Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Chemical Analyses
2.2. cLND Preparation
2.3. Adsorption Kinetics
2.4. Adsorption Isotherm
2.5. Point of Zero Charges Determination
2.6. Influential Effect Experiments
2.7. ENR Bacterial ACTIVITY after Treatment
3. Results and Discussion
3.1. cLND Characteristics
3.2. Adsorption Kinetics
3.3. Adsorption Isotherms
3.4. Influential Effect Experiments
3.4.1. Effect of pH
3.4.2. Effect of Humic Acids (HAs)
3.4.3. Effect of Anionic Constituents
3.5. Bacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coyne, L.; Arief, R.; Benigno, C.; Giang, V.N.; Huong, L.Q.; Jeamsripong, S.; Kalpravidh, W.; McGrane, J.; Padungtod, P.; Patrick, I.; et al. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Bartlett, J.G.; Gilbert, D.N. The future of antibiotics and resistance. N. Engl. J. Med. 2013, 368, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, H.; Zhang, L.; Jiang, Y.; Gin, K.Y.-H.; He, Y. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System. Water 2018, 10, 104. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef]
- Poapolathep, S.; Giorgi, M.; Chaiyabutr, N.; Chokejaroenrat, C.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairote, T.; Poapolathep, A. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in freshwater crocodiles (Crocodylus siamensis) after intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2020, 43, 19–25. [Google Scholar] [CrossRef]
- Ruennarong, N.; Wongpanit, K.; Sakulthaew, C.; Giorgi, M.; Kumagai, S.; Poapolathep, A.; Poapolathep, S. Dispositions of enrofloxacin and its major metabolite ciprofloxacin in Thai swamp buffaloes. J. Vet. Med. Sci. 2016, 78, 397–403. [Google Scholar] [CrossRef]
- Boleda, M.R.; Alechaga, É.; Moyano, E.; Galceran, M.T.; Ventura, F. Survey of the occurrence of pharmaceuticals in Spanish finished drinking waters. Environ. Sci. Pollut. Res. 2014, 21, 10917–10939. [Google Scholar] [CrossRef]
- Carabineiro, S.A.; Thavorn-Amornsri, T.; Pereira, M.F.; Figueiredo, J.L. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 2011, 45, 4583–4591. [Google Scholar] [CrossRef]
- Hou, J.; Wang, C.; Mao, D.; Luo, Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environ. Sci. Pollut. Res. 2016, 23, 1722–1731. [Google Scholar] [CrossRef]
- Kuchta, S.L.; Cessna, A.J. Lincomycin and Spectinomycin Concentrations in Liquid Swine Manure and Their Persistence During Simulated Manure Storage. Arch. Environ. Contam. Toxicol. 2008, 57, 1–10. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Okihashi, M.; Harada, K.; Konishi, Y.; Uchida, K.; Do, M.H.N.; Bui, H.D.T.; Nguyen, T.D.; Nguyen, P.D.; Chau, V.V.; et al. Antibiotic Residue Monitoring Results for Pork, Chicken, and Beef Samples in Vietnam in 2012–2013. J. Agric. Food Chem. 2015, 63, 5141–5145. [Google Scholar] [CrossRef]
- Bergeron, S.; Raj, B.; Nathaniel, R.; Corbin, A.; LaFleur, G. Presence of antibiotic resistance genes in raw source water of a drinking water treatment plant in a rural community of USA. Int. Biodeterior. Biodegrad. 2017, 124, 3–9. [Google Scholar] [CrossRef]
- Lundborg, C.S.; Tamhankar, A.J. Antibiotic residues in the environment of South East Asia. BMJ 2017, 358, j2440. [Google Scholar] [CrossRef]
