Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Applied Essential Oils
2.2. Minimal Inhibitory Concentration and Minimal Bactericidal Concentration of the Selected Essential Oils
2.3. Physicochemical Characteristics of Fresh Turkey Sausages
2.4. Microbiological Profile of Fresh Turkey Sausages
2.5. Biogenic Amines Contents in Fresh Turkey Sausages
3. Materials and Methods
3.1. Plant Material and Essential Oils
3.2. GC-MS Analysis of Essential Oils
3.3. Antimicrobial Activity of Essential Oils
3.4. Preparation of Fresh Sausage
3.5. Physicochemical Analysis of Fresh Turkey Sausages
3.6. Microbiological Analysis of Fresh Turkey Sausages
3.7. Biogenic Amines Determination in Fresh Turkey Sausages
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biogenic, D.; Biesek, J.; Banaszak, M.; Adamski, M.; Wójcik, W.; Łukasiewicz-Mierzejewska, M.; Damaziak, K.; Bié, D. Biogenic Amines in Poultry Meat and Poultry Products: Formation, Appearance, and Methods of Reduction. Animals 2022, 12, 1577. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Amirkhanov, K.; Igenbayev, A.; Nurgazezova, A.; Okuskhanova, E.; Kassymov, S.; Muslimova, N.; Yessimbekov, Z. Comparative analysis of red and white Turkey meat quality. Pakistan J. Nutr. 2017, 16, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Askerov, P.F.; Rabadanovich, A.; Kibirov, K.G.; Tolparov, E.B.; Bondarenko, O.V.; Khairbekov, A.U. Role and Importance of Turkey Meat Production in Poultry Farming in Russia: Prospects for Further Development. Entomol. Appl. Sci. Lett. 2021, 8, 15–20. [Google Scholar] [CrossRef]
- Igenbayev, A.; Okuskhanova, E.; Nurgazezova, A.; Ya, R.; Kassymov, S.; Nurymkhan, G.; Tazeddinova, D.; Mironova, I.; Rebezov, M. Fatty acid composition of female turkey muscles in Kazakhstan. J. World’s Poult. Res. 2019, 9, 78–81. [Google Scholar] [CrossRef]
- Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S.A. Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 °C. Meat Sci. 2007, 76, 172–181. [Google Scholar] [CrossRef]
- Regulation on the Quality of Ground Meat, Meat Preparations and Meat Products. UNEP Law and Environment Assistance Platform. Available online: https://leap.unep.org/countries/rs/national-legislation/regulation-quality-ground-meat-meat-preparations-and-meat (accessed on 21 December 2022).
- Ikonić, P.; Jokanović, M.; Petrović, L.; Tasić, T.; Škaljac, S.; Šojić, B.; Džinić, N.; Tomović, V.; Tomić, J.; Danilović, B.; et al. Effect of Starter Culture Addition and Processing Method on Proteolysis and Texture Profile of Traditional Dry-Fermented Sausage Petrovská klobása. Int. J. Food Prop. 2016, 19, 1924–1937. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Munekata, P.E.; Agregán, R.; Lorenzo, J.M. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT—Food Sci. Technol. 