Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications
Abstract
:1. Introduction
2. Food Safety Concerns and the Way Forward
3. Recent Trends in the Production and Characterization of F-AMPs
4. Antimicrobial Actions of F-AMPs
4.1. AMPs Action against Planktonic Cells
4.2. AMPs against Bacterial Biofilms
5. Nano-Conjugation of F-AMPs
5.1. F-AMPs with Polymer Nano-Conjugates
Type of Nano-Conjugates | Nanomaterial Used | Methods of Preparations | Reference |
---|---|---|---|
Polymer nano-conjugates |
|
| [61,62] |
Metallic nano- conjugates |
|
| [65,66,67] |
5.2. Metallic Nano-Conjugates of F-AMPs
5.3. F-AMPs Liposomal Nano-Conjugates
5.4. Nanoemulsions of F-AMPs
6. Applications of Nano-Conjugated F-AMPs in Active Food Packaging
7. Conclusions and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Food Safety. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 1 August 2022).
- Gizaw, Z. Public Health Risks Related to Food Safety Issues in the Food Market: A Systematic Literature Review. Environ. Health Prev. Med. 2019, 24, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León Madrazo, A.; Segura Campos, M.R. Review of Antimicrobial Peptides as Promoters of Food Safety: Limitations and Possibilities within the Food Industry. J. Food Saf. 2020, 40, e12854. [Google Scholar] [CrossRef]
- FAO. Moving Forward on Food Loss and Waste Reduction; FAO, Ed.; The state of food and agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- Agrillo, B.; Balestrieri, M.; Gogliettino, M.; Palmieri, G.; Moretta, R.; Proroga, Y.T.R.; Rea, I.; Cornacchia, A.; Capuano, F.; Smaldone, G.; et al. Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for “Active” Packaging. Int. J. Mol. Sci. 2019, 20, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafarzadeh, S.; Forough, M.; Amjadi, S.; Javan Kouzegaran, V.; Almasi, H.; Garavand, F.; Zargar, M. Plant Protein-Based Nanocomposite Films: A Review on the Used Nanomaterials, Characteristics, and Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Ghosh, S.; Chauhan, A. Development, Dynamics and Control of Antimicrobial-Resistant Bacterial Biofilms: A Review. Environ. Chem. Lett. 2021, 19, 1983–1993. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S.; Singh, D.; Kumari, P.; Minj, J. Antimicrobial Activity of Bioactive Peptides Derived from Fermentation of Soy Milk by Lactobacillus Plantarum C2 against Common Foodborne Pathogens. Int. J. Ferment. Foods 2015, 4, 91. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Singh, B.P.; Bangar, S.P.; Alblooshi, M.; Ajayi, F.F.; Mudgil, P.; Maqsood, S. Plant-Derived Proteins as a Sustainable Source of Bioactive Peptides: Recent Research Updates on Emerging Production Methods, Bioactivities, and Potential Application. Crit. Rev. Food Sci. Nutr. 2022; in press. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Yang, J.; Sun, Y.; Li, Y.; Ye, Z.; Lin, H.; Yang, K. Overview of the Preparation Method, Structure and Function, and Application of Natural Peptides and Polypeptides. Biomed. Pharmacother. 2022, 153, 113493. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The Value of Antimicrobial Peptides in the Age of Resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W. Antimicrobial Peptides and Their Application in Food Packaging. Trends Food Sci. Technol. 2021, 112, 471–483. [Google Scholar] [CrossRef]
