Bacteriophage Therapy as an Application for Bacterial Infection in China
Abstract
:1. Introduction
2. Overview of Phages
3. Phage Therapy in Animal Models
3.1. Mammals
3.2. Ovipara
3.3. Aquatilia
4. Application of Bacteriophages in Clinics
4.1. Skin Infection
4.2. Respiratory Tract Infection
4.3. Urinary Tract Infection
4.4. Others
5. Limitation of Phage Therapy
6. Regulation of Phage Application in China and Western Countries
- (1)
- The patients were between 14 and 90 years of age who suffered from multi-drug resistant bacterial infections.
- (2)
- The pathogenic bacteria that the patient is infected with should meet the following conditions:
- The patient is infected with pathogenic bacteria that are fully resistant to antibiotics.
- Pathogenic bacteria are resistant to key antibiotics (WHO has published a list of 12 superbug categories for 2017, as seen in Figure 1).
- The pathogen is sensitive to the key antibiotic but this antibiotic treatment is ineffective.
- (3)
- To receive at least one or more phages capable of lysing drug-resistant bacteria.
- (4)
- Be able to administer the phage by topical application, focal spraying of infection, nebulized inhalation, perfusion, local injection, or infusion tube.
7. The Direction of Phage Application
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perry, J.; Waglechner, N.; Wright, G. The Prehistory of Antibiotic Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025197. [Google Scholar] [CrossRef] [Green Version]
- Merril, C.R.; Scholl, D.; Adhya, S.L. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2003, 2, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górski, A.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Rogóż, P.; Jończyk-Matysiak, E.; Dąbrowska, K.; Majewska, J.; Borysowski, J. Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases. Front. Microbiol. 2016, 7, 1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rex, J.H.; Outterson, K. Antibiotic reimbursement in a model delinked from sales: A benchmark-based worldwide approach. Lancet. Infect. Dis. 2016, 16, 500–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waglechner, N.; Wright, G.D. Antibiotic resistance: It’s bad, but why isn’t it worse? BMC Biol. 2017, 15, 84. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Lin, R.C.Y.; Iredell, J.R. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front. Microbiol. 2020, 11, 599906. [Google Scholar] [CrossRef]
- Royer, S.; Morais, A.P.; da Fonseca Batistão, D.W. Phage therapy as strategy to face post-antibiotic era: A guide to beginners and experts. Arch. Microbiol. 2021, 203, 1271–1279. [Google Scholar] [CrossRef]
- Caflisch, K.M.; Suh, G.A.; Patel, R. Biological challenges of phage therapy and proposed solutions: A literature review. Expert. Rev. Anti-Infect. Ther. 2019, 17, 1011–1041. [Google Scholar] [CrossRef]
- El Haddad, L.; Harb, C.P.; Gebara, M.A.; Stibich, M.A.; Chemaly, R.F. A Systematic and Critical Review of Bacteriophage Therapy Against Multidrug-resistant ESKAPE Organisms in Humans. Clin. Infect. Dis. 2019, 69, 167–178. [Google Scholar] [CrossRef]
- Wendling, C.C.; Goehlich, H.; Roth, O. The structure of temperate phage–bacteria infection networks changes with the phylogenetic distance of the host bacteria. Biol. Lett. 2018, 14, 20180320. [Google Scholar] [CrossRef] [Green Version]
- Fineran, P.; Petty, N.; Salmond, G. Transduction: Host DNA transfer by bacteriophages. In Encyclopedia of Microbiology; Elsevier: Oxford, UK, 2009; pp. 666–679. [Google Scholar] [CrossRef]