- Shimizu, A.; Takada, H.; Koike, T.; Takeshita, A.; Saha, M.; Rinawati; Nakada, N.; Murata, A.; Suzuki, T.; Suzuki, S.; et al. Ubiquitous occurrence of sulfonamides in tropical Asian waters. Sci. Total Environ. 2013, 452–453, 108–115. [Google Scholar] [CrossRef]
- Tewari, S.; Jindal, R.; Kho, Y.L.; Eo, S.; Choi, K. Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere 2013, 91, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Sinthuchai, D.; Boontanon, S.K.; Boontanon, N.; Polprasert, C. Evaluation of removal efficiency of human antibiotics in wastewater treatment plants in Bangkok, Thailand. Water Sci. Technol. 2016, 73, 182–191. [Google Scholar] [CrossRef]
- Mutiyar, P.K.; Mittal, A.K. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environ. Monit. Assess. 2014, 186, 541–557. [Google Scholar] [CrossRef]
- Larsson, D.G.; de Pedro, C.; Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Jutarvutikul, K.; Sakulthaew, C.; Chokejaroenrat, C.; Pattanateeradetch, A.; Imman, S.; Suriyachai, N.; Satapanajaru, T.; Kreetachat, T. Practical use of response surface methodology for optimization of veterinary antibiotic removal using UV/H2O2 process. Aquac. Eng. 2021, 94, 102174. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment—Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Ji, L.; Chen, W.; Duan, L.; Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 2009, 43, 2322–2327. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Gómez-Pacheco, C.V.; Sánchez-Polo, M.; López-Peñalver, J.J.; Ocampo-Pérez, R. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J. Environ. Manag. 2013, 131, 16–24. [Google Scholar] [CrossRef]
- Shimabuku, K.K.; Kearns, J.P.; Martinez, J.E.; Mahoney, R.B.; Moreno-Vasquez, L.; Summers, R.S. Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res. 2016, 96, 236–245. [Google Scholar] [CrossRef]
- Liao, P.; Zhan, Z.; Dai, J.; Wu, X.; Zhang, W.; Wang, K.; Yuan, S. Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study. Chem. Eng. J. 2013, 228, 496–505. [Google Scholar] [CrossRef]
- Zeng, Z.-w.; Tan, X.-f.; Liu, Y.-g.; Tian, S.-r.; Zeng, G.-m.; Jiang, L.-h.; Liu, S.-b.; Li, J.; Liu, N.; Yin, Z.-h. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures. Front. Chem. 2018, 6, 80. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks. J. Environ. Chem. Eng. 2021, 9, 105868. [Google Scholar] [CrossRef]
- Ausavasukhi, A.; Kampoosaen, C.; Kengnok, O. Adsorption characteristics of Congo red on carbonized leonardite. J. Clean. Prod. 2016, 134, 506–514. [Google Scholar] [CrossRef]
- Chammui, Y.; Sooksamiti, P.; Naksata, W.; Thiansem, S.; Arqueropanyo, O.-a. Removal of arsenic from aqueous solution by adsorption on Leonardite. Chem. Eng. J. 2014, 240, 202–210. [Google Scholar] [CrossRef]
- Sakulthaew, C.; Watcharenwong, A.; Chokejaroenrat, C.; Rittirat, A. Leonardite-Derived Biochar Suitability for Effective Sorption of Herbicides. Water Air Soil Pollut. 2021, 232, 36. [Google Scholar] [CrossRef]
- Rico, A.; Phu, T.M.; Satapornvanit, K.; Min, J.; Shahabuddin, A.M.; Henriksson, P.J.G.; Murray, F.J.; Little, D.C.; Dalsgaard, A.; Van den Brink, P.J. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 2013, 412–413, 231–243. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Sakulthaew, C.; Chokejaroenrat, C.; Poapolathep, A.; Satapanajaru, T.; Poapolathep, S. Hexavalent chromium adsorption from aqueous solution using carbon nano-onions (CNOs). Chemosphere 2017, 184, 1168–1174. [Google Scholar] [CrossRef]