- Shwaiki, L.N.; Lynch, K.M.; Arendt, E.K. Future of Antimicrobial Peptides Derived from Plants in Food Application—A Focus on Synthetic Peptides. Trends Food Sci. Technol. 2021, 112, 312–324. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, F.; Wang, J.; Zhong, N. Biofilm Formation and Control Strategies of Foodborne Pathogens: Food Safety Perspectives. RSC Adv. 2017, 7, 36670–36683. [Google Scholar] [CrossRef] [Green Version]
- Delshadi, R.; Bahrami, A.; Assadpour, E.; Williams, L.; Jafari, S.M. Nano/Microencapsulated Natural Antimicrobials to Control the Spoilage Microorganisms and Pathogens in Different Food Products. Food Control 2021, 128, 108180. [Google Scholar] [CrossRef]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Duche, R.T.; Wandhare, A.G.; Sian, J.K.; Singh, B.P.; Sihag, M.K.; Singh, K.S.; Sangwan, V.; Talan, S.; Panwar, H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob. Proteins 2022, 15, 44–62. [Google Scholar] [CrossRef]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive Peptides in the Management of Lifestyle-Related Diseases: Current Trends and Future Perspectives. Crit. Rev. Food Sci. Nutr. 2021, 62, 4593–4606. [Google Scholar] [CrossRef] [PubMed]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel Technologies for the Production of Bioactive Peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Omidbakhsh Amiri, E.; Farmani, J.; Raftani Amiri, Z.; Dehestani, A.; Mohseni, M. Antimicrobial Activity, Environmental Sensitivity, Mechanism of Action, and Food Application of As165-181 Peptide. Int. J. Food Microbiol. 2021, 358, 109403. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Eichler, J.; Pischetsrieder, M. Virtual Screening of a Milk Peptide Database for the Identification of Food-Derived Antimicrobial Peptides. Mol. Nutr. Food Res. 2015, 59, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Shi, Y.; Wang, X.; Huang, A. Characterization of a Novel Antimicrobial Peptide from Buffalo Casein Hydrolysate Based on Live Bacteria Adsorption. J. Dairy Sci. 2020, 103, 11116–11128. [Google Scholar] [CrossRef] [PubMed]
- Heymich, M.-L.; Friedlein, U.; Trollmann, M.; Schwaiger, K.; Böckmann, R.A.; Pischetsrieder, M. Generation of Antimicrobial Peptides Leg1 and Leg2 from Chickpea Storage Protein, Active against Food Spoilage Bacteria and Foodborne Pathogens. Food Chem. 2021, 347, 128917. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Kameda, M.; Namae, T.; Ochiai, A.; Saitoh, E.; Tanaka, T. Identification and Characterization of Multifunctional Cationic Peptides Derived from Peptic Hydrolysates of Rice Bran Protein. J. Funct. Foods 2017, 34, 287–296. [Google Scholar] [CrossRef]
- Cheng, A.-C.; Lin, H.-L.; Shiu, Y.-L.; Tyan, Y.-C.; Liu, C.-H. Isolation and Characterization of Antimicrobial Peptides Derived from Bacillus Subtilis E20-Fermented Soybean Meal and Its Use for Preventing Vibrio Infection in Shrimp Aquaculture. Fish Shellfish Immunol. 2017, 67, 270–279. [Google Scholar] [CrossRef]
- McCann, K.B.; Shiell, B.J.; Michalski, W.P.; Lee, A.; Wan, J.; Roginski, H.; Coventry, M.J. Isolation and Characterisation of Antibacterial Peptides Derived from the f (164–207) Region of Bovine AlphaS2-Casein. Int. Dairy J. 2005, 15, 133–143. [Google Scholar] [CrossRef]
- López Expósito, I.; Recio, I. Antibacterial Activity of Peptides and Folding Variants from Milk Proteins. Int. Dairy J. 2006, 16, 1294–1305. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Begley, M.; Clifford, T.; Deasy, T.; Considine, K.; Hill, C. Structure-Activity Relationship of Synthetic Variants of the Milk-Derived Antimicrobial Peptide As2-Casein f (183–207). Appl. Environ. Microbiol. 2013, 79, 5179–5185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, X.; Zheng, X.; Wang, Y.; Wang, L.; Ye, L.; Jiang, J. Antimicrobial Peptides from the Edible Insect Musca Domestica and Their Preservation Effect on Chilled Pork. J. Food Process. Preserv. 2020, 44, e14369. [Google Scholar] [CrossRef]
