Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study
Abstract
:1. Introduction
2. Results
2.1. Demographics
2.2. Microbiological Patterns
2.3. Antimicrobial Regimes
3. Discussion
3.1. Polymicrobial Infections, Culture-Negative Infections and Evidenced Pathogens in PJI and FRI
3.2. Empirical Antibiotic Therapy Regimens
3.3. Difficult-to-Treat Infections
3.4. Limitations
4. Materials and Methods
4.1. Patient Identification
4.2. Data Collection
4.3. Microbiology
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Rupp, M.; Popp, D.; Alt, V. Prevention of infection in open fractures: Where are the pendulums now? Injury 2019, 51, S57–S63. [Google Scholar] [CrossRef]
- Rupp, M.; Lau, E.; Kurtz, S.M.; Alt, V. Projections of Primary TKA and THA in Germany from 2016 through 2040. Clin. Orthop. Relat. Res. 2020, 478, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Sendi, P. Orthopaedic biofilm infections. Apmis 2017, 125, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Renz, N.; Trampuz, A. Management of Periprosthetic Joint Infection. Hip Pelvis 2018, 30, 138–146. [Google Scholar] [CrossRef]
- Van Erp, J.H.J.; Heineken, A.C.; Van Wensen, A.R.J.; van Kempen, R.; Hendriks, E.J.G.; Wegdam-Blans, M.; Fonville, J.M.; Van Der Steen, M.C. Optimization of the empirical antibiotic choice during the treatment of acute prosthetic joint infections: A retrospective analysis of 91 patients. Acta Orthop. 2019, 90, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, R.; Pereira, A.; Massada, M.; Da Silva, M.V.; Lemos, R.; Castro, E.J.C. Empirical antibiotic therapy in prosthetic joint infections. Acta Orthop. Belg. 2010, 76, 254–259. [Google Scholar] [PubMed]
- Depypere, M.; Kuehl, R.; Metsemakers, W.-J.; Senneville, E.; McNally, M.A.; Obremskey, W.T.; Zimmerli, W.; Atkins, B.L.; Trampuz, A. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J. Orthop. Trauma 2020, 34, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, M.D.; Friedrich, M.J.; Randau, T.; Ploeger, M.M.; Schmolders, J.; Strauss, A.A.; Hischebeth, G.T.R.; Pennekamp, P.H.; Vavken, P.; Gravius, S. Polymicrobial infections reduce the cure rate in prosthetic joint infections: Outcome analysis with two-stage exchange and follow-up ≥ two years. Int. Orthop. 2015, 40, 1367–1373. [Google Scholar] [CrossRef]
- Bozhkova, S.; Tikhilov, R.; Labutin, D.; Denisov, A.; Shubnyakov, I.; Razorenov, V.; Artyukh, V.; Rukina, A. Failure of the first step of two-stage revision due to polymicrobial prosthetic joint infection of the hip. J. Orthop. Traumatol. 2016, 17, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Rupp, M.; Kern, S.; Weber, T.; Menges, T.D.; Schnettler, R.; Heiß, C.; Alt, V. Polymicrobial infections and microbial patterns in infected nonunions—A descriptive analysis of 42 cases. BMC Infect. Dis. 2020, 20, 667. [Google Scholar] [CrossRef]
- Hellebrekers, P.; Rentenaar, R.; McNally, M.; Hietbrink, F.; Houwert, R.; Leenen, L.; Govaert, G. Getting it right first time: The importance of a structured tissue sampling protocol for diagnosing fracture-related infections. Injury 2019, 50, 1649–1655. [Google Scholar] [CrossRef] [Green Version]
- Berbari, E.F.; Marculescu, C.; Sia, I.; Lahr, B.D.; Hanssen, A.D.; Steckelberg, J.M.; Gullerud, R.; Osmon, D.R. Culture-Negative Prosthetic Joint Infection. Clin. Infect. Dis. 2007, 45, 1113–1119. [Google Scholar] [CrossRef]
- Goh, G.; Parvizi, J. Think Twice before Prescribing Antibiotics for That Swollen Knee: The Influence of Antibiotics on the Diagnosis of Periprosthetic Joint Infection. Antibiotics 2021, 10, 114. [Google Scholar] [CrossRef]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection: A practical guide for clinicians. Bone Jt. J. 2021, 103, 18–25. [Google Scholar] [CrossRef]
- Al-Mayahi, M.; Cian, A.; Lipsky, B.A.; Suvà, D.; Mueller, C.; Landelle, C.; Miozzari, H.H.; Uçkay, I. Administration of antibiotic agents before intraoperative sampling in orthopedic infections alters culture results. J. Infect. 2015, 71, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuehl, R.; Tschudin-Sutter, S.; Morgenstern, M.; Dangel, M.; Egli, A.; Nowakowski, A.; Suhm, N.; Theilacker, C.; Widmer, A.F. Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: An observational prospective study with 229 patients. Clin. Microbiol. Infect. 2019, 25, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, A.; Thürmer, A.; Glauche, I.; Nowotny, J.; Zwingenberger, S.; Stiehler, M. Does preoperative antibiotic prophylaxis affect sonication-based diagnosis in implant-associated infection? J. Orthp. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Triffault-Fillit, C.; Ferry, T.; Laurent, F.; Pradat, P.; Dupieux, C.; Conrad, A.; Becker, A.; Lustig, S.; Fessy, M.H.; Mabrut, E.; et al. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Hellebrekers, P.; Verhofstad, M.H.J.; Leenen, L.P.H.; Varol, H.; van Lieshout, E.M.M.; Hietbrink, F. The effect of early broad-spectrum versus delayed narrow-spectrum antibiotic therapy on the primary cure rate of acute infection after osteosynthesis. Eur. J. Trauma Emerg. Surg. 2019, 46, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- Dudareva, M.; Hotchen, A.J.; Ferguson, J.; Hodgson, S.; Scarborough, M.; Atkins, B.L.; McNally, M.A. The microbiology of chronic osteomyelitis: Changes over ten years. J. Infect. 2019, 79, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Depypere, M.; Morgenstern, M.; Kuehl, R.; Senneville, E.; Moriarty, T.F.; Obremskey, W.T.; Zimmerli, W.; Trampuz, A.; Lagrou, K.; Metsemakers, W.-J. Pathogenesis and management of fracture-related infection. Clin. Microbiol. Infect. 2020, 26, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713. [Google Scholar] [CrossRef]