2016, 71, 47–53. [Google Scholar] [CrossRef]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Alfaia, C.M.; Barreto, A.S. Biogenic amine formation in turkey meat under modified atmosphere packaging with extended shelf life: Index of freshness. Poult. Sci. 2012, 91, 1465–1472. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Bover-Cid, S.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Amino acid availability as an influential factor on the biogenic amine formation in dry fermented sausages. Food Control 2014, 36, 76–81. [Google Scholar] [CrossRef]
- Rabie, M.A.; Siliha, H.; El-Saidy, S.; El-Badawy, A.A.; Malcata, F.X. Effects of γ-irradiation upon biogenic amine formation in Egyptian ripened sausages during storage. Innov. Food Sci. Emerg. Technol. 2010, 11, 661–665. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Li, X.; Sun, Y.; Pan, D.; Wang, Y.; Cao, J. Effect of cinnamon essential oil on the microbiological and physiochemical characters of fresh Italian style sausage during storage. Anim. Sci. J. 2019, 90, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Ikonić, P.; Jokanović, M.; Ćućević, N.; Peulić, T.; Šarić, L.; Tomičić, Z.; Škaljac, S.; Delić, J.; Lakićević, B.; Tomašević, I. Effect of different ripening conditions on amino acids and biogenic amines evolution in Sjenički sudžuk. J. Food Compos. Anal. 2023, 115, 105009. [Google Scholar] [CrossRef]
- Sharma, H.; Mendiratta, S.K.; Agrawal, R.K.; Gurunathan, K.; Kumar, S.; Singh, T.P. Use of various essential oils as bio preservatives and their effect on the quality of vacuum packaged fresh chicken sausages under frozen conditions. LWT—Food Sci. Technol. 2017, 81, 118–127. [Google Scholar] [CrossRef]
- Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M. Plants as natural antioxidants for meat products. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012030. [Google Scholar] [CrossRef] [Green Version]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Jambrak, A.R.; Granato, D.; Montesano, D.; Kovačević, D.B. Novel Food Processing and Extraction Technologies of High-Added Value Compounds from Plant Materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silveira, S.M.; Luciano, F.B.; Fronza, N.; Cunha, A.; Scheuermann, G.N.; Vieira, C.R.W. Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C. LWT—Food Sci. Technol. 2014, 59, 86–93. [Google Scholar] [CrossRef]
- Araújo, M.K.; Gumiela, A.M.; Bordin, K.; Luciano, F.B.; de Macedo, R.E.F. Combination of garlic essential oil, allyl isothiocyanate, and nisin Z as bio-preservatives in fresh sausage. Meat Sci. 2018, 143, 177–183. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Zeković, Z.; Tomović, V.; Ikonić, P.; Kocić-Tanackov, S.; Džinić, N. The effect of essential oil and extract from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the oxidative and microbiological stability of fresh pork sausages. LWT—Food Sci. Technol. 2018, 89, 749–755. [Google Scholar] [CrossRef]
