Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil)
Abstract
:1. Introduction
2. Results
2.1. Botanical Identification
2.2. Determination of the Honey Color
2.3. Physicochemical Analyses
Total Acidity
2.4. Moisture
2.4.1. Hydroxymethylfurfural
2.4.2. Reducing Sugars and Apparent Sucrose
2.5. Total Polyphenols
2.6. LC/MS/MS Analysis
2.7. Antiradical Activity
2.8. Antibacterial Activity Assay
3. Discussion
3.1. Botanical Identification
3.2. Determination of the Honey Color
3.3. Physicochemical Analyses
3.3.1. Total Acidity
3.3.2. Moisture
3.3.3. Hydroxymethylfurfural
3.3.4. Reducing Sugars and Apparent Sucrose
3.4. Total Polyphenols
3.5. LC/MS/MS Analysis
3.6. Antiradical Activity
3.7. Antibacterial Activity
4. Materials and Methods
4.1. Chemicals and Instruments
4.2. Honey Samples
4.3. Botanical Identification
4.3.1. Determination of the Honey Color
4.3.2. Determination of Acidity
4.3.3. Determination of Moisture
4.3.4. Determination of Hydroxymethylfurfural
4.3.5. Determination of Reducing Sugars
4.3.6. Apparent Sucrose
- P = sample mass in g
- V1 = number of mL of diluted sample solution spent in the titration
- C = number of g of invert sugar percent, obtained before inversion, reducing sugars [164].
4.4. Total Polyphenols
4.5. Preparation of Honey Extracts
4.6. LC/MS/MS Analysis
4.6.1. Extraction
4.6.2. Preparation of Solutions for Analysis
4.6.3. Analysis Method LC-MS/MS
4.7. Antiradical Activity
- {(AbsCont—AbsAmos)/AbsCont} × 100 [168], where:
- AbsCont represents the absorbance value of the control;
- AbsAmos represents the absorbance value of the sample.
4.8. Antibacterial Activity Assay
4.8.1. Cariogenic Bacteria
4.8.2. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muradian, L.B.A.; Barth, O.M.; Dietemann, V.; Eyer, M.; Freitas, A.S.; Martel, A.C.; Marcazzan, G.L.; Marchese, C.M.; Caretta, C.M.; Maté, A.P.; et al. Standard methods for Apis mellifera honey research. J. Apic. Res. 2020, 59, 1–62. [Google Scholar] [CrossRef]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics 2022, 11, 975. [Google Scholar] [CrossRef] [PubMed]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešića, Z. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Datta, S.; Mukherjee, S.; Bose, S.; Ghosh, S.; Dhar, P. Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT—Food Sci. Technol. 2015, 61, 244–250. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angelonia, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- Pena-Júnior, D.S.; Almeida, C.A.; Santos, M.C.F.; Fonseca, P.H.V.; Menezes, E.V.; Melo-Júnior, A.F.; Brandão, M.M.; Oliveria, D.A.; De Souza, F.L.; Silva, J.C.; et al. Antioxidant activities of some monofloral honey types produced across Minas Gerais (Brazil). PLoS ONE 2022, 17, e0262038. [Google Scholar] [CrossRef] [PubMed]
- Kačániová, M.; Borotová, P.; Galovičová, L.; Kunová, S.; Štefániková, J.; Kowalczewski, P.Ł.; Šedík, P. Antimicrobial and Antioxidant Activity of Different Honey Samples from Beekeepers and Commercial Producers. Antibiotics 2022, 11, 1163. [Google Scholar] [CrossRef]
- Melo, A.A.M.; Muradian, L.B.A.; Sancho, M.T.; Maté, A.P. Composition and properties of Apis melífera honey: A review. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Barth, O.M. O Pólen no mel Brasileiro. 1 edição.; Gráfica Luxor: Rio de Janeiro, Brasil, 1989; pp. 1–150. Available online: https://www.researchgate.net/publication/311946380_O_Polen_no_Mel_Brasileiro (accessed on 25 January 2022).
- Brasil. Ministerio da Agricultura e Abastecimento. Instrução Normativa n° 11, de 20 de Outubro de 2000. Diario Oficial da União. 23 de Outubro de 2000. Seção 1, p. 23. Available online: https://www.gov.br/agricultura/pt-br/assuntos/suasa/regulamentos-tecnicos-de-identidade-e-qualidade-de-produtos-de-origem-animal-1/IN11de2000.pdf (accessed on 25 January 2022).
- Ramanauskiene, K.; Stelmakiene, A.; Briedis, V.; Ivanauskas, L.; Jakštas, V. The quantitative analysis of biologically active compounds in Lithuanian honey. Food Chem. 2012, 132, 1544–1548. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Nader, R.A.; Mackieh, R.; Wehbe, R.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Beehive Products as Antibacterial Agents: A Review. Antibiotics 2021, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schramm, D.D.; Karim, M.; Schrader, H.R.; Holt, R.R.; Cardetti, M.; Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 2003, 51, 1732–1735. [Google Scholar] [CrossRef]
- Di Marco, G.; Manfredini, A.; Leonardi, D.; Canuti, L.; Impei, S.; Gismondi, A.; Canini, A. Geographical, botanical and chemical profile of monofloral Italian honeys as food quality guarantee and territory brand. Plant Biosyst. 2017, 151, 450–463. [Google Scholar] [CrossRef]
- Gismondi, A.; Di Marco, G.; Canuti, L.; Canini, A. Antiradical activity of phenolic metabolites extracted from grapes of white and red Vitis vinifera L. cultivars. Vitis—J. Grapevine Res. 2017, 56, 19–26. [Google Scholar]
- Lianda, R.L.P.; Sant’Anna, L.D.; Echevarria, A.; Castro, R.N. Antioxidant Activity and Phenolic Composition of Aqueous Extracts of Honeys and their Extracts. J. Braz. Chem. Soc. 2012, 23, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Osman, O.F.; Mansour, I.S.; El-Hakim, S. Honey Compound for Wound Care: The Preliminary Report. Ann. Burn. Fire Disasters 2003, 16, 131–134. [Google Scholar]
- Koshio, S.; de Almeida-Muradian, L.B. Aplicação da CLAE para determinação do ácido 10-Hidróxi-2-decenóico (10-HDA) em geléia real pura e adicionada a mel brasileiro. Química Nova 2003, 26, 670–673. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxidative Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Giampieri, F.; González-Paramás, A.M.; Damiani, E.; Astolfi, P.; Martinez-Sanchez, G.; Bompadre, S.; Quiles, J.L.; Santos-Buelga, C.; Battino, M. Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food Chem. Toxicol. 2012, 50, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, A.; Galhardo, D.; Sereia, M.J.; Wielewski, P.; Gavazzoni, L.; Santos, I.F.D.; Toledo, V.D.A.A.D. Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, Southern Brazil. Food Sci. Technol. 2020, 41, 583–590. [Google Scholar] [CrossRef]