- Chokejaroenrat, C.; Watcharenwong, A.; Sakulthaew, C.; Rittirat, A. Immobilization of Atrazine Using Oxidized Lignite Amendments in Agricultural Soils. Water Air Soil Pollut. 2020, 231, 249. [Google Scholar] [CrossRef]
- Deng, H.; Mao, Z.; Xu, H.; Zhang, L.; Zhong, Y.; Sui, X. Synthesis of fibrous LaFeO3 perovskite oxide for adsorption of Rhodamine B. Ecotoxicol. Environ. Saf. 2019, 168, 35–44. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Wakkel, M.; Khiari, B.; Zagrouba, F. Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J. Taiwan Inst. Chem. Eng. 2019, 96, 439–452. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 2007, 147, 381–394. [Google Scholar] [CrossRef]
- Rozada, F.; Otero, M.; García, A.I.; Morán, A. Application in fixed-bed systems of adsorbents obtained from sewage sludge and discarded tyres. Dye. Pigment. 2007, 72, 47–56. [Google Scholar] [CrossRef]
- Jiménez-Lozano, E.; Marqués, I.; Barrón, D.; Beltrán, J.L.; Barbosa, J. Determination of pKa values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector. Anal. Chim. Acta 2002, 464, 37–45. [Google Scholar] [CrossRef]
- Wu, M.; Pan, B.; Zhang, D.; Xiao, D.; Li, H.; Wang, C.; Ning, P. The sorption of organic contaminants on biochars derived from sediments with high organic carbon content. Chemosphere 2013, 90, 782–788. [Google Scholar] [CrossRef]
- Martínez-Mejía, M.J.; Sato, I.; Rath, S. Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils. Environ. Sci. Pollut. Res. 2017, 24, 15995–16006. [Google Scholar] [CrossRef]
- Xie, H.; Liu, W.; Zhang, J.; Zhang, C.; Ren, L. Sorption of norfloxacin from aqueous solutions by activated carbon developed from Trapa natans husk. Sci. China Chem. 2011, 54, 835–843. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Li, W.; Huang, K.; Shao, H.; Qu, C.; Liu, J. One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: Enhanced adsorption capacities for Enrofloxacin and interfacial interaction mechanisms. Chemosphere 2022, 290, 133263. [Google Scholar] [CrossRef]
- Bajpai, S.; Bajpai, M.; Rai, N. Sorptive removal of ciprofoxacin hydrochloride from simulated wastewater using sawdust: Kinetic study and effect of pH. Water SA 2011, 38, 673–682. [Google Scholar] [CrossRef]
- Reguyal, F.; Sarmah, A.K. Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol. Sci. Total Environ. 2018, 628–629, 722–730. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, X.; Chen, B.; Ma, J.; Niu, X.; Zhang, D.; Lin, Z.; Fu, M.; Zhou, S. Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar. J. Clean. Prod. 2020, 256, 120662. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Sun, J.; Chen, J.; Zhang, J.; Wang, Y.; Wang, J.; Zhang, H. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar. Spectrosc. Lett. 2019, 52, 367–375. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Vithanage, M.; Lee, S.S.; Seo, D.-C.; Tsang, D.C.W.; Ok, Y.S. Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. J. Soils Sediments 2016, 16, 889–895. [Google Scholar] [CrossRef]