- Carballo, D.E.; Mateo, J.; Andrés, S.; Giráldez, F.J.; Quinto, E.J.; Khanjari, A.; Operta, S.; Caro, I. Microbial Growth and Biogenic Amine Production in a Balkan-Style Fresh Sausage during Refrigerated Storage under a CO2-Containing Anaerobic Atmosphere: Effect of the Addition of Zataria multiflora Essential Oil and Hops Extract. Antibiotics 2019, 8, 227. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Ikonić, P.; Tomović, V.; Ikonić, B.; Zeković, Z.; Kocić-Tanackov, S.; Jokanović, M.; Škaljac, S.; Ivić, M. Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Sci. 2019, 157, 107879. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.N.; Satyal, P.; Satyal, R.; Setzer, W.N.; Gyawali, R. Chemical Composition, Enantiomeric Distribution, Antimicrobial and Antioxidant Activities of Origanum majorana L. Essential Oil from Nepal. Molecular 2022, 27, 6136. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, T.S.A.; Schelz, Z.; Vidács, L.; Szemerédi, N.; Veres, K.; Spengler, G.; Hohmann, J. Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum majorana Extracts, Essential Oil and Monoterpenes. Plants 2022, 11, 1432. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Cilkiz, M. A pharmacological and phytochemical overview on Satureja. Pharm. Biol. 2015, 54, 375–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, M.C.T.; Leme, E.E.; Delarmelina, C.; Soares, A.A.; Figueira, G.M.; Sartoratto, A. Activity of essential oils from Brazilian medicinal plants on Escherichia coli. J. Ethnopharmacol. 2007, 111, 197–201. [Google Scholar] [CrossRef]
- Marques, J.D.L.; Volcão, L.M.; Funck, G.D.; Kroning, I.S.; da Silva, W.P.; Fiorentini, Â.M.; Ribeiro, G.A. Antimicrobial activity of essential oils of Origanum vulgare L. and Origanum majorana L. against Staphylococcus aureus isolated from poultry meat. Ind. Crops Prod. 2015, 77, 444–450. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Lages, L.Z.; Radünz, M.; Gonçalves, B.T.; Silva da Rosa, R.; Fouchy, M.V.; de Cássia dos Santos da Conceição, R.; Gularte, M.A.; Barboza Mendonça, C.R.; Gandra, E.A. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris, L.) essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar). LWT 2021, 148, 111794. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Y.; Li, R.; Wang, Q.; Dong, J.; Wang, J.; Lu, S. Thyme essential oil and sausage diameter effects on biogenic amine formation and microbiological load in smoked horse meat sausage. Food Biosci. 2021, 40, 100885. [Google Scholar] [CrossRef]
- Li, Z.; Wei, Y.; Xu, Y.; Han, P.; Jiang, S.; Xu, F.; Wang, H.; Tao, N.; Shao, X. Terpinen-4-ol treatment maintains quality of strawberry fruit during storage by regulating sucrose-induced anthocyanin accumulation. Postharvest Biol. Technol. 2021, 174, 111461. [Google Scholar] [CrossRef]