- Lacerda, J.J.D.J.; Dos Santos, J.S.; Dos Santos, S.A.; Rodrigues, G.B.; Dos Santos, M.L.P. Influência das características físico-químicas e composição elementar nas cores de méis produzidos por Apis mellifera no sudoeste da Bahia utilizando análise multivariada. Química Nova 2010, 33, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Al-Waili, N.S.; Salom, K.; Al-Ghamdi, A.A. Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice. Sci. World J. 2011, 11, 766–787. [Google Scholar] [CrossRef]
- Barth, O.M. Melissopalinology in Brazil: A review of pollen analysis of honeys, propolis and pollen loads of bees. Sci. Agric. (Piracicaba Braz.) 2004, 61, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Louveuax, J.; Maurizio, A.; Vorwohl, G. Methodik der Melissopalynologie. Apidologie 1970, 1, 193–209. [Google Scholar]
- Codex Stan. Revised Codex Standard for Honey. Codex Stan 12-1981, Rev.1 1987, Rev. 2 2001; World Health Organization, Food and Agriculture Organization of United Nations: Roma, Italia, 2001. [Google Scholar]
- Leyva-Jimenez, F.J.; Lozano-Sanchez, J.; Borras-Linares, I.; Cadiz-Gurrea, M.D.L.L.; Mahmoodi-Khaledi, E.; Cadiz-Gurrea, M.L. Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT Food Sci. Technol. 2019, 101, 236–245. [Google Scholar] [CrossRef]
- Kečkeš, S.; Gašić, U.; Ćirković Veličković, T.; Milojković-Opsenica, D.; Natić, M.; Tešic, Z. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Shen, S.; Wang, J.; Zhuo, Q.; Chen, X.; Liu, T.; Zhang, S.-Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules 2018, 23, 1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biesaga, M.; Pyrzynska, K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J. Chromatogr. 2009, 1216, 6620–6626. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Datta, N.; Tomás-Barberán, F.A.; Ferreres, F.; Martos, I.; Singanusong, R. Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chem. 2003, 81, 159–168. [Google Scholar] [CrossRef]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef] [PubMed]
- Balkanska, R.; Stefanova, K.; Stoikova–Grigorova, R. Main honey botanical components and techniques for identification: A review. J. Apic. Res. 2020, 59, 852–861. [Google Scholar] [CrossRef]
- Silva, A.M.P.C.; Oliveira, G.A.; Machado, C.A.; Clarton, L. Qualidade do Mel de Abelhas sem Ferrão: Uma Proposta para Boas Práticas de Fabricação. 1 Edição.; Independent Edition: Cruz das Almas, Bahia, Brasil, 2006; pp. 1–79. Available online: https://www2.ufrb.edu.br/insecta/images/publicacoes/meliponicultura/S%C3%A9rie_Meliponicultura_n.5.pdf (accessed on 25 March 2022).
- Aroucha, E.M.M.; Oliveira, A.J.F.; Nunes, G.H.S.; Maracajá, P.B. Qualidade do mel de abelha produzidos pelos Incubados da iagram e comercializado no Município de Mossoró/RN. Caatinga Mossoró Rev. Caatinga 2008, 21, 211–217. [Google Scholar]
- Gomes, V.V.; Dourado, G.S.; Costa, S.C.; Lima, A.K.O.; Silva, D.S.; Bandeira, A.M.P.; Vasconcelos, A.A.; Taube, P.S. Avaliação da Qualidade do Mel Comercializado no Oeste do Pará, Brasil. Rev. Virtual Química 2017, 9, 815–826. [Google Scholar] [CrossRef]
- Santos, E.M.S.; Santos, H.O.; Brandi, I.V.; Santos, G.L.M.; Viana, M.I.d.J.; Araújo, B.R.S.; Santos, T.C.; Alves, J.N.; Neiva, R.J. Caracterização do mel do Médio Jequitinhonha—Brasil: Uma abordagem preliminar/Characterization of the honey of the Jequitinhonha Valley—Brazil: A preliminary approach. Cad. Ciências Agrárias 2018, 10, 45–51. Available online: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/3030 (accessed on 30 September 2022).
- Nguyen, H.T.L.; Panyoyai, N.; Kasapis, S.; Pang, E.; Mantri, N. Honey and Its Role in Relieving Multiple Facets of Atherosclerosis. Nutrients 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Adugna, E.; Hymete, A.; Birhanu, G.; Ashenef, A. Determination of some heavy metals in honey from different regions of Ethiopia. Cogent Food Agric. 2020, 6, 1764182. [Google Scholar] [CrossRef]
- Rysha, A.; Kastrati, G.; Biber, L.; Sadiku, V.; Rysha, A.; Zogaj, F.; Kabashi-Kastrati, E. Evaluating the Physicochemical Properties of Some Kosovo’s and Imported Honey Samples. Appl. Sci. 2022, 12, 629. [Google Scholar] [CrossRef]
- Muhati, G.L.; Warui, M.W. Physicochemical Properties and Floral Sources of Honey Produced in Marsabit Forest Reserve, Northern Kenya. J. Food Qual. 2022, 2022, 3841184. [Google Scholar] [CrossRef]
- Abadio Finco, F.D.B.; Moura, L.L.; Silva, I.G. Propriedades físicas e químicas do mel de Apis mellifera L. Ciência Tecnol. Aliment. 2010, 30, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Molan, P.C. The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World 1992, 73, 5–28. [Google Scholar] [CrossRef]
- de Rodríguez, G.O.; de Ferrer, B.S.; Ferrer, A.; Rodríguez, B. Characterization of honey produced in Venezuela. Food Chem. 2004, 84, 499–502. [Google Scholar] [CrossRef]
- Mouhoubi-Tafinine, Z.; Ouchemoukh, S.; Bachir Bey, M.; Louaileche, H.; Tamendjari, A. Effect of storage on hydroxymethylfurfural (HMF) and color of someAlgerian honey. Int. Food Res. J. 2018, 25, 1044–1050. [Google Scholar]
- Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Advanced Characterization of Monofloral Honeys from Romania. Agriculture 2022, 12, 526. [Google Scholar] [CrossRef]
- Marijana, B.; Sakač, P.T.; Jovanov Aleksandar, Z.; Marić Lato, L.; Pezo Žarko, S.; Kevrešan, A.R.; Novaković, N.M. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2019, 276, 15–21. [Google Scholar] [CrossRef]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Mesele, T.L. Review on physico-chemical properties of honey in Eastern Africa. J. Apic. Res. 2020, 60, 33–45. [Google Scholar] [CrossRef]
- Bogdanov, S.; Ruoff, K.; Oddo, L.P. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35, 4–17. [Google Scholar] [CrossRef] [Green Version]
- European Council. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Council. L10/47 and Annex L10/50. 2002. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:010:0047:0052:EN:PDF (accessed on 25 January 2022).