- Engelhardt, T.; Kallmeyer, J.; Cypionka, H.; Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 2014, 8, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Suttle, C.A. Viruses in the sea. Nature 2005, 437, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Suttle, C.A. Marine viruses--major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef]
- Williamson, K.E.; Corzo, K.A.; Drissi, C.L.; Buckingham, J.M.; Thompson, C.P.; Helton, R.R. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol. Fertil. Soils 2013, 49, 857–869. [Google Scholar] [CrossRef]
- Letarov, A.V.; Kulikov, E.E. Adsorption of Bacteriophages on Bacterial Cells. Biochemistry 2017, 82, 1632–1658. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Q.; Fan, J.; Yan, T.; Zhang, H.; Yang, J.; Deng, D.; Liu, C.; Wei, T.; Ma, Y. Characterization and Genomic Analysis of ValSw3-3, a New Siphoviridae Bacteriophage Infecting Vibrio alginolyticus. J. Virol. 2020, 94, e00066-20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, T.; Yu, M.; Chen, Y.L.; Jin, M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022, 14, 1904. [Google Scholar] [CrossRef]
- Casjens, S.R.; Hendrix, R.W. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015, 479, 310–330. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zhou, J.; Fu, H.; Mu, Y.; Sun, Y.; Xu, Y.; Xiu, Z. A Klebsiella pneumoniae bacteriophage and its effect on 1, 3-propanediol fermentation. Process Biochem. 2016, 51, 1323–1330. [Google Scholar] [CrossRef]
- Niu, Y.D.; Xu, Y.; McAllister, T.A.; Rozema, E.A.; Stephens, T.P.; Bach, S.J.; Johnson, R.P.; Stanford, K. Comparison of fecal versus rectoanal mucosal swab sampling for detecting Escherichia coli O157:H7 in experimentally inoculated cattle used in assessing bacteriophage as a mitigation strategy. J. Food Prot. 2008, 71, 691–698. [Google Scholar] [CrossRef]
- Guo, M.; Gao, Y.; Xue, Y.; Liu, Y.; Zeng, X.; Cheng, Y.; Ma, J.; Wang, H.; Sun, J.; Wang, Z.; et al. Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Front. Cell. Infect. Microbiol. 2021, 11, 690377. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jin, P.; Zhou, X.; Zhang, Y.; Wang, Q.; Liu, X.; Shao, S.; Liu, Q. Isolation of a Virulent Aeromonas salmonicida subsp. masoucida Bacteriophage and Its Application in Phage Therapy in Turbot (Scophthalmus maximus). Appl. Environ. Microbiol. 2021, 87, e0146821. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xue, Y.; Gao, Y.; Guo, M.; Liu, Y.; Zou, X.; Cheng, Y.; Ma, J.; Wang, H.; Sun, J.; et al. Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2021, 11, 689770. [Google Scholar] [CrossRef] [PubMed]
- Sui, B.; Han, L.; Ren, H.; Liu, W.; Zhang, C. A Novel Polyvalent Bacteriophage vB_EcoM_swi3 Infects Pathogenic Escherichia coli and Salmonella enteritidis. Front. Microbiol. 2021, 12, 649673. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, Y.; Zhang, Y.; Chen, Y.; Zhang, C.; Luo, X.; Chen, Y.; Yuan, Z.; Chen, J.; Gong, Y. Safety and Efficacy of a Phage, kpssk3, in an in vivo Model of Carbapenem-Resistant Hypermucoviscous Klebsiella pneumoniae Bacteremia. Front. Microbiol. 2021, 12, 613356. [Google Scholar] [CrossRef]
- Huang, J.; Liang, L.; Cui, K.; Li, P.; Hao, G.; Sun, S. Salmonella phage CKT1 significantly relieves the body weight loss of chicks by normalizing the abnormal intestinal microbiome caused by hypervirulent Salmonella Pullorum. Poult. Sci. 2022, 101, 101668. [Google Scholar] [CrossRef]
- Xu, J.; Chen, M.; He, L.; Zhang, S.; Ding, T.; Yao, H.; Lu, C.; Zhang, W. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J. Basic. Microbiol. 2016, 56, 405–421. [Google Scholar] [CrossRef]