- Coutinho de Oliveira, T.L.; Malfitano de Carvalho, S.; de Araújo Soares, R.; Andrade, M.A.; Cardoso, M.D.G.; Ramos, E.M.; Piccoli, R.H. Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT—Food Sci. Technol. 2012, 45, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Šojić, B.; Pavlić, B.; Tomović, V.; Ikonić, P.; Zeković, Z.; Kocić-Tanackov, S.; Đurović, S.; Škaljac, S.; Jokanović, M.; Ivić, M. Essential oil versus supercritical fluid extracts of winter savory (Satureja montana L.)—Assessment of the oxidative, microbiological and sensory quality of fresh pork sausages. Food Chem. 2019, 287, 280–286. [Google Scholar] [CrossRef] [PubMed]
- EUR-Lex-L:2005:338:TOC-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2005:338:TOC (accessed on 22 December 2022).
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Yasar, S.; Nizamlloǧlu, N.M.; Gücüş, M.O.; Bildik Dal, A.E.; Akgül, K. Origanum majorana L. Essential Oil-Coated Paper Acts as an Antimicrobial and Antioxidant Agent against Meat Spoilage. ACS Omega 2022, 7, 9033–9043. [Google Scholar] [CrossRef]
- Carneiro, N.S.; Alves, C.C.F.; Alves, J.M.; Egea, M.B.; Martins, C.H.G.; Silva, T.S.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; et al. Chemical composition, antioxidant and antibacterial activities of essential oils from leaves and flowers of Eugenia klotzschiana Berg (Myrtaceae). An. Acad. Bras. De Ciênc. 2017, 89, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, M.; Bacchetta, G.; Castangia, I.; Manca, M.L. Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran. Sci. Rep. 2022, 12, 17044. [Google Scholar] [CrossRef]
- Azimi, M.; Naghadehi, M.N.; Moulodi, F.; Mehdi, S.; Rohani, R.; Khaledabad, M.A. The Effects of Satureja hortensis L. Essential Oil on the Growth and Survival of Salmonella typhimorium in Minced Poultry Meat During Refrigerated Storage. J. Kermanshah Univ. Med. Sci. 2018, 22, 69640. [Google Scholar] [CrossRef] [Green Version]
- Djenane, D.; Yangüela, J.; Amrouche, T.; Boubrit, S.; Boussad, N.; Roncalés, P. Chemical composition and antimicrobial effects of essential oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus aureus in minced beef. Food Sci. Technol. Int. 2011, 17, 505–515. [Google Scholar] [CrossRef]
- Council of, Europe. 2.9.18 Preparations for Inhalation: Aerodynamic Assessment of Fine Particles. In European Pharmacopoeia 7.0.; Council of Europe: Strasbourg, France, 2010; pp. 274–285. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017; ISBN 9781932633214. [Google Scholar]
- Kocić-Tanackov, S.; Blagojev, N.; Suturović, I.; Dimić, G.; Pejin, J.; Tomović, V.; Sojić, B.; Savanović, J.; Kravić, S.; Karabasil, N. Antibacterial activity of essential oils against Escherichia coil, Salmonella enterica and Listeria monocytogenes. J. Food Saf. Food Qual. Fur Leb. 2017, 68, 88–95. [Google Scholar]
- Jovanović, P.; Pajin, B.; Lončarić, A.; Jozinović, A.; Petrović, J.; Fišteš, A.; Zarić, D.; Tumbas Šaponjac, V.; Ačkar, Đ.; Lončarević, I. Whey as a Carrier Material for Blueberry Bioactive Components: Incorporation in White Chocolate. Sustainability 2022, 14, 14172. [Google Scholar] [CrossRef]