- Khalil, M.; Sulaiman, S.; Gan, S.C. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than 1 year. Food Chem. Toxicol. 2010, 48, 2388–2392. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D.; Chen, X.M.; Jing, H. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar–amino acid Maillard reaction products. J. Agric. Food Chem. 2012, 60, 6718–6727. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Su, J.; Li, L.; Hu, S.; Li, B.; Zhang, X.; Xu, Z.; Chen, T. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J. Agric. Food Chem. 2013, 61, 10604–10611. [Google Scholar] [CrossRef] [PubMed]
- Yamada, P.; Nemoto, M.; Shigemori, H.; Yokota, S.; Isoda, H. Isolation of 5-(hydroxymethyl) furfural from Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med. 2011, 77, 434–440. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Bin-Jumah, M.; Othman, S.I.; Khafaga, A.F.; Shaheen, H.M.; Samak, D.; Shehata, A.M.; Allam, A.A.; Abd El-Hack, M.E. Os aspectos toxicológicos do 5-hidroximetilfurfural tóxico transmitido pelo calor em animais: Uma revisão. Moléculas 2020, 25, 1941. [Google Scholar] [CrossRef]
- Crăciun, M.E.; Pârvulescu, O.C.; Donise, A.C.; Dobre, T.; Stanciu, D.R. Characterization and classification of Romanian acacia honey based on its physicochemical parameters and chemometrics. Sci. Rep. 2020, 10, 20690. [Google Scholar] [CrossRef]
- Ball, D.W. The chemical composition of honey. J. Chem. Educ. 2007, 84, 1643–1646. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S.; Todosi, E. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort. LWT Food Sci. Technol. 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Se, K.W.; Wahab, R.A.; Syed Yaacob, S.N.; Ghoshal, S.K. Detection techniques for adulterants in honey: Challenges and recent trends. J. Food Compos. Anal. 2019, 80, 16–32. [Google Scholar] [CrossRef]
- Marcolin, L.C.; Lima, L.R.; Arias, J.L.O.; Berrio, A.C.B.; Kupski, L.; Barbosa, S.C.; Primel, E.G. Meliponinae and Apis mellifera honey in southern Brazil: Physicochemical characterization and determination of pesticides. Food Chem. 2021, 363, 130175. [Google Scholar] [CrossRef]
- Dos Santos Amorim, M.; Almeida, M.R.; Dos Santos, J.A.; De Oliveira, L.C.P.; Siqueira, N.F.M.P.; De Faria, R.A.P.G. Physicochemical Analysis Of Honeys Purchased In Cuiabá, Mato Grosso–Brazil. Bol. Cent. Pesqui. Process. Aliment. 2021, 37, 1–11. [Google Scholar] [CrossRef]
- Lomiso, D.F.; Nigussie, G.; Dessalegn, E. Physicochemical Quality of Honey Samples Collected from Chena District, Southwestern Ethiopia. J. Food Nutr. Sci. 2021, 9, 117–123. [Google Scholar] [CrossRef]
- Yayinie, M.; Atlabachew, M.; Tesfaye, A.; Hilluf, W.; Reta, C. Quality authentication and geographical origin classification of honey of Amhara region, Ethiopia based on physicochemical parameters. Arab. J. Chem. 2021, 14, 102987. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar] [PubMed]
- Anand, S.; Deighton, M.; Livanos, G.; Morrison, P.D.; Pang, E.C.; Mantri, N. Antimicrobial Activity of Agastache Honey and Characterization of Its Bioactive Compounds in Comparison with Important Commercial Honeys. Front. Microbiol. 2019, 10, 263. [Google Scholar] [CrossRef]
- Ibrahimi, H.; Hajdari, A. Phenolic and flavonoid content, and antioxidant activity of honey from Kosovo. J. Apic. Res. 2020, 59, 452–457. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Maná, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- Dugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules. 2018, 23, 2069. [Google Scholar] [CrossRef] [Green Version]
- Kivima, E.; Tanilas, K.; Martverk, K.; Rosenvald, S.; Timberg, L.; Laos, K. The Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Estonian Honeys. Foods 2021, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.; Aires, E.; Barreira, J.C.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Alvarez-Suarez, M.J.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agric. Agric. Sci. Procedi 2014, 2, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Ben Amor, S.; Mekious, S.; Allal Benfekih, L.; Abdellattif, M.H.; Boussebaa, W.; Almalki, F.A.; Ben Hadda, T.; Kawsar, S.M.A. Phytochemical Characterization and Bioactivity of Different Honey Samples Collected in the Pre-Saharan Region in Algeria. Life 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S.; de Assis, D.C.S. Antifungal, antibiofilm and anti-resistance activities of Brazilian monofloral honeys against Candida spp. Biocatal. Agric. Biotechnol. 2022, 42, 102335. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Cheng, E.M.; Kim Yee, L.E.E.; Khor, S.F.; Nasir, N.F.M.; Mohamad, C.W.S.R.; Aziz, N.A.A.; Baharuddin, S.A. Microwave Dielectric And Reflection Analysis On Pure And Adulterated Trigona Honey And Honey Gold. Radioengineering 2022, 31, 281. [Google Scholar] [CrossRef]
- Canete-Rodriguez, A.M.; Santos-Duena, I.M.; Jimenez-Hornero, J.E.; Ehrenreich, A.; Liebl, W.; Garcia, I.G. Gluconic acid: Properties, production methods and applications-An excellent opportunity for agro-industrial by-products and waste bio-valorization. Proc. Biochem. 2016, 51, 1891–1903. [Google Scholar] [CrossRef]
- Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic acid: Properties, applications and microbial production. Food Technol. Biotechnol. 2006, 44, 185–195. [Google Scholar]