- Wang, Y.; Mi, Z.; Niu, W.; An, X.; Yuan, X.; Liu, H.; Li, P.; Liu, Y.; Feng, Y.; Huang, Y.; et al. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii-mediated pneumonia. Future. Microbiol. 2016, 11, 631–641. [Google Scholar] [CrossRef]
- Deng, L.Y.; Yang, Z.C.; Gong, Y.L.; Huang, G.T.; Yin, S.P.; Jiang, B.; Peng, Y.Z. Therapeutic effect of phages on extensively drug-resistant Acinetobacter baumannii-induced sepsis in mice. Zhonghua Shao Shang Za Zhi 2016, 32, 523–528. [Google Scholar] [CrossRef]
- Gu, J.; Li, X.; Yang, M.; Du, C.; Cui, Z.; Gong, P.; Xia, F.; Song, J.; Zhang, L.; Li, J.; et al. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Vet. Microbiol. 2016, 190, 5–11. [Google Scholar] [CrossRef]
- Tie, K.; Yuan, Y.; Yan, S.; Yu, X.; Zhang, Q.; Xu, H.; Zhang, Y.; Gu, J.; Sun, C.; Lei, L.; et al. Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes 2018, 54, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Zhang, P.; Zhang, Q.; Xue, F.; Ren, J.; Sun, J.; Qu, Z.; Zhuge, X.; Li, D.; Wang, J.; et al. Isolation and characterization of a broad-spectrum phage of multiple drug resistant Salmonella and its therapeutic utility in mice. Microb. Pathog. 2019, 126, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Cheng, M.; Zhai, S.; Xi, H.; Cai, R.; Wang, Z.; Zhang, H.; Wang, X.; Xue, Y.; Li, X.; et al. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet. Microbiol. 2019, 229, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, E.; Yang, L.; Song, J.; Wu, B. Therapeutic Application of Bacteriophage PHB02 and Its Putative Depolymerase Against Pasteurella multocida Capsular Type A in Mice. Front. Microbiol. 2018, 9, 1678. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Zou, W.; Zhang, M.; Xu, L.; Liu, F.; Li, X.; Wang, L.; Xu, Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol. 2020, 65, 339–351. [Google Scholar] [CrossRef]
- Cao, F.; Wang, X.; Wang, L.; Li, Z.; Che, J.; Wang, L.; Li, X.; Cao, Z.; Zhang, J.; Jin, L.; et al. Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed. Res. Int. 2015, 2015, 752930. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, S.; Guo, Z.; Liu, H.; Sun, D.; Yan, G.; Hu, D.; Du, C.; Feng, X.; Han, W.; et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 971–983. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Xiao, C.; He, S.; Yao, H.; Bao, G. Efficacy of Phage Therapy in Controlling Rabbit Colibacillosis and Changes in Cecal Microbiota. Front. Microbiol. 2017, 8, 957. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Liao, G.; Liu, C.; Jiang, X.; Lin, M.; Zhao, C.; Tao, J.; Huang, Z. Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections. J. Fish Dis. 2018, 41, 1477–1484. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, G.; Sun, E.; Song, J.; Yang, L.; Zhu, L.; Liang, W.; Hua, L.; Peng, Z.; Tang, X.; et al. Isolation of a T7-Like Lytic Pasteurella Bacteriophage vB_PmuP_PHB01 and Its Potential Use in Therapy against Pasteurella multocida Infections. Viruses 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hu, B.; Xu, M.; Yan, Q.; Liu, S.; Zhu, X.; Sun, Z.; Reed, E.; Ding, L.; Gong, J.; et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 2006, 17, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Yang, N.; Zhang, X.; Cai, R.; Zhang, Y.; Tian, J.; Raza, S.H.A.; Kang, Y.; Qian, A.; Li, Y.; et al. Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8 Targeting Citrobacter freundii. Front. Microbiol. 2020, 11, 585261. [Google Scholar] [CrossRef]