- ISO 4833-1:2003; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2003.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 °C. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 16649-2:2005; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 °C Using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 11290-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 2: Enumeration Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 15213:2003; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Sulfite-Reducing Bacteria Growing Under Anaerobic Conditions. International Organization for Standardization: Geneva, Switzerland, 2003.
Name | RT [min] | OMEO | SHEO | SMEO | |||
---|---|---|---|---|---|---|---|
RP [%] | SD | RP [%] | SD | RP [%] | SD | ||
α-Thujene | 3.767 | 1.67 iA | 0.06 | 1.67 hA | 0.07 | 1.44 ghB | 0.01 |
α-Pinene | 3.883 | 0.70 noC | 0.02 | 1.49 hiA | 0.08 | 1.16 iB | 0.03 |
Camphene | 4.169 | nd | n/a | 1.06 jkA | 0.08 | 0.46 lB | 0.04 |
Sabinene | 4.672 | 3.54 e | 0.04 | nd | n/a | nd | n/a |
β-Pinene | 4.768 | 1.29 kA | 0.04 | 0.13 nB | 0.02 | 0.11 oB | 0.01 |
1-Octen-3-ol | 4.815 | nd | n/a | 1.59 hiA | 0.61 | 1.36 ghA | 0.10 |
β-Myrcene | 5.064 | 1.11 lA | 0.02 | 1.53 hiA | 0.98 | 1.79 fA | 0.10 |
α-Phellandrene | 5.408 | 0.58 noA | 0.01 | 0.38 lmnB | 0.03 | 0.28 mnC | 0.01 |
ẟ-3-Carene | 5.567 | nd | n/a | 0.12 n | 0.01 | nd | n/a |
α-Terpinene | 5.79 | 9.57 cA | 0.14 | 2.89 efB | 0.08 | 2.24 eC | 0.03 |
p-Cymene | 5.954 | 3.49 eC | 0.01 | 10.20 bB | 0.25 | 12.12 cA | 0.15 |
o-Cymene+Limonene | 6.065 | 2.39 g | 0.01 | nd | n/a | nd | n/a |
Eucalyptol (1,8-Cineole) | 6.15 | nd | n/a | nd | n/a | 0.78 jk | 0.02 |
o-Cymene+β-Phellandrene | 6.15 | nd | n/a | 2.13 g | 0.00 | nd | n/a |
β-Phellandrene | 6.139 | 1.39 jk | 0.13 | nd | n/a | nd | n/a |
γ-Terpinene | 6.928 | 14.33 bA | 0.13 | 9.77 cB | 0.05 | 14.39 bA | 0.05 |
cis-Sabinene hydrate | 7.203 | 2.08 hA | 0.01 | 0.41 lmnB | 0.01 | nd | n/a |
Terpinolene | 7.855 | 3.05 fA | 0.01 | 0.26 mnB | 0.02 | 0.14 noC | 0.01 |
trans-Sabinene hydrate | 8.188 | 4.40 d | 0.16 | nd | n/a | nd | n/a |
Linalool | 8.31 | 3.09 fA | 0.17 | 0.77 klC | 0.05 | 1.33 hB | 0.05 |
cis-Menth-2-en-1-ol | 8.983 | 2.05 h | 0.04 | nd | n/a | nd | n/a |
trans-Menth-2-en-1-ol | 9.643 | 1.30 jk | 0.01 | nd | n/a | nd | n/a |
Borneol | 10.582 | nd | n/a | 2.52 fA | 0.01 | 1.48 gB | 0.02 |
Terpinen-4-ol | 10.984 | 27.69 aA | 0.46 | 1.43 hijB | 0.01 | 0.86 jkC | 0.02 |
α-Terpineol | 11.572 | 4.41 dA | 0.02 | 0.40 lmnB | 0.01 | 0.21 mnoC | 0.03 |
cis-Piperitol | 11.768 | 0.67 no | 0.01 | nd | n/a | nd | n/a |
Estragole | 11.89 | 0.89 m | 0.07 | nd | n/a | nd | n/a |
trans-Piperitol | 12.255 | 0.72 no | 0.11 | nd | n/a | nd | n/a |
Thymol methyl ether | 13.293 | nd | n/a | 0.33 mn | 0.02 | nd | n/a |
Carvone | 13.616 | 0.64 no | 0.01 | nd | n/a | nd | n/a |
Carvacrol methyl ether | 13.648 | nd | n/a | 0.66 lm | 0.01 | nd | n/a |
