.; Courtin, C.M.; Haesebrouck, F.; Baeyen, S.; Haegeman, A.; Ducatelle, R.; Van Immerseel, F. Reduced-particle-size wheat bran is efficiently colonized by a lactic acid-producing community and reduces levels of Enterobacteriaceae in the Cecal microbiota of broilers. Appl. Environ. Microbiol. 2018, 84, e01343-18. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.L.; Qi, L.N.; Lv, Z.P.; Wei, Q.W.; Shi, F.X. Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens. J. Sci. Food Agric. 2021, 101, 2156–2167. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M.; Zhang, L.L.; Cao, G.T.; Feng, J.; Yue, M.; Xu, Y.L.; Dai, B.; Qian, Q.J.; Guo, X.Q. Effects of dietary supplementation with essential oils and organic acids on the growth performance, immune system, fecal volatile fatty acids, and microflora community in weaned piglets. J. Anim. Sci. 2019, 97, 133–143. [Google Scholar] [CrossRef]
Items | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
NCO | ANT | RLS | |||
Body weight, g | |||||
1 d | 35.44 | 35.31 | 35.25 | 0.16 | 0.89 |
56 d | 1477.55 b | 1523.60 a,b | 1575.11 a | 12.99 | 0.01 |
Average daily gain, (g/d) | |||||
1–56 d | 26.22 b | 27.06 a,b | 28.00 a | 0.24 | 0.01 |
F:G, (g/g) | |||||
1–56 d | 2.37 | 2.41 | 2.46 | 0.02 | 0.68 |
Items | 1 to 28 Days of Age | 29 to 56 Days of Age |
---|---|---|
Ingredients | / | / |
Corn | 53 | 53 |
Soybean meal | 24.5 | 16 |
Extruded soybean | 5 | 3 |
DDGS | 8 | 8 |
Rice bran | / | 8 |
Corn gluten | / | 2 |
Soybean oil | 1.7 | 4.5 |
Limestone | 1.3 | 1.5 |
Fermented soybean meal | 2.5 | / |
Premix1 | 4 | 4 |
Total | 100.00 | 100.00 |
Nutrient levels | / | / |
Crude protein | 20.3 | 17.2 |
ME (MJ/kg) | 2916 | 3090 |
Crude fat | 5.5 | 8.6 |
Lysine | 1.19 | 0.96 |
Methionine | 0.54 | 0.44 |
Methionine + Cysteine | 0.89 | 0.74 |
Threonine | 0.86 | 0.71 |
Tryptophan | 0.23 | 0.20 |
Calcium | 0.87 | 0.73 |
Total Phosphorus | 0.60 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yu, X.; Li, Q.; Cao, G.; Feng, J.; Shen, Y.; Yang, C. Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides. Antibiotics 2021, 10, 905. https://doi.org/10.3390/antibiotics10080905
Zhang H, Yu X, Li Q, Cao G, Feng J, Shen Y, Yang C. Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides. Antibiotics. 2021; 10(8):905. https://doi.org/10.3390/antibiotics10080905
Chicago/Turabian StyleZhang, Haoran, Xiaorong Yu, Qing Li, Guangtian Cao, Jie Feng, Yuanyuan Shen, and Caimei Yang. 2021. "Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides" Antibiotics 10, no. 8: 905. https://doi.org/10.3390/antibiotics10080905
APA StyleZhang, H., Yu, X., Li, Q., Cao, G., Feng, J., Shen, Y., & Yang, C. (2021). Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides. Antibiotics, 10(8), 905. https://doi.org/10.3390/antibiotics10080905