- Gu, J.; Liu, X.; Li, Y.; Han, W.; Lei, L.; Yang, Y.; Zhao, H.; Gao, Y.; Song, J.; Lu, R.; et al. A method for generation phage cocktail with great therapeutic potential. PLoS ONE 2012, 7, e31698. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Zhou, Y.; Shahin, K.; Zhang, H.; Cao, F.; Pang, M.; Zhang, X.; Zhu, S.; Olaniran, A.; Schmidt, S.; et al. The complete genome of lytic Salmonella phage vB_SenM-PA13076 and therapeutic potency in the treatment of lethal Salmonella Enteritidis infections in mice. Microbiol. Res. 2020, 237, 126471. [Google Scholar] [CrossRef]
- Wang, X.; Ji, Y.; Su, J.; Xue, Y.; Xi, H.; Wang, Z.; Bi, L.; Zhao, R.; Zhang, H.; Yang, L.; et al. Therapeutic Efficacy of Phage P(IZ) SAE-01E2 against Abortion Caused by Salmonella enterica Serovar Abortusequi in Mice. Appl. Environ. Microbiol. 2020, 86, e01366-20. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhai, S.; Wang, Z.; Ji, Y.; Wang, G.; Wang, T.; Wang, X.; Xi, H.; Cai, R.; Zhao, R.; et al. The Yersinia Phage X1 Administered Orally Efficiently Protects a Murine Chronic Enteritis Model Against Yersinia enterocolitica Infection. Front. Microbiol. 2020, 11, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Liang, J.; Zhang, Y.; Hu, L.; Gong, P.; Cai, R.; Zhang, L.; Zhang, H.; Ge, J.; Ji, Y.; et al. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Front. Microbiol. 2017, 8, 837. [Google Scholar] [CrossRef] [Green Version]
- Salazar, K.C.; Ma, L.; Green, S.I.; Zulk, J.J.; Trautner, B.W.; Ramig, R.F.; Clark, J.R.; Terwilliger, A.L.; Maresso, A.W. Antiviral Resistance and Phage Counter Adaptation to Antibiotic-Resistant Extraintestinal Pathogenic Escherichia coli. mBio 2021, 12, e00211-21. [Google Scholar] [CrossRef] [PubMed]
- Easwaran, M.; De Zoysa, M.; Shin, H.J. Application of phage therapy: Synergistic effect of phage EcSw (ΦEcSw) and antibiotic combination towards antibiotic-resistant Escherichia coli. Transbound. Emerg. Dis. 2020, 67, 2809–2817. [Google Scholar] [CrossRef]
- Rouse, M.D.; Stanbro, J.; Roman, J.A.; Lipinski, M.A.; Jacobs, A.; Biswas, B.; Regeimbal, J.; Henry, M.; Stockelman, M.G.; Simons, M.P. Impact of Frequent Administration of Bacteriophage on Therapeutic Efficacy in an A. baumannii Mouse Wound Infection Model. Front. Microbiol. 2020, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, H.; Wang, J.; Yu, J.; Wei, H. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Sci. Rep. 2017, 7, 40182. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Jiang, M.; Khan, F.M.; Zhao, X.; Wang, G.; Zhou, W.; Li, J.; Yu, J.; Li, Y.; Wei, H.; et al. Intrinsic Antimicrobial Peptide Facilitates a New Broad-Spectrum Lysin LysP53 to Kill Acinetobacter baumannii In Vitro and in a Mouse Burn Infection Model. ACS Infect. Dis. 2021, 7, 3336–3344. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, Z.; Zou, T.; Zheng, L.; Li, S.; You, J. Effects of Bacteriophage on Growth Performance, Intestinal pH, Volatile Fatty Acid Contents and Disaccharase Activity of Weaned Piglets. Chin. J. Anim. Nutr. 2020, 32, 682–690. (In Chinese) [Google Scholar]
- Lin, Y.; Zhou, B.; Zhu, W. Pathogenic Escherichia coli-Specific Bacteriophages and Polyvalent Bacteriophages in Piglet Guts with Increasing Coliphage Numbers after Weaning. Appl. Environ. Microbiol. 2021, 87, e0096621. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bao, X.; Lu, Y.; Liu, Y.; Deng, B.; Wang, Y.; Xu, Y.; Hou, J. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV). Vet. Microbiol. 2017, 205, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Liang, Y.; Yang, R.; Chang, J.; Liu, G.; Wang, L.; Zhang, Q. Preparation and application of phage cocktail preparation for dairy cow mastitis. CN113082060A, 9 July 2021. Available online: https://www.patentguru.com/search?q=CN113082060A (accessed on 25 November 2022).
