Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay
Abstract
:1. Introduction
2. Results
2.1. Verification of a Broad Analytical Capacity of the NDM-1 Biosensor
2.2. Determination of Antibiotics in Blood with the NDM-1 Biosensor
2.3. Sensitivity and Measurement Range of Cephalosporins and Carbapenems in Blood Plasma with the NDM-1 Biosensor
2.4. Effect of β-Lactamase Inhibitors on the Determinations
2.5. Effect of Other Antibiotics on Determination of β-Lactam Antibiotic
2.6. Study of Plasma Protein-Bound and Unbound β-Lactam Antibiotics
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. NDM-1 Gene Construct, Protein Expression and Purification
4.3. Biosensor Preparation
4.4. Procedure of the NDM-1 Biosensor for Antibiotic Detections
4.5. Preparation and Measurement of Ultrafiltrated Blood Plasma Samples
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Lipman, J.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Dulhunty, J.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J. Antimicrob. Chemother. 2016, 71, 196–207. [Google Scholar]
- Marik, P.E. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth. Intensive Care 1993, 21, 172–173. [Google Scholar] [CrossRef]
- Udy, A.A.; Varghese, J.M.; Altukroni, M.; Briscoe, S.; McWhinney, B.C.; Ungerer, J.P.; Lipman, J.; Roberts, J.A. Subtherapeutic initial beta-lactam concentrations in select critically ill patients: Association between augmented renal clearance and low trough drug concentrations. Chest 2012, 142, 30–39. [Google Scholar] [CrossRef]
- Finfer, S.; Delaney, A. Pulmonary artery catheters. BMJ 2006, 333, 930–931. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, A.; Ewoldt, T.M.J.; Purmer, I.M.; Muller, A.E.; Gommers, D.; Endeman, H.; Koch, B.C.P. A narrative review of predictors for beta-lactam antibiotic exposure during empirical treatment in critically ill patients. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.G.; Urban, G.A.; Dincer, C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol. 2020, 38, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2021, 77, 441–464. [Google Scholar] [CrossRef]
- Alffenaar, J.W.; Martson, A.G.; Heysell, S.K.; Cho, J.G.; Patanwala, A.; Burch, G.; Kim, H.Y.; Sturkenboom, M.G.G.; Byrne, A.; Marriott, D.; et al. Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clin. Pharmacokinet. 2021, 60, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Lechtig-Wasserman, S.; Liebisch-Rey, H.; Diaz-Pinilla, N.; Blanco, J.; Fuentes-Barreiro, Y.V.; Bustos, R.H. Carbapenem Therapeutic Drug Monitoring in Critically Ill Adult Patients and Clinical Outcomes: A Systematic Review with Meta-Analysis. Antibiotics 2021, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; Silva, B.; Barbosa, G.; Barreiro, E.J. beta-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef] [PubMed]
- Beumier, M.; Casu, G.S.; Hites, M.; Wolff, F.; Cotton, F.; Vincent, J.L.; Jacobs, F.; Taccone, F.S. Elevated beta-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015, 81, 497–506. [Google Scholar]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of beta-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef] [PubMed]
- Hatti, M.; Solomonidi, N.; Odenholt, I.; Tham, J.; Resman, F. Considerable variation of trough beta-lactam concentrations in older adults hospitalized with infection-a prospective observational study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlier, M.; Stove, V.; Wallis, S.C.; De Waele, J.J.; Verstraete, A.G.; Lipman, J.; Roberts, J.A. Assays for therapeutic drug monitoring of beta-lactam antibiotics: A structured review. Int. J. Antimicrob. Agents 2015, 46, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Stove, V.; Roberts, J.A.; Van de Velde, E.; De Waele, J.J.; Verstraete, A.G. Quantification of seven beta-lactam antibiotics and two beta-lactamase inhibitors in human plasma using a validated UPLC-MS/MS method. Int. J. Antimicrob. Agents 2012, 40, 416–422. [Google Scholar] [CrossRef]