- Bi, J.; Tian, C.; Jiang, J.; Zhang, G.-L.; Hao, H.; Hou, H.-M. Antibacterial Activity and Potential Application in Food Packaging of Peptides Derived from Turbot Viscera Hydrolysate. J. Agric. Food Chem. 2020, 68, 9968–9977. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an Antimicrobial Peptide Derived from Slaughterhouse By-Product and Its Potential Application on Meat as Preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Karkouch, I.; Tabbene, O.; Gharbi, D.; Ben Mlouka, M.A.; Elkahoui, S.; Rihouey, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Limam, F. Antioxidant, Antityrosinase and Antibiofilm Activities of Synthesized Peptides Derived from Vicia Faba Protein Hydrolysate: A Powerful Agents in Cosmetic Application. Ind. Crops Prod. 2017, 109, 310–319. [Google Scholar] [CrossRef]
- Abdou, A.M.; Higashiguchi, S.; Aboueleinin, A.M.; Kim, M.; Ibrahim, H.R. Antimicrobial Peptides Derived from Hen Egg Lysozyme with Inhibitory Effect against Bacillus Species. Food Control 2007, 18, 173–178. [Google Scholar] [CrossRef]
- Haiwen, Z.; Rui, H.; Bingxi, Z.; Qingfeng, G.; Jifeng, Z.; Xuemei, W.; Beibei, W. Oral Administration of Bovine Lactoferrin-Derived Lactoferricin (Lfcin) B Could Attenuate Enterohemorrhagic Escherichia Coli O157:H7 Induced Intestinal Disease through Improving Intestinal Barrier Function and Microbiota. J. Agric. Food Chem. 2019, 67, 3932–3945. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, W.; Takase, M.; Wakabayashi, H.; Kawase, K.; Tomita, M. Antibacterial Spectrum of Lactoferricin B, a Potent Bactericidal Peptide Derived from the N-Terminal Region of Bovine Lactoferrin. J. Appl. Bacteriol. 1992, 73, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and Other Antimicrobial Peptides: Production, Mechanisms of Action, and Application in Active Food Packaging. Innov. Food Sci. Emerg. Technol. 2018, 48, 179–194. [Google Scholar] [CrossRef]
- Sibel Akalın, A. Dairy-Derived Antimicrobial Peptides: Action Mechanisms, Pharmaceutical Uses and Production Proposals. Trends Food Sci. Technol. 2014, 36, 79–95. [Google Scholar] [CrossRef]
- Daliri, E.B.-M.; Lee, B.H.; Oh, D.H. Current Trends and Perspectives of Bioactive Peptides. Crit. Rev. Food Sci. Nutr. 2018, 58, 2273–2284. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Hammami, R. Recent Insights into Structure–Function Relationships of Antimicrobial Peptides. J. Food Biochem. 2019, 43, e12546. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cui, X.; Fu, Y.; Zhang, J.; Zhou, Y.; Sun, Y.; Wang, X.; Li, Y.; Liu, Q.; Chen, T. Antimicrobial Activity and Mechanism of the Human Milk-Sourced Peptide Casein201. Biochem. Biophys. Res. Commun. 2017, 485, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- López-Meza, J.E.; Aguilar, A.O.-Z.J.A.; Loeza-Lara, P.D. Antimicrobial Peptides: Diversity and Perspectives for Their Biomedical Application; IntechOpen: London, UK, 2011; ISBN 978-953-307-514-3. [Google Scholar]
- Hazam, P.K.; Goyal, R.; Ramakrishnan, V. Peptide Based Antimicrobials: Design Strategies and Therapeutic Potential. Prog. Biophys. Mol. Biol. 2019, 142, 10–22. [Google Scholar] [CrossRef]