- Kornecki, J.F.; Carballares, D.; Tardioli, P.W.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Alcántara, A.R.; Fernandez-Lafuente, R. Enzyme production of D-gluconic acid and glucose oxidase: Successful tales of cascade reactions. Catal. Sci. Technol. 2020, 10, 5740–5771. [Google Scholar] [CrossRef]
- McDonald, C.M.; Keeling, S.E.; Brewer, M.J.; Hathaway, S.C. Using chemical and DNA marker analysis to authenticate a high-value food, manuka honey. Npj Sci. Food 2018, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. The versatility of azelaic acid in dermatology. J. Dermatol. Treat. 2020, 33, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Hong, I.P.; Woo, S.O.; Jang, H.R.; Han, S.M. Characteristic components of sugar-fed honey compared to natural honey. Korean J. Food Sci. Technol. 2017, 49, 355–359. [Google Scholar] [CrossRef]
- Lori, G.; Cecchi, L.; Mulinacci, N.; Melani, F.; Caselli, A.; Cirri, P.; Pazzagli, L.; Luti, S.; Mazzoli, L.; Paoli, P. Honey Extracts Inhibit PTP1B, Upregulate Insulin Receptor Expression, and Enhance Glucose Uptake in Human HepG2 Cells. Biomed. Pharmacother. 2019, 113, 108752. [Google Scholar] [CrossRef]
- Rodrigues da Silva, L.; Campos Chisté, R.; Fernandes, E. Chemical and Antioxidant Characterization of the Portuguese Heather Honey from Calluna vulgaris. Separations 2021, 8, 177. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; D’arcy, B.; Singanusong, R.T.; Datta, N.; Caffin, N.; Raymont, K. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J. Agric. Food Chem. 2004, 52, 210–214. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Poliwoda, A.; DereÅ, M.; Kafarski, P. Phenolic compounds and abscisic acid as potential markers for the floral origin of two polish unifloral honeys. Food Chem. 2011, 131, 1149–1156. [Google Scholar] [CrossRef]
- Szawarski, N.; Saez, A.; Domínguez, E.; Dickson, R.; De Matteis, Á.; Eciolaza, C.; Justel, M.; Aliano, A.; Solar, P.; Bergara, I.; et al. Effect of Abscisic Acid (ABA) Combined with Two Different Beekeeping Nutritional Strategies to Confront Overwintering: Studies on Honey Bees’ Population Dynamics and Nosemosis. Insects 2019, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef]
- Alkhaibari, A.M.; Alanazi, A.D. Insecticidal, Antimalarial, and Antileishmanial Effects of Royal Jelly and Its Three Main Fatty Acids, trans-10-Hydroxy-2-decenoic Acid, 10-Hydroxydecanoic Acid, and Sebacic Acid. Evid.—Based Complement. Altern. Med. 2022, 2022, 7425322. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.L.; Lima, E.T.G.; Silva, J.C.; Medeiros, M.A.; Pinheiro, E.B.F. Rhamnetin: A review of its pharmacology and toxicity. J. Pharm. Pharmacol. 2022, 74, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Nakashima, S.; Oda, Y.; Nakamura, S.; Yoshikawa, M. Melanogenesis inhibitors from the rhizomes of Alpinia officianrum in B16 melanoma cells. Bioorg. Med. Chem. 2009, 17, 6048–6053. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Shi, L.; Luan, F.Q.; Wang, Q.A. Synthesis of kaempferide mannich base derivatives and their antiproliferative activity on three human cancer cell lines. Acta Biochim. Pol. 2015, 62, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Sumitou, Y.; Sakamoto, T.; Araki, Y.; Hara, H. Antihypertensive effects of flavonoids isolated from Brazilian green propolis in spontaneously hypertensive rats. Biol. Pharm. Bull. 2009, 32, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, X.; Li, D.; Hao, W.; Meng, F.; Wang, B.; Han, J.; Zheng, Q. Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3β Pathway. Mediat. Inflamm. 2017, 2017, 5278218. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. BioFactors 2020, 47, 170–180. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; et al. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors 2021, 47, 190–197. [Google Scholar] [CrossRef]
- Alday, E.; Valencia, D.; Garibay-Escobar, A.; Domínguez-Esquivel, Z.; Piccinelli, A.L.; Rastrelli, L.; Monribot-Villanueva, J.; Guerrero-Analco, J.A.; Robles-Zepeda, R.E.; Hernandez, J.; et al. Plant origin authentication of Sonoran Desert propolis: An antiproliferative propolis from a semi-arid region. Sci. Nat. 2019, 106, 25. [Google Scholar] [CrossRef]
- Hossain, R.; Quispe, C.; Khan, R.A.; Saikat, A.S.M.; Ray, P.; Ongalbek, D.; Cho, W.C. Propolis: An update on its chemistry and pharmacological applications. Chin. Med. 2022, 17, 100. [Google Scholar] [CrossRef]
- Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res. 2018, 135, 122–126. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Miao, Z.; Sienkiewicz, O.; Jiang, X.; Zhao, X.; Hu, F. 10-Hydroxydecanoic acid inhibits LPS-induced inflammation by targeting p53 in microglial cells. Int. Immunopharmacol. 2020, 84, 106501. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Saini, A.; Singh, R.; Agrawal, R. Galangin, as a Potential Anticancer Agent. Rev. Bras. Farmacogn. 2022, 32, 331–343. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A Current Review on its beneficial Biological Activities. J. Food Biochem. 2017, 41, e12376. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Luo, X.; Yang, Z. Advances in Biosynthesis, Pharmacology, and Pharmacokinetics of Pinocembrin, a Promising Natural Small-Molecule Drug. Molecules 2019, 24, 2323. [Google Scholar] [CrossRef]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef]
- Bezerra, A.L.D. Ações terapêuticas da geleia real. Dissertação Programa de PósGraduação em Sistemas Agroindustriais, 2018. Available online: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/3259 (accessed on 26 September 2022).
