Reviews on Antimicrobial Peptides

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Antimicrobial Peptides".

Deadline for manuscript submissions: closed (15 February 2024) | Viewed by 33795

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Neurophysiopathology (INP), Aix-Marseille University, Faculté des sciences médicales et paramédicales, 27, Bd Jean Moulin, 13005 Marseille, France
Interests: antimicrobial peptides; antibacterial; antibiotics; structure-activity relationships; bacteriocins; drug design; peptide engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Antimicrobial peptides (AMPs) are part of the arsenal of host defense molecules that are present in numerous (more or less complex) life forms, from prokaryotes to eukaryotes. Because AMPs have shown unique antimicrobial properties in terms of potency and selectivity, they are currently emerging as candidate chemotherapeutic agents against pathogenic microbes, especially harmful Gram-positive and Gram-negative bacteria, including those resistant to conventional antibiotics. This Special Issue of Antibiotics titled ‘Reviews on Antimicrobial Peptides’ deals with all aspects of AMPs (from natural or nonnatural sources), from their discovery to their structural and functional characterization on microbes, as well as their evaluation in clinical trials. Potential contributors are strongly encouraged to submit their best review articles in this important field of applied scientific research.

Dr. Jean-Marc Sabatier
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial peptides
  • antibacterial peptides
  • peptide antibiotics
  • microbes
  • bacteria
  • bacteriocins
  • bacterial resistance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

19 pages, 2152 KiB  
Review
Regulation of Host Defense Peptide Synthesis by Polyphenols
by Isabel Tobin and Guolong Zhang
Antibiotics 2023, 12(4), 660; https://doi.org/10.3390/antibiotics12040660 - 28 Mar 2023
Cited by 7 | Viewed by 2720
Abstract
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate [...] Read more.
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate the synthesis of endogenous HDPs has emerged as a promising solution to treat infections with a minimum risk for developing antimicrobial resistance. Among a diverse group of compounds that have been identified as inducers of HDP synthesis are polyphenols, which are naturally occurring secondary metabolites of plants characterized by the presence of multiple phenol units. In addition to their well-known antioxidant and anti-inflammatory activities, a variety of polyphenols have been shown to stimulate HDP synthesis across animal species. This review summarizes both the in vitro and in vivo evidence of polyphenols regulating HDP synthesis. The mechanisms by which polyphenols induce HDP gene expression are also discussed. Natural polyphenols warrant further investigation as potential antibiotic alternatives for the control and prevention of infectious diseases. Full article
(This article belongs to the Special Issue Reviews on Antimicrobial Peptides)
Show Figures

Graphical abstract

19 pages, 1198 KiB  
Review
Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications
by Brij Pal Singh, Rohit, K. M. Manju, Rohit Sharma, Bharat Bhushan, Sougata Ghosh and Gunjan Goel
Antibiotics 2023, 12(2), 244; https://doi.org/10.3390/antibiotics12020244 - 25 Jan 2023
Cited by 4 | Viewed by 3676
Abstract
In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the [...] Read more.
In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the proteolytic degradation of food proteins, are emerging as pragmatic alternatives for extension of the shelf-life of food products. The main benefits of F-AMPs are their wide spectrum antimicrobial efficacy and low propensity for the development of antibiotic resistance. However, direct application of F-AMPs in food limits its efficacy during storage. Therefore, the development of nanocarriers for the conjugation and distribution of potential AMPs may hold great potential to increase their bioactivity. This review highlights the significance of F-AMPs as a feasible and sustainable alternative to conventional food preservatives. The most recent developments in production, characterization, and mode of action of these AMPs against planktonic and biofilm forming pathogens are thoroughly discussed in this work. Moreover, nano-conjugation of F-AMPs with different nano-carriers and potential future application in food packaging are emphasized. This review may aid in comprehending the nano-conjugation of F-AMPs and offer insightful recommendations for further exploration and potential uses in the food processing industry. Full article
(This article belongs to the Special Issue Reviews on Antimicrobial Peptides)
Show Figures

Figure 1

30 pages, 424 KiB  
Review
The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review
by Barbara Skerlavaj and Gerard Boix-Lemonche
Antibiotics 2023, 12(2), 211; https://doi.org/10.3390/antibiotics12020211 - 19 Jan 2023
Cited by 7 | Viewed by 3365
Abstract
Due to the well-known phenomenon of antibiotic resistance, there is a constant need for antibiotics with novel mechanisms and different targets respect to those currently in use. In this regard, the antimicrobial peptides (AMPs) seem very promising by virtue of their bactericidal action, [...] Read more.
Due to the well-known phenomenon of antibiotic resistance, there is a constant need for antibiotics with novel mechanisms and different targets respect to those currently in use. In this regard, the antimicrobial peptides (AMPs) seem very promising by virtue of their bactericidal action, based on membrane permeabilization of susceptible microbes. Thanks to this feature, AMPs have a broad activity spectrum, including antibiotic-resistant strains, and microbial biofilms. Additionally, several AMPs display properties that can help tissue regeneration. A possible interesting field of application for AMPs is the development of antimicrobial coatings for implantable medical devices (e.g., orthopaedic prostheses) to prevent device-related infection. In this review, we will take note of the state of the art of AMP-based coatings for orthopaedic prostheses. We will review the most recent studies by focusing on covalently linked AMPs to titanium, their antimicrobial efficacy and plausible mode of action, and cytocompatibility. We will try to extrapolate some general rules for structure–activity (orientation, density) relationships, in order to identify the most suitable physical and chemical features of peptide candidates, and to optimize the coupling strategies to obtain antimicrobial surfaces with improved biological performance. Full article
(This article belongs to the Special Issue Reviews on Antimicrobial Peptides)
17 pages, 895 KiB  
Review
Antimicrobial Peptides against Bacterial Pathogens: Innovative Delivery Nanosystems for Pharmaceutical Applications
by Esther Imperlini, Federica Massaro and Francesco Buonocore
Antibiotics 2023, 12(1), 184; https://doi.org/10.3390/antibiotics12010184 - 16 Jan 2023
Cited by 13 | Viewed by 4592
Abstract
The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery [...] Read more.
The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens. Full article
(This article belongs to the Special Issue Reviews on Antimicrobial Peptides)
Show Figures

Figure 1

26 pages, 10397 KiB  
Review
Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics
by Andreas Hadjicharalambous, Nikolaos Bournakas, Hector Newman, Michael J. Skynner and Paul Beswick
Antibiotics 2022, 11(11), 1636; https://doi.org/10.3390/antibiotics11111636 - 16 Nov 2022
Cited by 18 | Viewed by 7148
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to [...] Read more.
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a “vector”, attached to either a current or novel antibiotic, called a “cargo” or “payload”. In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat. Full article
(This article belongs to the Special Issue Reviews on Antimicrobial Peptides)
Show Figures

Figure 1

17 pages, 2612 KiB  
Review
Antimicrobial Peptides—Mechanisms of Action, Antimicrobial Effects and Clinical Applications
by Jasminka Talapko, Tomislav Meštrović, Martina Juzbašić, Matej Tomas, Suzana Erić, Lorena Horvat Aleksijević, Sanja Bekić, Dragan Schwarz, Suzana Matić, Marijana Neuberg and Ivana Škrlec
Antibiotics 2022, 11(10), 1417; https://doi.org/10.3390/antibiotics11101417 - 16 Oct 2022
Cited by 84 | Viewed by 10651
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options [...] Read more.
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host’s first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability. Full article
(This article belongs to the Special Issue Reviews on Antimicrobial Peptides)
Show Figures

Figure 1

Back to TopTop