- Zeng, Y.; Wang, Z.; Zou, T.; Chen, J.; Li, G.; Zheng, L.; Li, S.; You, J. Bacteriophage as an Alternative to Antibiotics Promotes Growth Performance by Regulating Intestinal Inflammation, Intestinal Barrier Function and Gut Microbiota in Weaned Piglets. Front. Vet. Sci. 2021, 8, 623899. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Yang, T.; Zhang, H. Prevention and Treatment Effect of Escherichia coli Phage BP16 on Chicken Colibacillosis. China Anim. Husb. Vet. Med. 2022, 49, 776–782. (In Chinese) [Google Scholar] [CrossRef]
- Yu, X.; Yan, C.; Ren, J.; Zhang, C.; Ren, H. The effect of E. coli bacteriophage Bp7 on the disinfection of the chicken coop environment. Heilongjiang Anim. Sci. Vet. Med. 2016, 56, 107–109. (In Chinese) [Google Scholar] [CrossRef]
- Bao, H.; Zhang, H.; Li, G.; Zhou, Y.; Wang, R. Sterilization of Foodborne Pathogens by Aerosol Spray Treatments with Phages and Their Cocktails. Food Sci. 2013, 34, 10–13. (In Chinese) [Google Scholar]
- Yu, H.; Zhang, L.; Feng, C.; Chi, T.; Qi, Y.; Abbas Raza, S.H.; Gao, N.; Jia, K.; Zhang, Y.; Fan, R.; et al. A phage cocktail in controlling phage resistance development in multidrug resistant Aeromonas hydrophila with great therapeutic potential. Microb. Pathog. 2022, 162, 105374. [Google Scholar] [CrossRef]
- Feng, C.; Jia, K.; Chi, T.; Chen, S.; Yu, H.; Zhang, L.; Haidar Abbas Raza, S.; Alshammari, A.M.; Liang, S.; Zhu, Z.; et al. Lytic Bacteriophage PZL-Ah152 as Biocontrol Measures Against Lethal Aeromonas hydrophila Without Distorting Gut Microbiota. Front. Microbiol. 2022, 13, 898961. [Google Scholar] [CrossRef]
- Ding, T.; Sun, H.; Pan, Q.; Zhao, F.; Zhang, Z.; Ren, H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020, 286, 198080. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y. Isolation, Identification and Preliminary Application of Bacteriophage qdvp001 Host Vibrio Para-Haemolyticus in Oyster Purification. Master’s Thesis, Ocean University of China, Qingdao, China, 2012. [Google Scholar]
- Cui, H.; Cong, C.; Wang, L.; Li, X.; Li, J.; Yang, H.; Li, S.; Xu, Y. Protective effectiveness of feeding phage cocktails in controlling Vibrio harveyi infection of turbot Scophthalmus maximus. Aquaculture 2021, 535, 736390. [Google Scholar] [CrossRef]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J.G., Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.K.; Koeris, M.S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 2011, 14, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect. 2008, 38, 426–430. [Google Scholar] [CrossRef]
- Chen, T. Trial phages to stop superbug infection–recall a long-forgotten place in the original ‘Dalian Institute’. Prog. Microbiol. Immunol. 2010, 38, 57–61. (In Chinese) [Google Scholar] [CrossRef]
- Bao, J.; Wu, N.; Zeng, Y.; Chen, L.; Li, L.; Yang, L.; Zhang, Y.; Guo, M.; Li, L.; Li, J.; et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg. Microbes. Infect. 2020, 9, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Kong, Y.; Wen, S.; Gu, X.; Zhou, Y.; Tan, X.; Ma, Y.; Lu, H. A case report of phage therapy against lung infection caused by Carbapenem-resistant Acinetobacter baumannii and Carbapenem-resistant Pseudomonas aeruginosa. Electron. J. Emerg. Infect. Dis. 2022, 7, 71–75. (In Chinese) [Google Scholar] [CrossRef]
- Qing, N. China’s first doctor of bacteriology–Yu He. Acta Microbiol. Sin. 2007, 949–950. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.; Wan, X.; Li, W. Bacteriophages in the treatment of tuberculosis uicers. J. Oral Maxillofac. Surg. 2009, 19, 151–152. (In Chinese) [Google Scholar]
- Meng, F.; Sun, Y.; Yuan, G.; Gao, Y. Progress in the application of phage in the treatment of alcoholic liver disease. Chin. Hepatol. 2021, 26, 956–957. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, Y.; Bao, J.; Tan, D.; Zhang, Y.; Guo, M.; Zhu, Z.; Shao, E.; Zhu, T. Application of phage in patients with pan-drug resistant Klebsiella pneumoniae infection in urinary tract. Chin. J. Urol. 2020, 41, 677–680. (In Chinese) [Google Scholar]
- Zhang, X.; Zhang, X.; Gao, H.; Qing, G. Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics 2022, 12, 2041–2062. [Google Scholar] [CrossRef]