- Riesgo, A.M.; Park, B.K.; Herrero, C.P.; Yu, S.; Schwarzkopf, R.; Iorio, R. Vancomycin Povidone-Iodine Protocol Improves Survivorship of Periprosthetic Joint Infection Treated With Irrigation and Debridement. J. Arthroplast. 2018, 33, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, Y.; Johnson, T.; Kemmerer, M.; Walter, G.; Hoffmann, R.; Klug, A. Salvage procedure for chronic periprosthetic knee infection: The application of DAIR results in better remission rates and infection-free survivorship when used with topical degradable calcium-based antibiotics. Knee Surg. Sports Traumatol. Arthrosc. 2019, 28, 2823–2834. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Klemt, C.; Smith, E.J.; Tirumala, V.; Xiong, L.; Kwon, Y.-M. Outcomes and Risk Factors Associated with Failures of Debridement, Antibiotics, and Implant Retention in Patients with Acute Hematogenous Periprosthetic Joint Infection. J. Am. Acad. Orthop. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, Q.; Kuo, F.-C.; Goswami, K.; Tan, T.L.; Parvizi, J. The Presence of Sinus Tract Adversely Affects the Outcome of Treatment of Periprosthetic Joint Infections. J. Arthroplast. 2019, 34, 1227–1232.e1222. [Google Scholar] [CrossRef]
- Akgün, D.; Perka, C.; Trampuz, A.; Renz, N. Outcome of hip and knee periprosthetic joint infections caused by pathogens resistant to biofilm-active antibiotics: Results from a prospective cohort study. Arch. Orthop. Trauma Surg. 2018, 138, 635–642. [Google Scholar] [CrossRef]
- Metsemakers, W.; Morgenstern, M.; McNally, M.; Moriarty, F.; McFadyen, I.; Scarborough, M.; Athanasou, N.; Ochsner, P.; Kuehl, R.; Raschke, M.; et al. Fracture-related infection: A consensus on definition from an international expert group. Injury 2018, 49, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Zimmerli, W.; Moser, C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol. Med. Microbiol. 2012, 65, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Trampuz, A.; Zimmerli, W. Diagnosis and treatment of implant-associated septic arthritis and osteomyelitis. Curr. Infect. Dis. Rep. 2008, 10, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | PJI (n = 81) | FRI (n = 86) |
---|---|---|
Demographic data | ||
Sex (male) | 48 (59.3%) | 62 (71.1%) |
Age (years) | 70.6 ± 10.3 | 55.9 ± 16.7 |
BMI (kg/m2) | 31.2 ± 8.2 | 27.5 ± 5.5 |
ASA score | 3 [–4] | 2 [1–4] |
CCI | 2 [0–6] | 1 [0–6] |
Site | ||
Hip | 34 (42.0%) | 11 (12.8%) |
Knee | 42 (51.9%) | 6 (7.0%) |
Shoulder | 5 (6.2%) | 2 (2.3%) |
Forearm | 38 (44.2%) | |
Tibia | 14 (16.3%) | |
Ankle | 14 (16.3%) | |
Foot | 1 (1.2%) | |
Revision prosthesis | 19 (23.5%) | |
Delay from prosthesis implantation to surgery/delay from trauma to infection | 3.95 years [9 days–29 years] | 0.39 years [3 days–9.6 years] |
Microbiologic documentation | ||
Negative culture | 11 (13.6%) | 12 (14.0%) |
Polymicrobial infection | 14 (17.3%) | 9 (10.5%) |
PJI (n = 86) | FRI (n = 83) | |
---|---|---|
Staphylococcus aureus | 24 (27.9%) | 31 (37.4%) |
Staphylococcus epidermidis | 20 (23.3%) | 14 (16.9%) |
Other Staphylococcus species | 13 (15.1%) | 7 (8.4) |
Streptococcus species | 9 (10.5%)
| 6 (7.2%)
|
Enterococcus species | 4 (4.7%)
| 2 (2.4%)
|
Cutibacterium species | 6 (7.0%) | 2 (2.4%) |
Gram-negative bacteria | 9 (10.5%)
| 17 (20.5%)
|
Other | 1 (1.2%)
| 4 (4.8%)
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupp, M.; Baertl, S.; Walter, N.; Hitzenbichler, F.; Ehrenschwender, M.; Alt, V. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics 2021, 10, 921. https://doi.org/10.3390/antibiotics10080921
Rupp M, Baertl S, Walter N, Hitzenbichler F, Ehrenschwender M, Alt V. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics. 2021; 10(8):921. https://doi.org/10.3390/antibiotics10080921
Chicago/Turabian StyleRupp, Markus, Susanne Baertl, Nike Walter, Florian Hitzenbichler, Martin Ehrenschwender, and Volker Alt. 2021. "Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study" Antibiotics 10, no. 8: 921. https://doi.org/10.3390/antibiotics10080921
APA StyleRupp, M., Baertl, S., Walter, N., Hitzenbichler, F., Ehrenschwender, M., & Alt, V. (2021). Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics, 10(8), 921. https://doi.org/10.3390/antibiotics10080921