- Xie, M.; Chen, W.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014, 186, 187–194. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Y.-n.; Zhu, M.; Li, X.; Keller, A.A.; Wang, T.; Li, F. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res. 2015, 80, 130–138. [Google Scholar] [CrossRef]
- Gros, N.; Camões, M.F.; Oliveira, C.; Silva, M.C.R. Ionic composition of seawaters and derived saline solutions determined by ion chromatography and its relation to other water quality parameters. J. Chromatogr. A 2008, 1210, 92–98. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Wu, J.; Liu, Q.; Zhang, H.; Jin, S. Adsorptive Removal of Fluoroquinolone Antibiotics Using Bamboo Biochar. Sustainability 2015, 7, 12947–12957. [Google Scholar] [CrossRef]
- Ikem, A.; Lin, C.H.; Broz, B.; Kerley, M.; Ho, T.; Le, H. Occurrence of enrofloxacin in overflows from animal lot and residential sewage lagoons and a receiving-stream. Heliyon 2017, 3, e00409. [Google Scholar] [CrossRef]
- Sigiro, M. Natural biowaste of banana peel-derived porous carbon for in-vitro antibacterial activity toward Escherichia coli. Ain Shams Eng. J. 2021, 12, 4157–4165. [Google Scholar] [CrossRef]
- Masrura, S.U.; Jones-Lepp, T.L.; Kajitvichyanukul, P.; Ok, Y.S.; Tsang, D.C.W.; Khan, E. Unintentional release of antibiotics associated with nutrients recovery from source-separated human urine by biochar. Chemosphere 2022, 299, 134426. [Google Scholar] [CrossRef]
Kinetic Model Parameters | Sulfamethoxazole (SMX) | Enrofloxacin (ENR) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
cLND 450 | cLND 550 | cLND 650 | cLND 750 | cLND 850 | cLND 450 | cLND 550 | cLND 650 | cLND 750 | cLND 850 | ||
mg g−1 | 75.812 | 87.603 | 75.519 | 47.832 | 45.992 | 94.939 | 95.431 | 93.710 | 88.447 | 89.107 | |
First-order kinetic model | |||||||||||
mg g−1 | 71.331 | 80.543 | 62.940 | 43.376 | 40.399 | 94.441 | 95.149 | 92.166 | 88.304 | 89.497 | |
h−1 | 0.737 | 0.893 | 0.161 | 0.847 | 0.086 | 0.916 | 0.681 | 0.637 | 0.604 | 0.498 | |
- | 0.820 | 0.906 | 0.880 | 0.957 | 0.961 | 0.987 | 0.982 | 0.974 | 0.983 | 0.967 | |
- | 0.618 | 0.791 | 0.737 | 0.902 | 0.911 | 0.970 | 0.958 | 0.940 | 0.961 | 0.924 | |
Second-order kinetic model | |||||||||||
mg g−1 | 76.336 | 89.286 | 78.125 | 61.38 | 50.000 | 95.238 | 97.087 | 95.238 | 89.286 | 91.043 | |
g mg−1h−1 | 8.7 × 10−3 | 10.6 × 10−3 | 4.4 × 10−3 | 3.4 × 10−3 | 3.4 × 10−3 | 18.7 × 10−3 | 12.5 × 10−3 | 11.2 × 10−3 | 11.9 × 10−3 | 8.1 × 10−3 | |
- | 0.997 | 0.999 | 0.995 | 0.994 | 0.995 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | |
- | 0.993 | 0.998 | 0.988 | 0.986 | 0.988 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | |
Elovich model | |||||||||||
mg g−1h−1 | 21,552 | 39,988 | 161.8 | 22.1 | 23.9 | 57,835 | 3526.7 | 1756.9 | 1342.5 | 568.5 | |
g mg−1 | 0.163 | 0.141 | 0.088 | 0.099 | 0.107 | 0.129 | 0.096 | 0.090 | 0.092 | 0.081 | |
- | 0.973 | 0.983 | 0.996 | 0.991 | 0.980 | 0.775 | 0.794 | 0.754 | 0.699 | 0.819 | |
- | 0.938 | 0.961 | 0.991 | 0.979 | 0.954 | 0.534 | 0.569 | 0.497 | 0.403 | 0.616 | |
Intraparticle diffusion | |||||||||||
mg g−1h−1/2 | 3.891 | 4.391 | 7.109 | 6.648 | 5.850 | 54.463 | 70.132 | 83.980 | 70.993 | 78.532 | |