Linalool acetate | 14.162 | 1.28 k | 0.04 | nd | n/a | nd | n/a |
Terpinen-4-ol acetate | 15.872 | 1.47 j | 0.02 | nd | n/a | nd | n/a |
Thymol | 16.02 | 0.69 noB | 0.06 | 41.10 aA | 0.39 | 0.17 noC | 0.01 |
Carvacrol | 16.359 | 0.55 oC | 0.05 | 9.99 bcB | 0.16 | 53.58 aA | 0.31 |
δ-Elemene | 17.286 | 0.22 p | 0.03 | nd | n/a | nd | n/a |
Neryl acetate | 18.604 | 0.09 p | 0.00 | nd | n/a | nd | n/a |
Thymol acetate | 18.837 | nd | n/a | 1.24 ijA | 0.02 | 0.88 jB | 0.04 |
Geranyl acetate | 19.388 | 0.11 p | 0.00 | nd | n/a | nd | n/a |
trans-Caryophyllene | 20.479 | 2.20 hC | 0.04 | 3.25 deA | 0.03 | 2.91 dB | 0.05 |
β-Gurjunene | 20.908 | nd | n/a | nd | n/a | 0.13 o | 0.01 |
Aromadendrene | 21.289 | 0.17 pA | 0.00 | 0.14 nB | 0.00 | nd | n/a |
α-Humulene (α-Caryophyllene) | 21.845 | 0.12 pA | 0.00 | 0.11 nB | 0.00 | 0.10 oC | 0.01 |
γ-Muurolene | 22.867 | nd | n/a | nd | n/a | 0.17 no | 0.01 |
Germacrene D | 22.989 | nd | n/a | nd | n/a | 0.45 l | 0.01 |
Viridiflorene (Ledene) | 23.540 | nd | n/a | 0.18 n | 0.00 | nd | n/a |
Bicyclogermacrene | 23.543 | 0.77 mn | 0.02 | nd | n/a | nd | n/a |
β-Bisabolene | 24.175 | nd | n/a | 3.45 dA | 0.03 | 0.74 kB | 0.05 |
γ-Cadinene | 24.366 | nd | n/a | nd | n/a | 0.18 mno | 0.03 |
δ-Cadinene | 24.651 | 0.07 pC | 0.00 | 0.21 nB | 0.01 | 0.31 mA | 0.01 |
n.i. | 25.536 | nd | n/a | 0.08 n | 0.00 | nd | n/a |
Spathulenol | 26.685 | 0.58 no | 0.04 | nd | n/a | nd | n/a |
Caryophyllene oxide | 26.833 | 0.61 noA | 0.06 | 0.19 nC | 0.01 | 0.24 mnoB | 0.01 |
Essential Oils | Test Microorganism | |||||
---|---|---|---|---|---|---|
Escherichia Coli | Salmonella Enteritidis | Listeria Monocytogenes | ||||
MIC (µL/mL) | MBC (µL/mL) | MIC (µL/mL) | MBC (µL/mL) | MIC (µL/mL) | MBC (µL/mL) | |
OMEO | 0.89 | 1.78 | 3.55 | 7.1 | 1.78 | 7.1 |
SHEO | 0.89 | 1.78 | 0.44 | 0.89 | 0.44 | 0.89 |
SMEO | 3.55 | 7.1 | 1.78 | 3.55 | 0.89 | 1.78 |
EOM | 0.44 | 0.89 | 0.44 | 0.89 | 0.44 | 1.78 |
pH Values | |||||
---|---|---|---|---|---|
Storage Day | Treatments | ||||
C | TOMEO | TSHEO | TSMEO | TEOM | |
0 | 6.35 ± 0.03 aA | 6.37 ± 0.03 aA | 6.37 ± 0.03 aA | 6.36 ± 0.03 aA | 6.37 ± 0.03 aA |
1 | 6.15 ± 0.02 dA | 6.17 ± 0.04 dA | 6.17 ± 0.02 dA | 6.18 ± 0.00 cA | 6.17 ± 0.02 cA |
2 | 6.26 ± 0.02 bA | 6.28 ± 0.01 bcA | 6.33 ± 0.02 bB | 6.35 ± 0.02 aBC | 6.36 ± 0.01 aC |
3 | 6.32 ± 0.01 aA | 6.31 ± 0.02 bA | 6.37 ± 0.02 aC | 6.34 ± 0.01 aA | 6.28 ± 0.02 bB |
4 | 6.22 ± 0.04 cA | 6.26 ± 0.04 cA | 6.24 ± 0.06 cA | 6.27 ± 0.05 bA | 6.24 ± 0.01 bA |
aw Values | |||||
Storage Day | Treatments | ||||
C | TOMEO | TSHEO | TSMEO | TEOM | |
0 | 0.960 ± 0.010 cB | 0.951 ± 0.002 cA | 0.954 ± 0.001 cAB | 0.958 ± 0.001 cAB | 0.951 ± 0.002 cA |
1 | 0.971 ± 0.002 dC | 0.959 ± 0.002 dA | 0.959 ± 0.002 dA | 0.954 ± 0.001 dB | 0.958 ± 0.001 dA |
2 | 0.958 ± 0.003 bcA | 0.956 ± 0.001 bcA | 0.951 ± 0.001 bcB | 0.952 ± 0.000 bcB | 0.956 ± 0.001 bcA |