- Gagnon, M.G.; Roy, R.N.; Lomakin, I.B.; Florin, T.; Mankin, A.S.; Steitz, T.A. Structures of Proline-Rich Peptides Bound to the Ribosome Reveal a Common Mechanism of Protein Synthesis Inhibition. Nucleic Acids Res. 2016, 44, 2439–2450. [Google Scholar] [CrossRef] [Green Version]
- Nahar, S.; Mizan, M.F.R.; Ha, A.J.; Ha, S.-D. Advances and Future Prospects of Enzyme-Based Biofilm Prevention Approaches in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1484–1502. [Google Scholar] [CrossRef] [Green Version]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int. J. Microbiol. 2020, 2020, e1705814. [Google Scholar] [CrossRef]
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial Peptides and Their Interaction with Biofilms of Medically Relevant Bacteria. Biochim. Biophys. Acta—Biomembr. 2016, 1858, 1044–1060. [Google Scholar] [CrossRef]
- Melian, C.; Segli, F.; Gonzalez, R.; Vignolo, G.; Castellano, P. Lactocin AL705 as Quorum Sensing Inhibitor to Control Listeria Monocytogenes Biofilm Formation. J. Appl. Microbiol. 2019, 127, 911–920. [Google Scholar] [CrossRef]
- Shang, D.; Han, X.; Du, W.; Kou, Z.; Jiang, F. Trp-Containing Antibacterial Peptides Impair Quorum Sensing and Biofilm Development in Multidrug-Resistant Pseudomonas Aeruginosa and Exhibit Synergistic Effects With Antibiotics. Front. Microbiol. 2021, 12, 611009. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Prateeksha; Upreti, D.K.; Singh, B.R.; Defoirdt, T.; Gupta, V.K.; De Souza, A.O.; Singh, H.B.; Barreira, J.C.M.; Ferreira, I.C.F.R.; et al. Bactericidal, Quorum Quenching and Anti-Biofilm Nanofactories: A New Niche for Nanotechnologists. Crit. Rev. Biotechnol. 2017, 37, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Fang, L.; Song, S.; Min, W. Polysaccharides-Based Delivery System for Efficient Encapsulation and Controlled Release of Food-Derived Active Peptides. Carbohydr. Polym. 2022, 291, 119580. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Ehsani, A.; Jafari, S.M. Lipid-Based Nano Delivery of Antimicrobials to Control Food-Borne Bacteria. Adv. Colloid Interface Sci. 2019, 270, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Okagu, O.D.; Udenigwe, C.C. Chapter 15—Encapsulation Technology for Protection and Delivery of Bioactive Peptides. In Biologically Active Peptides; Toldrá, F., Wu, J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 331–356. ISBN 978-0-12-821389-6. [Google Scholar]
- Duarte, L.G.R.; Picone, C.S.F. Antimicrobial Activity of Lactoferrin-Chitosan-Gellan Nanoparticles and Their Influence on Strawberry Preservation. Food Res. Int. 2022, 159, 111586. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active Packaging Films and Edible Coatings Based on Polyphenol-Rich Propolis Extract: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2106–2145. [Google Scholar] [CrossRef]
- Vauthier, C.; Bouchemal, K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharm. Res. 2009, 26, 1025–1058. [Google Scholar] [CrossRef]
- Nagavarma, B.V.N.; Yadav, H.; Ayaz, A.; Vasudha, L.; Shivakumar, H. Different Techniques for Preparation of Polymeric Nanoparticles- A Review. Asian J. Pharm. Clin. Res. 2012, 5, 16–23. [Google Scholar]
- McClements, D.J. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef]
- Perry, S.L.; McClements, D.J. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides Using Colloidal Systems. Molecules 2020, 25, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, B.G.; Mukherjee, D.; Reddy, B.M. Chapter 1—Novel Approaches for Preparation of Nanoparticles. In Nanostructures for Novel Therapy; Ficai, D., Grumezescu, A.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. ISBN 978-0-323-46142-9. [Google Scholar]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to Metallic Nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A. Chapter 1—Metal Nanoparticles Toxicity: Role of Physicochemical Aspects. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Shah, M.R., Imran, M., Ullah, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–11. ISBN 978-0-12-816960-5. [Google Scholar]