mg g−1 | 49.344 | 60.910 | 29.834 | 5.979 | 8.287 | 3.551 | 23.186 | 43.631 | 19.242 | 46.47 | |
mg g−1min−1 | - | - | - | - | - | 1.641 | 2.367 | 2.439 | 1.067 | 3.011 | |
mg g−1 | - | - | - | - | - | 84.219 | 80.520 | 78.110 | 91.257 | 69.972 | |
- | 0.988 | 0.932 | 0.949 | 0.967 | 0.977 | 0.815 | 0.817 | 0.802 | 0.627 | 0.822 | |
- | 0.972 | 0.847 | 0.884 | 0.924 | 0.947 | 0.608 | 0.612 | 0.584 | 0.292 | 0.622 |
Adsorption Isotherm Parameters | Sulfamethoxazole (SMX) | Enrofloxacin (ENR) | |||
---|---|---|---|---|---|
cLND 450 | cLND 550 | cLND 450 | cLND 550 | ||
Freundlich isotherm | |||||
mg g−1(L mg−1)1/n | 11.987 | 16.211 | 25.554 | 18.460 | |
- | 0.394 | 0.330 | 0.423 | 0.512 | |
- | 0.822 | 0.844 | 0.818 | 0.877 | |
- | 0.622 | 0.664 | 0.614 | 0.731 | |
Langmuir isotherm(Linearized Langmuir Type 1 equation) | |||||
mg g−1 | 46.083 | 50.761 | 120.482 | 129.870 | |
L mg−1 | 0.179 | 0.239 | 0.014 | 0.094 | |
- | 0.951 | 0.958 | 0.934 | 0.953 | |
- | 0.888 | 0.904 | 0.851 | 0.893 | |
- | 0.101–0.691 | 0.077–0.626 | 0.588–0.966 | 0.175–0.810 | |
Langmuir isotherm(Linearized Langmuir Type 2 equation) | |||||
mg g−1 | 38.610 | 45.249 | 100.003 | 104.167 | |
L mg−1 | 0.309 | 0.366 | 0.229 | 0.147 | |
- | 0.974 | 0.985 | 0.956 | 0.946 | |
- | 0.940 | 0.965 | 0.900 | 0.877 | |
- | 0.061–0.564 | 0.052–0.522 | 0.080–0.636 | 0.120–0.731 | |
Temkin isotherm | |||||
J mol−1 | 275.893 | 251.898 | 101.803 | 95.889 | |
L mol−1 | 2.511 | 3.573 | 1.717 | 1.113 | |
- | 0.847 | 0.866 | 0.836 | 0.911 | |
- | 0.670 | 0.708 | 0.649 | 0.802 | |
Dubinin-Radushkevich isotherm | |||||
mg g−1 | 13.330 | 14.013 | 14.879 | 14.441 | |
- | 2.92 × 10−6 | 3.53 × 10−6 | 4.09 × 10−6 | −4.17 × 10−6 | |
- | 0.831 | 0.847 | 0.872 | 0.854 | |
- | 0.639 | 0.670 | 0.720 | 0.684 | |
Jovanovich isotherm | |||||
mg g−1 | 17.764 | 23.729 | 42.636 | 32.858 | |
- | 0.041 | 0.033 | 0.041 | 0.052 | |
- | 0.596 | 0.639 | 0.62 | 0.724 | |
- | 0.248 | 0.310 | 0.292 | 0.445 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chokejaroenrat, C.; Sakulthaew, C.; Satchasataporn, K.; Snow, D.D.; Ali, T.E.; Assiri, M.A.; Watcharenwong, A.; Imman, S.; Suriyachai, N.; Kreetachat, T. Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923. Antibiotics 2022, 11, 1261. https://doi.org/10.3390/antibiotics11091261
Chokejaroenrat C, Sakulthaew C, Satchasataporn K, Snow DD, Ali TE, Assiri MA, Watcharenwong A, Imman S, Suriyachai N, Kreetachat T. Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923. Antibiotics. 2022; 11(9):1261. https://doi.org/10.3390/antibiotics11091261
Chicago/Turabian StyleChokejaroenrat, Chanat, Chainarong Sakulthaew, Khomson Satchasataporn, Daniel D. Snow, Tarik E. Ali, Mohammed A. Assiri, Apichon Watcharenwong, Saksit Imman, Nopparat Suriyachai, and Torpong Kreetachat. 2022. "Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923" Antibiotics 11, no. 9: 1261. https://doi.org/10.3390/antibiotics11091261
APA StyleChokejaroenrat, C., Sakulthaew, C., Satchasataporn, K., Snow, D. D., Ali, T. E., Assiri, M. A., Watcharenwong, A., Imman, S., Suriyachai, N., & Kreetachat, T. (2022). Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923. Antibiotics, 11(9), 1261. https://doi.org/10.3390/antibiotics11091261