3 | 0.948 ± 0.002 aA | 0.949 ± 0.001 aA | 0.956 ± 0.001 aC | 0.959 ± 0.002 aB | 0.959 ± 0.001 aB |
4 | 0.949 ± 0.002 abA | 0.950 ± 0.001 abAB | 0.951 ± 0.001 abAB | 0.954 ± 0.001 abC | 0.952 ± 0.001 abB |
Total Plate Count—TPC (log cfu/g) | |||||
---|---|---|---|---|---|
Storage Day | Treatments | ||||
C | TOMEO | TSHEO | TSMEO | TEOM | |
1 | 5.44 ± 0.16 aD | 4.87 ± 0.02 aA | 4.67 ± 0.03 aC | 4.95 ± 0.01 aA | 4.33 ± 0.03 aB |
2 | 6.08 ± 0.07 bB | 5.76 ± 0.02 bA | 4.98 ± 0.02 bC | 6.07 ± 0.11 bB | 5.67 ± 0.03 bA |
3 | 6.50 ± 0.03 cC | 5.99 ± 0.01 cA | 6.00 ± 0.11 cA | 6.19 ± 0.02 cB | 6.09 ± 0.08 cAB |
4 | 7.00 ± 0.05 dC | 6.12 ± 0.06 dA | 6.28 ± 0.00 dB | 6.26 ± 0.05 dB | 6.14 ± 0.06 dA |
Total Enterobacteriaceae Count—TEC (log cfu/g) | |||||
Storage Day | Treatments | ||||
C | TOMEO | TSHEO | TSMEO | TEOM | |
1 | 2.66 ± 0.18 aC | 2.04 ± 0.04 aAB | 2.12 ± 0.12 aAB | 2.22 ± 0.06 aB | 1.96 ± 0.00 aA |
2 | 3.50 ± 0.02 bD | 3.02 ± 0.02 bC | 2.00 ± 0.00 bB | 2.80 ± 0.10 bA | 2.85 ± 0.05 bA |
3 | 3.93 ± 0.03 cE | 3.74 ± 0.04 cD | 3.39 ± 0.09 cC | 3.00 ± 0.00 cA | 3.15 ± 0.15 cB |
4 | 4.50 ± 0.02 dE | 3.52 ± 0.01 dC | 3.06 ± 0.02 dA | 4.09 ± 0.01 dD | 3.31 ± 0.01 dB |
Lactic acid Bacteria—LAB Count (log cfu/g) | |||||
Storage Day | Treatments | ||||
C | TOMEO | TSHEO | TSMEO | TEOM | |
1 | 2.98 ± 0.02 aD | 2.50 ± 0.03 aA | 2.42 ± 0.12 aA | 2.79 ± 0.09 aC | 1.85 ± 0.00 aB |
2 | 3.61 ± 0.00 bD | 2.69 ± 0.09 bA | 2.15 ± 0.15 B | 2.93 ± 0.03 C | 2.74 ± 0.04 A |
3 | 3.26 ± 0.26 cC | 2.97 ± 0.07 cAB | 2.78 ± 0.0 cA | 3.65 ± 0.12 cD | 3.20 ± 0.05 cBC |
4 | 3.97 ± 0.07 dD | 3.06 ± 0.06 dA | 2.71 ± 0.11 dB | 3.40 ± 0.10 dC | 2.95 ± 0.17 dA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šojić, B.; Ikonić, P.; Kocić-Tanackov, S.; Peulić, T.; Teslić, N.; Županjac, M.; Lončarević, I.; Zeković, Z.; Popović, M.; Vidaković, S.; et al. Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages. Antibiotics 2023, 12, 182. https://doi.org/10.3390/antibiotics12010182
Šojić B, Ikonić P, Kocić-Tanackov S, Peulić T, Teslić N, Županjac M, Lončarević I, Zeković Z, Popović M, Vidaković S, et al. Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages. Antibiotics. 2023; 12(1):182. https://doi.org/10.3390/antibiotics12010182
Chicago/Turabian StyleŠojić, Branislav, Predrag Ikonić, Sunčica Kocić-Tanackov, Tatjana Peulić, Nemanja Teslić, Miloš Županjac, Ivana Lončarević, Zoran Zeković, Milica Popović, Stefan Vidaković, and et al. 2023. "Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages" Antibiotics 12, no. 1: 182. https://doi.org/10.3390/antibiotics12010182
APA StyleŠojić, B., Ikonić, P., Kocić-Tanackov, S., Peulić, T., Teslić, N., Županjac, M., Lončarević, I., Zeković, Z., Popović, M., Vidaković, S., & Pavlić, B. (2023). Antibacterial Activity of Selected Essential Oils against Foodborne Pathogens and Their Application in Fresh Turkey Sausages. Antibiotics, 12(1), 182. https://doi.org/10.3390/antibiotics12010182