- Wu, J.; Fu, Y.S.; Lin, K.; Huang, X.; Chen, Y.J.; Lai, D.; Weng, C.F. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed. Pharmacother. 2022, 153, 113339. [Google Scholar] [CrossRef]
- Beg, M.R.; Laeeq, A.; Sathaye, S. Pharmacological target and the biological mechanism of gallic acid for anticataract effect: A network analysis. Phytomed. Plus 2022, 2, 100258. [Google Scholar] [CrossRef]
- Sanchez-Martin, V.; Plaza-Calonge, M.d.C.; Soriano-Lerma, A.; Ortiz-Gonzalez, M.; Linde-Rodriguez, A.; Perez-Carrasco, V.; Ramirez-Macias, I.; Cuadros, M.; Gutierrez-Fernandez, J.; Murciano-Calles, J.; et al. Gallic Acid: A Natural Phenolic Compound Exerting Antitumoral Activities in Colorectal Cancer via Interaction with G-Quadruplexes. Cancers 2022, 14, 2648. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Tiwari, N.; Vyas, M.; Khurana, N.; Muthuraman, A.; Utreja, P. An overview of therapeutic effects of vanillic acid. Plant Arch. 2020, 2, 3053–3059. [Google Scholar]
- Rajanikar, R.V.; Nataraj, B.H.; Naithani, H.; Ali, S.A.; Panjagari, N.R.; Behare, P.V. Phenyllactic acid: A green compound for food biopreservation. Food Control 2021, 128, 108184. [Google Scholar] [CrossRef]
- Xu, H.; Wang, G.; Zhang, J.; Zhang, M.; Fu, M.; Xiang, K.; Chen, X. Identification of phenolic compounds and active antifungal ingredients of walnut in response to anthracnose (Colletotrichum gloeosporioides). Postharvest Biol. Technol. 2022, 192, 112019. [Google Scholar] [CrossRef]
- Chib, A.; Gupta, N.; Bhat, A.; Anjum, N.; Yadav, G. Role of Antioxidants in Food. Int. J. Chem. Stud. 2020, 8, 2354–2361. [Google Scholar] [CrossRef] [Green Version]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Izzo, C.; Vitillo, P.; Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Cicarelli, M.; Galasso, G.; Carrizzo, A.; Vecchione, C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life 2021, 11, 60. [Google Scholar] [CrossRef]
- Mushtaq, S.; Imtiyaz, Z.; Wali, A.F.; Khan, A.; Rashid, S.M.; Amin, I.; Ali, A.; Rehman, M.U.; Arafah, A. Honey: A Powerful Natural Antioxidant and Its Possible Mechanism of Action. In Therapeutic Applications of Honey and Its Phytochemicals; Rehman, M.U., Majid, S., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Feás, X.; Seijas, J.A.; Vázquez-Tato, M.P. Organic honey from Trás-Os-Montes region (Portugal): Chemical, palynological, microbiological and bioactive compounds characterization. Food Chem. Toxicol. 2012, 50, 258–264. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Abd, R.S.B.; Jambari, N.N.; Mian, Z.; Khatib, A. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 2019, 22, 239–264. [Google Scholar] [CrossRef] [Green Version]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Mel: Um Novo Antioxidante. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khali, M.I.; Sulaiman, S.A.; Gan, S.H. Advances in the Analytical Methods for Determining the Antioxidant Properties of Honey: A Review. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, J.G.; Pires, P.; Brandão, T.; Silva, R. Fenólicos totais e atividade antioxidante de méis de abelha de diferentes floradas. Rev. Nutr. 2015, 12, 3903–3909. [Google Scholar]
- Qadir, J.; Wani, J.A.; Ali, S.; Yatoo, A.M.; Zehra, U.; Rasool, S.; Ali, S.; Majid, S. Heath Benefits of Phenolic Compounds in Honey: An Essay. In Therapeutic Applications of Honey and Its Phytochemicals; Rehman, M.U., Majid, S., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Abdallah, E.M.; Elsharkawy, E.R. Physico-chemical properties, antioxidant, and antimicrobial activity of five varieties of honey from Saudi Arabia. Asia Pac. J. Mol. Biol. Biotechnol. 2021, 29, 27–34. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Van Acker, S.A.; Tromp, M.N.; Griffioen, D.H.; Van Bennekom, W.P.; Van Der Vijgh, W.J.; Bast, A. Structural aspects of antioxidant activity of flavonoids. Free. Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef]
- World Health Organization. Prevention and Treatment of Dental Caries with Mercury-Free Products and Minimal Intervention: WHO Oral Health Briefing Note Series; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Deglovic, J.; Majtanova, N.; Majtan, J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022, 11, 2670. [Google Scholar] [CrossRef]
- Simon-Soro, A.; Mira, A. Solving the etiology of dental caries. Trends Microbiol. 2015, 23, 76–82. [Google Scholar] [CrossRef]
- El-Borai, A.; Yousasef, G.A.; Ghareeb, D.A.; Abdel-Tawab, M.M. Antibacterial and Antioxidant Activities of Different Varieties of Locally Produced Egyptian Honey. Egypt. J. Bot. 2018, 58, 97–107. [Google Scholar] [CrossRef]
- Nassar, H.M.; Li, M.; Gregory, R.L. Effect of honey on Streptococcus mutans growth and biofilim formation. Appl. Environ. Microbiol. 2012, 78, 536–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi-Motamayel, F.; Hendi, S.S.; Alikhani, M.Y.; Khamverdi, Z. Antibacterial activity of honey on cariogenic bacteria. J. Dent. 2013, 10, 10–15. [Google Scholar]
- Patel, H.R.; Krishnan, C.A.; Thanveer, K. Antimicrobial effect of honey on Streptococcus mutans—An in vitro study. Int. J. Dent. Sci. Res. 2013, 1, 46–49. [Google Scholar] [CrossRef]