- Van Vooren, S.; Verstraete, A.G. A sensitive and high-throughput quantitative liquid chromatography high-resolution mass spectrometry method for therapeutic drug monitoring of 10 beta-lactam antibiotics, linezolid and two beta-lactamase inhibitors in human plasma. Biomed. Chromatogr. 2021, 35, e5092. [Google Scholar] [CrossRef]
- Bottari, F.; Blust, R.; De Wael, K. Bio(inspired) strategies for the electro-sensing of beta-Iactam antibiotics. Curr. Opin. Electroch. 2018, 10, 136–142. [Google Scholar] [CrossRef]
- Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; de Wael, K. Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome. Sens. Actuators B Chem. 2019, 297, 126786. [Google Scholar] [CrossRef]
- Xie, B.; Ramanathan, K.; Danielsson, B. Principles of enzyme thermistor systems: Applications to biomedical and other measurements. Adv. Biochem. Eng. Biotechnol. 1999, 64, 1–33. [Google Scholar] [PubMed]
- Xie, B.; Ramanathan, K.; Danielsson, B. Mini/micro thermal biosensors and other related devices for biochemical/clinical analysis and monitoring. Trac-Trend. Anal. Chem. 2000, 19, 340–349. [Google Scholar] [CrossRef]
- Andersson, A.; Chen, Q.; Groop, L.; Bulow, L.; Xie, B. Continuous and simultaneous determination of venous blood metabolites. Talanta 2017, 171, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Adlerberth, J.; Meng, Q.L.; Mecklenburg, M.; Tian, Z.M.; Zhou, Y.K.; Bulow, L.; Xie, B. Thermometric analysis of blood metabolites in ICU patients. J. Therm. Anal. Calorim. 2020, 140, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Andersson, A.; Mecklenburg, M.; Xie, B. Fast determination of antibiotics in whole blood. Clin. Microbiol. Infect. 2013, 19, 869–874. [Google Scholar] [CrossRef] [Green Version]
- EUCAST Clinical Breakpoint Tables v. 11. 0. Available online: https://eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/ (accessed on 14 September 2021).
- Bartash, R.; Nori, P. Beta-lactam combination therapy for the treatment of Staphylococcus aureus and Enterococcus species bacteremia: A summary and appraisal of the evidence. Int. J. Infect. Dis. 2017, 63, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Ota, K.; Kaku, N.; Yanagihara, K. Efficacy of meropenem and amikacin combination therapy against carbapenemase-producing Klebsiella pneumoniae mouse model of pneumonia. J. Infect. Chemother. 2020, 26, 1237–1243. [Google Scholar] [CrossRef]
- Hagihara, M.; Kato, H.; Yamashita, R.; Soda, M.; Watanabe, H.; Sakanashi, D.; Shiota, A.; Asai, N.; Koizumi, Y.; Suematsu, H.; et al. In vivo study assessed meropenem and amikacin combination therapy against carbapenem-resistant and carbapenemase-producing Enterobacteriaceae strains. J. Infect. Chemother. 2020, 26, 1–7. [Google Scholar] [CrossRef]
- Albiero, J.; Mazucheli, J.; Barros, J.; Szczerepa, M.; Nishiyama, S.A.B.; Carrara-Marroni, F.E.; Sy, S.; Fidler, M.; Sy, S.K.B.; Tognim, M.C.B. Pharmacodynamic Attainment of the Synergism of Meropenem and Fosfomycin Combination against Pseudomonas aeruginosa Producing Metallo-beta-Lactamase. Antimicrob. Agents Chemother. 2019, 63, e00126-19. [Google Scholar] [CrossRef] [Green Version]
- Daikos, G.L.; Tsaousi, S.; Tzouvelekis, L.S.; Anyfantis, I.; Psichogiou, M.; Argyropoulou, A.; Stefanou, I.; Sypsa, V.; Miriagou, V.; Nepka, M.; et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: Lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob. Agents Chemother. 2014, 58, 2322–2328. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; Briscoe, S.; Adnan, S.; McWhinney, B.; Ungerer, J.; Lipman, J.; Roberts, J.A. Protein binding of beta-lactam antibiotics in critically ill patients: Can we successfully predict unbound concentrations? Antimicrob. Agents Chemother. 2013, 57, 6165–6170. [Google Scholar] [CrossRef] [Green Version]