- Qin, J.; Wu, N.; Bao, J.; Shi, X.; Ou, H.; Ye, S.; Zhao, W.; Wei, Z.; Cai, J.; Li, L.; et al. Heterogeneous Klebsiella pneumoniae Co-infections Complicate Personalized Bacteriophage Therapy. Front. Cell. Infect. Microbiol. 2020, 10, 608402. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Dai, J.; Guo, M.; Li, J.; Zhou, X.; Li, F.; Gao, Y.; Qu, H.; Lu, H.; Jin, J.; et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerg. Microbes. Infect. 2021, 10, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; He, B.; Wu, N.; Zhu, T.; Guo, X.; Chen, Z. Clinical application and effect of phage on the treatment of pulmonary infection by pan-drug resistant Klebsiella pneumoniae. J. Shanghai Jiao Tong Univ. 2021, 41, 1272–1276. (In Chinese) [Google Scholar]
- Tan, X.; Chen, H.; Zhang, M.; Zhao, Y.; Jiang, Y.; Liu, X.; Huang, W.; Ma, Y. Clinical Experience of Personalized Phage Therapy Against Carbapenem-Resistant Acinetobacter baumannii Lung Infection in a Patient With Chronic Obstructive Pulmonary Disease. Front. Cell. Infect. Microbiol. 2021, 11, 631585. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.; Stacey, H.J.; de Soir, S.; Jones, J.D. The Safety and Efficacy of Phage Therapy for Superficial Bacterial Infections: A Systematic Review. Antibiotics 2020, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, Z.; Zhao, J.; Zhu, Z.; Yang, C.; Liu, Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front. Cell. Infect. Microbiol. 2021, 11, 758392. [Google Scholar] [CrossRef]
- Wu, N.; Chen, L.K.; Zhu, T. Phage therapy for secondary bacterial infections with COVID-19. Curr. Opin. Virol. 2022, 52, 9–14. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Wang, Z.; Wei, J.; Hu, T.; Si, J.; Tao, G.; Zhang, L.; Xie, L.; Abdalla, A.E.; et al. A combination therapy of Phages and Antibiotics: Two is better than one. Int. J. Biol. Sci. 2021, 17, 3573–3582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhao, Y.; Paramasivan, S.; Richter, K.; Morales, S.; Wormald, P.J.; Vreugde, S. Bacteriophage effectively kills multidrug resistant Staphylococcus aureus clinical isolates from chronic rhinosinusitis patients. Int. Forum. Allergy Rhinol. 2018, 8, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front. Cell. Infect. Microbiol. 2018, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Gembara, K.; Dąbrowska, K. Phage-specific antibodies. Curr. Opin. Biotechnol. 2021, 68, 186–192. [Google Scholar] [CrossRef]
- Singla, S.; Harjai, K.; Katare, O.P.; Chhibber, S. Encapsulation of Bacteriophage in Liposome Accentuates Its Entry in to Macrophage and Shields It from Neutralizing Antibodies. PLoS ONE 2016, 11, e0153777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, B.; Gondil, V.S.; Manohar, P.; Khan, F.M.; Yang, H.; Leptihn, S. Encapsulation and Delivery of Therapeutic Phages. Appl. Environ. Microbiol. 2020, 87, e01979-20. [Google Scholar] [CrossRef] [PubMed]
- Hyman, P.; Abedon, S.T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Sidhu, P.K.; Rana, J.S.; Nehra, K. Managing urinary tract infections through phage therapy: A novel approach. Folia. Microbiol. 2020, 65, 217–231. [Google Scholar] [CrossRef]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid. Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, W.A. Comparison of several methods for preserving bacteriophages. Appl. Microbiol. 1962, 10, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, A.; Manohar, P.; Eniyan, K.; VinodKumar, C.S.; Leptihn, S.; Nachimuthu, R. Phage therapy as a revolutionary medicine against Gram-positive bacterial infections. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 49. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar] [CrossRef] [PubMed]
- Kakasis, A.; Panitsa, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int. J. Antimicrob. Agents 2019, 53, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kutter, E.; De Vos, D.; Gvasalia, G.; Alavidze, Z.; Gogokhia, L.; Kuhl, S.; Abedon, S.T. Phage therapy in clinical practice: Treatment of human infections. Curr. Pharm. Biotechnol. 2010, 11, 69–86. [Google Scholar] [CrossRef]
- Onsea, J.; Soentjens, P.; Djebara, S.; Merabishvili, M.; Depypere, M.; Spriet, I.; De Munter, P.; Debaveye, Y.; Nijs, S.; Vanderschot, P.; et al. Bacteriophage Application for Difficult-to-treat Musculoskeletal Infections: Development of a Standardized Multidisciplinary Treatment Protocol. Viruses 2019, 11, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, T.; Salabarria, A.C.; Edwards, R.A.; Roach, D.R. Standardized bacteriophage purification for personalized phage therapy. Nat. Protoc. 2020, 15, 2867–2890. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Verbeken, G.; Ceyssens, P.J.; Huys, I.; De Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Clokie, R.J.M. Phage Pharmacology and Experimental Methods; Chemical Industry Press: Beijing, China, 2022. [Google Scholar]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future. Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef]