- Mustafa, G.; Iqbal, A.; Javid, A.; Manzoor, M.; Aslam, S.; Ali, A.; Muhammad Azam, S.; Khalid, M.; Farooq, M.; Al Naggar, Y.; et al. Antibacterial Properties of Apis Dorsata Honey against Some Bacterial Pathogens. Saudi J. Biol. Sci. 2022, 29, 730–734. [Google Scholar] [CrossRef]
- Basson, N.J.; Du Toit, I.J.; Grobler, S.R. Antibacterial action of honey on oral streptococci. J. Dent. Assoc. South Afr. 1994, 49, 339–341. [Google Scholar]
- Gkoutzouvelidou, M.; Panos, G.; Xanthou, M.N.; Papachristoforou, A.; Giaouris, E. Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria. Foods 2021, 10, 1402. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Ribeiro, H.; Oliveira, A.; Sanches Silva, A.; Freitas, A.; Henriques, M.; Rodrigues, M.E. Portuguese honeys as antimicrobial agents against Candida species. J. Tradit. Complement. Med. 2021, 11, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Gośliński, M.; Nowak, D.; Kłębukowska, L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Mračević, S.Đ.; Krstić, M.; Lolić, A.; Ražić, S. Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchem. J. 2020, 152, 104420. [Google Scholar] [CrossRef]
- Hulea, A.; Obiștioiu, D.; Cocan, I.; Alexa, E.; Negrea, M.; Neacșu, A.-G.; Hulea, C.; Pascu, C.; Costinar, L.; Iancu, I.; et al. Diversity of Monofloral Honey Based on the Antimicrobial and Antioxidant Potential. Antibiotics 2022, 11, 595. [Google Scholar] [CrossRef]
- Otmani, A.; Amessis-Ouchemoukh, N.; Birinci, C.; Yahiaoui, S.; Kolayli, S.; Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Ouchemoukh, S. Phenolic compounds and antioxidant and antibacterial activities of algerian honeys. Food Biosci. 2021, 42, 101070. [Google Scholar] [CrossRef]
- Halawani, E.; Shohayeb, M. Survey of the antimicrobial activity of Saudi and some international honeys. J. Microbiol. Antimicrob. 2011, 3, 94–101. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Al-Maweri, S.A.; Alhajj, M.N.; Deshisha, E.A.; Alshafei, A.K.; Ahmed, A.I.; Almudayfi, N.O.; Alshammari, S.A.; Alsharif, A.; Kassim, S. Curcumin Mouthwashes Versus Chlorhexidine in Controlling Plaque and Gingivitis: A Systematic Review and Meta-Analysis. Int. J. Dent. Hyg. 2022, 20, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.J.; Manley-Harris, M.; Molan, P.C. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 2009, 344, 1050–1053. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef] [Green Version]
- Cocan, I.; Alexa, E.; Danciu, C.; Radulov, I.; Galuscan, A.; Obistioiu, D.; Morvay, A.A.; Sumalan, R.M.; Poiana, M.A.; Pop, G.; et al. Phytochemical screening and biological activity of Lamiaceae family plant extracts. Exp. Ther. Med. 2018, 15, 1863–1870. [Google Scholar] [CrossRef] [Green Version]
- Moussa, A.; Noureddine, D.; Saad, A.; Abdelmelek, M.; Abdelkader, B. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pac. J. Trop. Biomed. 2012, 2, 554–557. [Google Scholar] [CrossRef]
- Hbibi, A.; Sikkou, K.; Khedid, K.; El Hamzaoui, S.; Bouziane, A.; Benazza, D. Antimicrobial activity of honey in periodontal disease: A systematic review. J. Antimicrob. Chemother. 2020, 75, 807–826. [Google Scholar] [CrossRef]
- Kumar, M.; Prakash, S.; Radha; Lorenzo, J.M.; Chandran, D.; Dhumal, S.; Dey, A.; Senapathy, M.; Rais, N.; Singh, S.; et al. Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants 2022, 11, 823. [Google Scholar] [CrossRef]
- Molan, P.C. The potential of honey to promote oral wellness. Gen. Dent. 2001, 49, 584–589. Available online: http://www.mizar5.com/honeyoralhealth.html (accessed on 26 September 2022). [PubMed]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International: AOAC Official Method; AOAC: Washington, DC, USA, 1998. [Google Scholar]
- Codex Alimentarius Commission—Procedural Manual Twenty-Seventh Edition. 254p. 2019. Available online: https://www.fao.org/3/ca2329en/ca2329en.pdf (accessed on 25 January 2022).
- IAL—Instituto Adolfo Lutz. Métodos Físico-Químicos para Análisis de Alimentos; Instituto Adolfo Lutz, Ed.; Instituto Adolfo Lutz: São Paulo, Brasil, 2008.
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Bastos, E.M.A.F.; Calaça, P.S.S.T.; Simeão, C.M.G.; Cunha, M.R.R. Characterization of the honey from Myracrodruon urundeuva (Anacardiceae-Aroeira) in the Dry Forest of northern of Minas Gerais/ Brazil. Adv. Agric. Sci. 2016, 4, 64–71. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; de Morais, S.M.; Sampaio, C.D.G.; Pérez-Jimenez, J.; Saura-Calixto, F.D. Metodologia científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Embrapa Agroindústria Trop.-Comun. Técnico—CE 2007, 1, 1–4. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approv. Stand.-Ninth Edition. M07-A9. 2012, 32, 3. [Google Scholar]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Silva, K.; Damasceno, J.L.; Inácio, M.O.; Abrão, F.; Ferreira, N.H.; Tavares, D.C.; Ambrosio, S.R.; Veneziani, R.C.S.; Martins, C.H.G. Antibacterial and Cytotoxic Activities of Pinus tropicalis and Pinus elliottii Resins and of the Diterpene Dehydroabietic Acid Against Bacteria That Cause Dental Caries. Front. Microbioly 2019, 10, 987. [Google Scholar] [CrossRef]