- Hu, B.; Wang, Y.; Xie, M.; Hu, G.; Ma, F.; Zeng, X. Polymer Nanoparticles Composed with Gallic Acid Grafted Chitosan and Bioactive Peptides Combined Antioxidant, Anticancer Activities and Improved Delivery Property for Labile Polyphenols. J. Funct. Foods 2015, 15, 593–603. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, H.; Liu, S.; Yang, M.; Cui, M.; Zhang, T.; Yu, Y.; Xiao, H.; Du, Z. Fabrication, Characterization and Functional Attributes of Zein-Egg White Derived Peptides (EWDP)-Chitosan Ternary Nanoparticles for Encapsulation of Curcumin: Role of EWDP. Food Chem. 2022, 372, 131266. [Google Scholar] [CrossRef] [PubMed]
- Eldib, R.; Khojah, E.; Elhakem, A.; Benajiba, N.; Helal, M. Chitosan, Nisin, Silicon Dioxide Nanoparticles Coating Films Effects on Blueberry (Vaccinium Myrtillus) Quality. Coatings 2020, 10, 962. [Google Scholar] [CrossRef]
- Sami, R.; Elhakem, A.; Alharbi, M.; Benajiba, N.; Fikry, M.; Helal, M. The Combined Effect of Coating Treatments to Nisin, Nano-Silica, and Chitosan on Oxidation Processes of Stored Button Mushrooms at 4 °C. Sci. Rep. 2021, 11, 6031. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Pourmousavi, F.S.; Mohajer, F.; Noori, S.M.A. Impacts of Nano-Gelatin Coating Containing Thymol and Nisin on Chemical Quality Indices of Rainbow Trout Fillets Stored at 4 °C. Jundishapur J. Nat. Pharm. Prod. 2022; in press. [Google Scholar] [CrossRef]
- Mohajer, F.; Khanzadi, S.; Keykhosravy, K.; Noori, S.M.A.; Azizzadeh, M.; Hashemi, M. Impact of Gelatin Nanogel Coating Containing Thymol and Nisin on the Microbial Quality of Rainbow Trout Fillets and the Inoculated Listeria Monocytogenes. Aquac. Res. 2021, 52, 3958–3965. [Google Scholar] [CrossRef]
- Ikram, S.; Kumari, M.; Gupta, B. Thermosensitive Membranes by Radiation-Induced Graft Polymerization of N-Isopropyl Acrylamide/Acrylic Acid on Polypropylene Nonwoven Fabric. Radiat. Phys. Chem. 2011, 80, 50–56. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, B.; Ikram, S. Characterization of N-Isopropyl Acrylamide/Acrylic Acid Grafted Polypropylene Nonwoven Fabric Developed by Radiation-Induced Graft Polymerization. Radiat. Phys. Chem. 2012, 81, 1729–1735. [Google Scholar] [CrossRef]
- Faya, M.; Kalhapure, R.S.; Kumalo, H.M.; Waddad, A.Y.; Omolo, C.; Govender, T. Conjugates and Nano-Delivery of Antimicrobial Peptides for Enhancing Therapeutic Activity. J. Drug Deliv. Sci. Technol. 2018, 44, 153–171. [Google Scholar] [CrossRef]
- Zhao, L.; Skwarczynski, M.; Toth, I. Polyelectrolyte-Based Platforms for the Delivery of Peptides and Proteins. ACS Biomater. Sci. Eng. 2019, 5, 4937–4950. [Google Scholar] [CrossRef]
- Al-hadede, L.T.; Hassan, M.I. Silver Nanoparticles Synthisis by Green Method and Loading of the Enterosein to Study Its Antimicrobial Inhibition. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 072078. [Google Scholar] [CrossRef]
- Sharma, T.K.; Sapra, M.; Chopra, A.; Sharma, R.; Patil, S.D.; Malik, R.K.; Pathania, R.; Navani, N.K. Interaction of Bacteriocin-Capped Silver Nanoparticles with Food Pathogens and Their Antibacterial Effect. Int. J. Green Nanotechnol. 2012, 4, 93–110. [Google Scholar] [CrossRef]