- Schoenenberger-Arnaiz, J.A.; Ahmad-Diaz, F.; Miralbes-Torner, M.; Aragones-Eroles, A.; Cano-Marron, M.; Palomar-Martinez, M. Usefulness of therapeutic drug monitoring of piperacillin and meropenem in routine clinical practice: A prospective cohort study in critically ill patients. Eur. J. Hosp. Pharm. 2020, 27, e30–e35. [Google Scholar] [CrossRef] [Green Version]
- Dhaese, S.; Van Vooren, S.; Boelens, J.; De Waele, J. Therapeutic drug monitoring of beta-lactam antibiotics in the ICU. Expert Rev. Anti Infect. Ther. 2020, 18, 1155–1164. [Google Scholar] [CrossRef]
- Moellering, R.C., Jr. NDM-1—A cause for worldwide concern. N. Engl. J. Med. 2010, 363, 2377–2379. [Google Scholar] [CrossRef]
- Liang, Z.; Li, L.; Wang, Y.; Chen, L.; Kong, X.; Hong, Y.; Lan, L.; Zheng, M.; Guang-Yang, C.; Liu, H.; et al. Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS ONE 2011, 6, e23606. [Google Scholar] [CrossRef] [Green Version]
- Felici, A.; Amicosante, G.; Oratore, A.; Strom, R.; Ledent, P.; Joris, B.; Fanuel, L.; Frère, J.M. An overview of the kinetic parameters of class B beta-lactamases. Biochem. J. 1993, 291 Pt 1, 151–155. [Google Scholar] [CrossRef]
- Fratoni, A.J.; Nicolau, D.P.; Kuti, J.L. A guide to therapeutic drug monitoring of beta-lactam antibiotics. Pharmacotherapy 2021, 41, 220–233. [Google Scholar] [CrossRef]
- McKinnon, P.S.; Paladino, J.A.; Schentag, J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int. J. Antimicrob. Agents 2008, 31, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Wolff, F.; Deprez, G.; Seyler, L.; Taccone, F.; Hites, M.; Gulbis, B.; Vincent, J.-L.; Jacobs, F.; Cotton, F. Rapid quantification of six beta-lactams to optimize dosage regimens in severely septic patients. Talanta 2013, 103, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Beumier, M.; Casu, G.S.; Hites, M.; Seyler, L.; Cotton, F.; Vincent, J.L.; Jacobs, F.; Taccone, F.S. beta-lactam antibiotic concentrations during continuous renal replacement therapy. Crit. Care 2014, 18, R105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation—SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [PubMed] [Green Version]
- Pfaller, M.A.; Huband, M.D.; Mendes, R.E.; Flamm, R.K.; Castanheira, M. In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int. J. Antimicrob. Agents 2018, 52, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Lang, P.A.; Mulholland, A.J.; Brem, J.; Schofield, C.J.; Spencer, J. Molecular Basis of Class A beta-Lactamase Inhibition by Relebactam. Antimicrob. Agents Chemother. 2019, 63, e00564-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Wang, Y.; Long, Y.; Yue, A.; Mecklenburg, M.; Tian, S.; Fu, Y.; Yao, X.; Liu, J.; Song, D.; et al. Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay. Antibiotics 2021, 10, 1110. https://doi.org/10.3390/antibiotics10091110
Meng Q, Wang Y, Long Y, Yue A, Mecklenburg M, Tian S, Fu Y, Yao X, Liu J, Song D, et al. Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay. Antibiotics. 2021; 10(9):1110. https://doi.org/10.3390/antibiotics10091110
Chicago/Turabian StyleMeng, Qinglai, Yao Wang, Yali Long, Aiping Yue, Michael Mecklenburg, Shuaiyan Tian, Yujia Fu, Xiangyu Yao, Jianyi Liu, Dewei Song, and et al. 2021. "Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay" Antibiotics 10, no. 9: 1110. https://doi.org/10.3390/antibiotics10091110
APA StyleMeng, Q., Wang, Y., Long, Y., Yue, A., Mecklenburg, M., Tian, S., Fu, Y., Yao, X., Liu, J., Song, D., Wu, C., & Xie, B. (2021). Rapid Detection of Multiple Classes of β-Lactam Antibiotics in Blood Using an NDM-1 Biosensing Assay. Antibiotics, 10(9), 1110. https://doi.org/10.3390/antibiotics10091110