Pollen Type | Pollen Count | Index % | |
---|---|---|---|
M1 | Hyptis sp. | 213 | 69.38 |
Croton urucurana | 30 | 9.77 | |
Eucalyptus robusta | 28 | 9.12 | |
Baccharis calvescens | 11 | 3.58 | |
Astronium urundeuva | 10 | 3.26 | |
Mimosa scabrella | 4 | 1.30 | |
Protium sp. | 3 | 0.97 | |
Sida sp. | 2 | 0.65 | |
Serjania lethalis | 2 | 0.65 | |
Cecropia glazioui | 2 | 0.65 | |
Anadenanthera colubrina | 2 | 0.65 | |
M2 | Caryocar brasilense | 200 | 99.00 |
Piptadenia communis | 1 | 0.50 | |
Eucalyptus robusta | 1 | 0.50 | |
M3 | Astronium urundeuva | 500 | 94.34 |
Eucalyptus robusta | 30 | 5.66 | |
M4 | Serjania lethalis | 150 | 83.33 |
Astronium urundeuva | 30 | 16.66 | |
M5 | Croton urucurana | 150 | 83.34 |
Eucalyptus robusta | 20 | 11.11 | |
Anadenanthera colubrina | 10 | 5.55 | |
M6 | Coffea arábica | 100 | 90.09 |
Baccharis calvescens | 5 | 4.50 | |
Serjania lethalis | 2 | 1.80 | |
Citrus sinensis | 2 | 1.80 | |
Eucalyptus robusta | 1 | 0.90 | |
Vernonia scorpioides | 1 | 0.90 | |
M7 | Baccharis calvescens | 30 | 25.42 |
Hyptis sp. | 10 | 8.47 | |
Myracrodum urundeuva | 15 | 12.71 | |
Croton urucurana | 20 | 16.95 | |
Ipomoea sp. | 16 | 13.56 | |
Richardia sp. | 17 | 14.41 | |
Serjania sp. | 5 | 4.24 | |
Mimosa caesalpiniaefolia | 5 | 4.24 |
Popular Name | Scientific Name | Botanical Family |
---|---|---|
Betônica | Hyptis sp. | Lamiaceae |
Pequi | Caryocar brasiliense Cambess. | Caryocaraceae |
Aroeira | Astronium urundeuva (M. Allemão) Engl. | Anacardeaceae |
Cipó-uva | Serjania lethalis A. St.-Hil. | Sapindaceae |
Velame | Croton urucurana Baill. | Euphorbiaceae |
Coffee | Coffea arabica L. | Rubiaceae |
Polyfloral | Varied flowering species | - |
Identification | Color | Result (nm) |
---|---|---|
Betônica | Light amber | 0.211 ± 0.001 e |
Pequi | Amber | 0.480 ± 0.001 b |
Aroeira | Dark amber | 0.956 ± 0.001 a |
Cipó-uva | Extra light amber | 0.186 ± 0.001 f |
Velame | Extra light amber | 0.181 ± 0.001 g |
Coffee | Light amber | 0.296 ± 0.001 c |
Polyfloral | Light amber | 0.286 ± 0.001 d |
Acidity (meq kg−1) | Moisture (%) | HMF (mg kg−1) | Reducing Sugars (%) | Apparent Sucrose (%) | |
---|---|---|---|---|---|
M1 | 32.01 ± 0.006 a | 19.5 ± 0.010 a | 10.55 ± 0.006 e | 71.43 ± 0.012 b | 5.49 ± 0.012 a |
M2 | 30.55 ± 0.010 b | 19.0 ± 0.012 b | 55.17 ± 0.010 b | 68.96 ± 0.012 d | 5.11 ± 0.012 b |
M3 | 28.13 ± 0.010 c | 18.5 ± 0.006 c | 9.77 ± 0.010 f | 66.66 ± 0.021 f | 2.31 ± 0.015 g |
M4 | 16.00 ± 0.015 g | 17.5 ± 0.012 e | 14.82 ± 0.012 d | 67.56 ± 0.015 e | 3.36 ± 0.015 d |
M5 | 22.31 ± 0.015 e | 19.0 ± 0.006 b | 50.53 ± 0.017 c | 74.07 ± 0.015 a | 2.91 ± 0.012 e |
M6 | 25.22 ± 0.012 d | 18.0 ± 0.021 d | 55.70 ± 0.015 a | 70.42 ± 0.010 c | 3.65 ± 0.015 c |
M7 | 18.43 ± 0.006 f | 19.0 ± 0.006 b | 2.47 ± 0.006 g | 74.07 ± 0.012 a | 2.85 ± 0.012 f |
Limits | Maximum 50 meq kg−1 | 20 g 100 g−1 (20%) | Maximum 60 mg kg−1 | Minimum 65 g 100 g−1 (65%) | Maximum 6 g 100 g−1 (6%) |
RT (min) a | RA (%) a | m/z Íon Molecular [M-H]- b | MS/MS b | Molecular Ion Formula c | Molecular Formula c | |
---|---|---|---|---|---|---|
1.1 | 49.64 | 179.0561 | C6H11O6 | C6H12O6 | Pequi | |
31.20 | Betônica | |||||
37.09 | Cipó-uva | |||||
32.70 | Coffee | |||||
1.1 | 32.70 | 195.0511 | C6H11O7 | C6H12O7 | Pequi | |
1.2 | 31.13 | 177.0406 | C6H9O6 | C6H10O6 | Pequi | |
5.1 | 94.14 | 181.0506 | C9H9O4 | C9H10O4 | Aroeira | |
88.84 | Cipó-uva | |||||
37.62 | Pequi | |||||
5.6 | 40.24 | 361.1509 | 199.0976 | C16H25O9 | C16H26O9 | Pequi |
36.55 | C10H15O4 | C10H16O4 | Betônica | |||
5.8 | 40.81 | 165.0557 | C9H9O3 | C9H10O3 | Coffee | |
5.9 | 86.04 | 195.0663 | C10H11O4 | C10H12O4 | Aroeira | |
37.29 | Cipó-uva | |||||
5.9 | 42.46 | 279.1240 | C15H19O5 | C15H20O5 | Velame | |
363.1662 | C16H27O9 | C16H28O9 | ||||
6.1 | 48.13 | 401.1611 187.0975 | 179.0351 | C23H21N4O3, | C23H22N4O3 | Cipó-uva |
239.0926 | C9H15O4, | C9H16O4 | ||||
267.1241 279.1239 | C12H15O5, | C12H16O5 | ||||
345.1559 | C15H15N4O, | C15H16N4O | ||||
C15H19O5, | C15H20O5 | |||||
C16H25O8 | C16H26O8 | |||||
6.6 | 100.00 | 199.0976 | C10H15O4 | C10H16O4 | Betônica | |
100.00 | Pequi | |||||
100.00 | Cipó-uva | |||||
74.76 | Coffe | |||||
75.88 | Velame | |||||
50.27 | Aroeira | |||||
6.6 | 100.00 | 263.1290 | C15H19O4 | C15H20O4 | Polifloral | |
6.8 | 44.47 | 201.1133 | C10H17O4 | C10H18O4 | Betônica | |
41.21 | Pequi | |||||
38.11 | Cipó-uva | |||||
6.9 | 100.00 | 263.1292 | C15H19O4 | C15H20O4 | Velame | |
100.00 | Aroeira | |||||
100.00 | Coffee | |||||
85.28 | Pequi | |||||
52.63 | Betônica |
m/z | MF | Suggested Compound | References | |
---|---|---|---|---|
315.051 | C16H12O7 | Rhamnetin | [32,33] | Betônica Velame Silvestre |
299.056 | C16H12O6 | Kaempferide | [32,33] | Cipó-uva Coffee Velame |
287.22 | C16H32O4 | Dihydroxypalmitic acid | [32] | Coffee Velame Silvestre |
281.1394 | C15H22O4 | Syringic acid hexyl ester | [32] | Betônica Pequi Cipó-uva Coffee Velame Silvestre Aroeira |