- Sidhu, P.K.; Nehra, K. Bacteriocin-Capped Silver Nanoparticles for Enhanced Antimicrobial Efficacy against Food Pathogens. IET Nanobiotechnol. 2020, 14, 245–252. [Google Scholar] [CrossRef]
- Amer, S.A.; Abushady, H.M.; Refay, R.M.; Mailam, M.A. Enhancement of the Antibacterial Potential of Plantaricin by Incorporation into Silver Nanoparticles. J. Genet. Eng. Biotechnol. 2021, 19, 13. [Google Scholar] [CrossRef]
- Mohan, A.; McClements, D.J.; Udenigwe, C.C. Encapsulation of Bioactive Whey Peptides in Soy Lecithin-Derived Nanoliposomes: Influence of Peptide Molecular Weight. Food Chem. 2016, 213, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Rajendran, S.R.C.K.; Thibodeau, J.; Bazinet, L.; Udenigwe, C.C. Liposome Encapsulation of Anionic and Cationic Whey Peptides: Influence of Peptide Net Charge on Properties of the Nanovesicles. LWT 2018, 87, 40–46. [Google Scholar] [CrossRef]
- García-Toledo, J.A.; Torrestiana-Sánchez, B.; Martínez-Sánchez, C.E.; Tejero-Andrade, J.M.; García-Bórquez, A.; Mendoza-García, P.G. Nanoencapsulation of a Bacteriocin from Pediococcus Acidilactici ITV26 by Microfluidization. Food Bioprocess Technol. 2019, 12, 88–97. [Google Scholar] [CrossRef]
- Niaz, T.; Shabbir, S.; Noor, T.; Rahman, A.; Bokhari, H.; Imran, M. Potential of Polymer Stabilized Nano-Liposomes to Enhance Antimicrobial Activity of Nisin Z against Foodborne Pathogens. LWT 2018, 96, 98–110. [Google Scholar] [CrossRef]
- Guan, R.; Ma, J.; Wu, Y.; Lu, F.; Xiao, C.; Jiang, H.; Kang, T. Development and Characterization of Lactoferrin Nanoliposome: Cellular Uptake and Stability. Nanoscale Res. Lett. 2012, 7, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizian, A.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Inhibitory Effect of Nano-Gel/Emulsion of Chitosan Coating Incorporated with Ziziphora Clinopodioides Essential Oil and Nisin on Escherichia Coli O157:H7 Inoculated in Beef at Cold Storage Condition. J. Nutr. Health 2019, 7, 103–109. [Google Scholar] [CrossRef]
- Su, L.; Zhou, F.; Yu, M.; Ge, R.; He, J.; Zhang, B.; Zhang, Y.; Fan, J. Solid Lipid Nanoparticles Enhance the Resistance of Oat-Derived Peptides That Inhibit Dipeptidyl Peptidase IV in Simulated Gastrointestinal Fluids. J. Funct. Foods 2020, 65, 103773. [Google Scholar] [CrossRef]
- Ranjith, F.H.; Adhikari, B.; Muhialdin, B.J.; Yusof, N.L.; Mohammed, N.K.; Ariffin, S.H.; Meor Hussin, A.S. Peptide-Based Edible Coatings to Control Postharvest Fungal Spoilage of Mango (Mangifera Indica L.) Fruit. Food Control 2022, 135, 108789. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Debeaufort, F.; Karbowiak, T. Bioactive Edible Films for Food Applications: Mechanisms of Antimicrobial and Antioxidant Activity. Crit. Rev. Food Sci. Nutr. 2019, 59, 3431–3455. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.; Liu, C.; Zou, Y.; Huang, L.; Liang, Y.; Ren, J.; Liu, Y.; Lin, Q. Elaboration and Characterization of Curcumin-Loaded Soy Soluble Polysaccharide (SSPS)-Based Nanocarriers Mediated by Antimicrobial Peptide Nisin. Food Chem. 2021, 336, 127669. [Google Scholar] [CrossRef]
- Gvozdenko, A.A.; Siddiqui, S.A.; Blinov, A.V.; Golik, A.B.; Nagdalian, A.A.; Maglakelidze, D.G.; Statsenko, E.N.; Pirogov, M.A.; Blinova, A.A.; Sizonenko, M.N.; et al. Synthesis of CuO Nanoparticles Stabilized with Gelatin for Potential Use in Food Packaging Applications. Sci. Rep. 2022, 12, 12843. [Google Scholar] [CrossRef]
Source of Peptide | Type or Sequence of Peptide | Effect | Reference |
---|---|---|---|
Ovine milk | αs2-casein (αs165-181) peptide | Antimicrobial effect against E. coli, S. aureus, B. subtilis, L. monocytogenes, B. cereus, and S. enterica serovar Enteritidis with MIC 3.9 mg/mL for E. coli and 7.8 mg/mL for other bacteria | [23] |
Bovine milk | TKLTEEEKNRLNFLKKISQRYQKFALPQYLK | Inhibits the growth of B. subtilis and E. coli, with MIC value of 4.0 µM and 16.2 µM, respectively | [24] |
Buffalo casein | YLGYLEQLLRLK | Antimicrobial against E. coli, S. aureus, L. monocytogenes and S. typhimurium at concentrations ranging from 0.8 to 1.6 mg/mL | [25] |
Chickpea protein | RIKTVTSFDLPALRFLKL, RIKTVTSFDLPALRWLKL | Antimicrobial activity against a variety of bacteria, showed MIC down to 15.6 µmol/L | [26] |
Rice bran proteins | LRRHASEGGHGPHW, EKLLGKQDKGVIIRA, SSFSKGVQRAAF | Antimicrobial and lipopolysaccharide (LPS)-neutralizing activities | [27] |
Soybean meal | HTSKALLDMLKRLGK | MIC of 72.5 and 72.5 μM against Vibrio alginolyticus and V. parahaemolyticus, respectively | [28] |
Bovine αs2- casein | KTVYQHQKAMKPWIQPKTKVIPYVRYL | Effective against gram-positive and gram-negative bacteria | [29] |
Bovine αs2- casein | YYQQKPVA | Effective against gram-positive and gram-negative bacteria | [30] |
Bovine κ-casein | VQVTSTAV | Antimicrobial effect against gram-positive bacteria. | [30] |
Bovine κ-casein | PAAVRSPAQILQ | Antimicrobial effect against gram-positive and gram-negative bacteria | [30] |
Milk | αS2-Casein f (183–207) | Antimicrobial activity against Cronobacter sakazakii and Listeria monocytogenes | [31] |
Edible insect Musca domestica | Md-AMPs | Improves the shelf-life of chilled pork by up to 6 days and exhibits excellent activity limiting microbial growth by preventing DNA synthesis | [32] |
Turbot viscera | GITDLRGMLKRLKKMK | Inhibits the growth of E. coli, S. typhimurium, S. aureus, L. monocytogenes, B. subtilis, and H. alvei | [33] |
Slaughterhouse by-product | α137–141(TSKYR) | Inhibits the growth of coliform bacteria in meat products | [34] |
Vicia faba seeds | LSPGDVLVIPAGYPVAIK, EEYDEEKEQGEEEIR | Antibiofilm activity against Pseudomonas aeruginosa | [35] |
Hen egg lysozyme | LzP | Inhibits the growth of B. subtilis, B. licheniformis, B. megaterium, B. mycoides, B. pumilus, B. coagulans, B. amyloliquefaciens, B. polymexa and B. macerans | [36] |
Bovine milk lactoferrin | LfcinB | Prevents E. coli O157:H7 related intestinal dysfunction and also susceptible against S. enteritidis, K. pneumoniae, P. vulgaris, Y. enterocolitica, P. aeruginosa, C. jejuni, S. aureus, L. monocytogenes and C. perfringens. | [37,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.P.; Rohit; Manju, K.M.; Sharma, R.; Bhushan, B.; Ghosh, S.; Goel, G. Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications. Antibiotics 2023, 12, 244. https://doi.org/10.3390/antibiotics12020244
Singh BP, Rohit, Manju KM, Sharma R, Bhushan B, Ghosh S, Goel G. Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications. Antibiotics. 2023; 12(2):244. https://doi.org/10.3390/antibiotics12020244
Chicago/Turabian StyleSingh, Brij Pal, Rohit, K. M. Manju, Rohit Sharma, Bharat Bhushan, Sougata Ghosh, and Gunjan Goel. 2023. "Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications" Antibiotics 12, no. 2: 244. https://doi.org/10.3390/antibiotics12020244
APA StyleSingh, B. P., Rohit, Manju, K. M., Sharma, R., Bhushan, B., Ghosh, S., & Goel, G. (2023). Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications. Antibiotics, 12(2), 244. https://doi.org/10.3390/antibiotics12020244