285.040 | C15H10O6 | Luteolin or Kaempferol | [32,34,35] | Betônica Coffee Cipó-uva Pequi Velame Silvestre |
271.061 | C15H12O5 | Pinobanksin | [32,36] | Betônica Coffee Pequi Velame Silvestre |
271.061 | C15H12O5 | Naringenin | [34,35] | Betônica Cipó-uva Pequi Velame Silvestre |
269.045 | C15H10O5 | Galangin | [32,33] | Betônica Coffee Velame Silvestre |
269.045 | C15H9O5 | Apigenin | [32,33] | Velame |
263.129 | C15H20O4 | Abscisic acid | [32,33,34,36] | Betônica Aroeira Cipó-uva Pequi Velame Silvestre |
255.066 | C15H12O4 | Pinocembrin | [32,33] | Velame Silvestre |
253.050 | C15H10O4 | Chrysin | [32,33,34] | Betônica Aroeira Cipó-uva Velame Silvestre |
201.113 | C10H18O4 | Dihydroxydecenoic acid | [32] | Betônica Cipó-uva Pequi Velame Silvestre |
199.097 | C10H15O4 | Succinic acid | [32] | Betônica Pequi Aroeira Cipó-uva Coffee Velame Silvestre |
195.066 | C10H12O4 | Hydroxyconiferyl alcohol | [32] | Aroeira Cipó-uva Silvestre |
187.097 | C9H16O4 | Azelaic acid | [32] | Betônica Aroeira Coffee Cipó-uva Pequi Velame Silvestre |
185.118 | C10H18O3 | Royal jelly acid | [32] | Betônica Pequi Aroeira Coffee |
181.050 | C9H10O4 | Syringaldehyd | [32] | Betônica Coffee Aroeira Cipó-uva Pequi Velame Silvestre |
179.035 | C9H8O4 | Cafeic acid | [32,33,34,35] | Betônica Aroeira Coffee Cipó-uva Pequi Velame Silvestre |
169.014 | C7H6O5 | Gallic acid | [33,34] | Betônica Coffee Aroeira Cipó-uva Pequi Velame |
165.055 | C9H10O3 | Phenyllactic acid | [32] | Betônica Aroeira Cipó-uva Coffee Pequi Velame Silvestre |
163.040 | C9H8O3 | Coumaric acid | [33,34] | Coffee Aroeira Cipó-uva Pequi |
151.040 | C8H8O3 | Vanillic acid | [35] | Betônica Coffee Aroeira Cipó-uva Pequi Velame Silvestre |
144.045 | C9H7NO | Quinolinol | [32] | Betônica Pequi Aroeira Cipó-uva Velame Silvestre |
137.024 | C7H6O3 | p-hydroxybenzoic acid | [32] | Cipó-uva Coffee Velame Silvestre |
mgGAE 100 g−1 of Sample | ||
---|---|---|
Total Polyphenols | EC50 (mg mL−1) | |
Betônica | 57.62 ± 0.07 d | 76.21 ± 3.29 cd |
Pequi | 54.37 ± 0.03 e | 105.56 ± 2.94 b |
Aroeira | 74.74 ± 0.12 b | 68.81 ± 2.36 d |
Cipó-uva | 40.70 ± 0.03 g | 150.71 ± 2.56 a |
Velame | 70.06 ± 0.03 c | 51.48 ± 1.48 e |
Coffee | 84.77 ± 0.05 a | 77.69 ± 3.55 c |
Polyfloral | 52.37 ± 0.03 f | 72.84 ± 0.27 cd |
Results (%) MIC/MBC | |||||||
---|---|---|---|---|---|---|---|
Cariogenic Bacteria | |||||||
E. faecalis | S. salivarius | S. sanguinis | S. sobrinus | S. mitis | L. paracasei | S. mutans | |
Betônica | >20/>20 | >20/>20 | 10/20 | >20/>20 | >20/>20 | >20/>20 | >20/>20 |
Pequi | >20/>20 | 20/20 | 20/20 | 20/>20 | >20/>20 | >20/>20 | >20/>20 |
Aroeira | >20/>20 | 20/>20 | 10/20 | >20/>20 | >20/>20 | >20/>20 | >20/>20 |
Cipó-uva | >20/>20 | >20/>20 | 10/>20 | >20/>20 | >20/>20 | >20/>20 | >20/>20 |
Velame | >20/>20 | >20/>20 | 20/20 | >20/>20 | >20/>20 | >20/>20 | >20/>20 |
Coffee | >20/>20 | >20/>20 | 20/>20 | >20/>20 | >20/>20 | >20/>20 | >20/>20 |
Polyfloral | 20/20 | 10/10 | 10/10 | 10/10 | 20/20 | 10/10 | 10/10 |
Chlorhexidine | 0.00074/ 0.00074 | 0.000092/ 0.000092 | 0.000092/ 0.000092 | 0.000046/ 0.000046 | 0.00018/ 0.00018 | 0.000092/0.000092 | 0.000046/ 0.000046 |
Grams | Mg Organic Phase | µL of Methanol/Water (3:2, v/v) * | |
---|---|---|---|
Betônica | 4.7 | 3.8 | 760 |
Pequi | 4.9 | 3.4 | 680 |
Aroeira | 4.9 | 5.0 | 1000 |
Cipó-uva | 4.8 | 3.5 | 700 |
Coffee | 4.8 | 4.8 | 960 |
Velame | 4.7 | 3.3 | 660 |
Polyfloral | 5.0 | 6.8 | 1360 |
Standards | MF | MM | Total mg | µL of Methanol/Water (3:2, v/v) |
---|---|---|---|---|
gallic acid | C7H6O5 | 17,012 | 42.4 | 1030 µL |
caffeine | C8H10N4O2 | 19,419 | 49.8 | 1030 µL |
quercetin | C15H10O7 | 302,236 | 26.6 | 1026 µL |
rutin | C27H30O16 | 610,517 | 17.2 | 1065 µL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royo, V.d.A.; Oliveira, D.A.d.; Veloso, P.H.F.; Sacramento, V.d.M.; Olimpio, E.L.A.; Souza, L.F.d.; Pires, N.d.C.; Martins, C.H.G.; Santiago, M.B.; Alves, T.M.d.A.; et al. Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil). Antibiotics 2022, 11, 1429. https://doi.org/10.3390/antibiotics11101429
Royo VdA, Oliveira DAd, Veloso PHF, Sacramento VdM, Olimpio ELA, Souza LFd, Pires NdC, Martins CHG, Santiago MB, Alves TMdA, et al. Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil). Antibiotics. 2022; 11(10):1429. https://doi.org/10.3390/antibiotics11101429
Chicago/Turabian StyleRoyo, Vanessa de A., Dario A. de Oliveira, Pedro Henrique F. Veloso, Verônica de M. Sacramento, Ellen L. A. Olimpio, Luciano F. de Souza, Nathália da C. Pires, Carlos Henrique G. Martins, Mariana B. Santiago, Tânia Maria de A. Alves, and et al. 2022. "Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil)" Antibiotics 11, no. 10: 1429. https://doi.org/10.3390/antibiotics11101429
APA StyleRoyo, V. d. A., Oliveira, D. A. d., Veloso, P. H. F., Sacramento, V. d. M., Olimpio, E. L. A., Souza, L. F. d., Pires, N. d. C., Martins, C. H. G., Santiago, M. B., Alves, T. M. d. A., Acácio, T. M., Junior, A. F. d. M., Brandão, M. M., & Menezes, E. V. (2022). Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil). Antibiotics, 11(10), 1429. https://doi.org/10.3390/antibiotics11101429