- Li, G.; Hu, F. History and development of phage therapy. Chin. J. Antibiot. 2017, 42, 807–813. (In Chinese) [Google Scholar] [CrossRef]
- Gondil, V.S.; Khan, F.M.; Mehra, N.; Kumar, D.; Khullar, A.; Sharma, T.; Sharma, A.; Mehta, R.; Yang, H. Clinical Potential of Bacteriophage and Endolysin Based Therapeutics: A Futuristic Approach. In Microbial Products for Health, Environment and Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 39–58. [Google Scholar]
Priority | Pathogen Name | Resistance |
---|---|---|
Critical | Acinetobacter baumannii | Carbapenem |
Pseudomonas aeruginosa | Carbapenem | |
Enterobacteriaceae | Carbapenem and produces extended-spectrum lactamase (ESBL) | |
High | Enterococcus faecalis | Vancomycin |
Staphylococcus aureus | Methicillin and Vancomycin intermediary | |
Helicobacterpylori | Clarithromycin | |
Campylobacter | Fluoroquinolones | |
Salmonella | Fluoroquinolones | |
Neisseria gonorrhoeae | Cephalosporin and Fluoroquinolones | |
Medium | Streptococcus pneumoniae | Penicillin |
Haemophilus influenzae | Ampicillin | |
Shigella | Fluoroquinolones |
Host Organism | Animal | Infection | Delivery b-Bacterial p-Phage bp-Bacterial and Phage | Phage Log (CFU) | Phage Log (CFU) | Phage Species | Phage Therapy Outcome A Remarkable Effect B Medium Effect C No Effect | Reference | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli | Pseudomonas aeruginosa | Aerominas saimonicida | Klebsiella pneumoniae | Highly pathogenic Saimonella | Acinetobacter baumanii | Saimonellla | Staphylococcus aureus | Pasteurella | Streptococcus agaiactiae | Citrobacter freundii | Yersinia | Enterococcus faecalls | Mouse | Bird | Chicken | Calve | Mink | Turbot | Duck | Rabbit | Tilapia mossambica | Crap | Colibacillosis | Mastitis | Pneumonia | Inflammation | Bacteremia | Pullorum disease | Sepsis | Placenta and endometritis | Salmonellosis | Systemic | Intestine | Nephritis | Take Orally | Transnasal Entry | Intraperitoneal Injection | Intramuscular Injection | Breast Injection | Intestinal Injection | Reduce Bacterial Concentration | Clear Infection | Effect of Delay in Treatment | Dose Related Studies | Continuous Injection of Phage | ||||
◆ | ◆ | ◆ | bp | 10.0 | 11.0 | 4 | B | B | [21] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 1.8 | 8.7 | 3 | A | A | [22] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 4–6 | 2.9–6.9 | 1 | A | B | A | [23] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 5.3 | 6.3 | 1 | B | B | [24] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | b | p | 8.0 | 5–7 | 1 | A | B | A | [25] | ||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 7.3 | 6–7 | 1 | A | B | A | [26] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 6.3 | 7.0 | 1 | B | B | [27] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 5.3 | 8.5 | 1 | B | B | A | [28] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | bp | 8.3 | 9.3 | 1 | A | A | A | [29] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 7.7 | 8.0 | 1 | A | A | [30] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 10.0 | 5–7 | 1 | A | A | A | [31] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 7.7 | 4.9–8.9 | 1 | A | A | A | [32] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 9.3 | 10.3 | 1 | B | B | A | [33] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 8.5 | 6.5–9.5 | 1 | B | B | A | [34] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 1.9 | 8.0 | 1 | B | B | A | A | [35] | ||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 4.8 | 7.3 | 2 | B | A | [36] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 8.3 | 7.3–9.3 | 1 | B | A | A | [37] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 8.0 | 5.0 | 2 | A | A | [38] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 10.0 | 11.0 | 1 | A | A | [39] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 5.1 | 9.8 | 1 | A | B | [40] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 4.5 | 8.0 | 1 | B | B | [41] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 7.5 | 9.8 | 1 | A | A | A | [42] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 9.3 | 7.0 | 1 | C | B | A | [43] | |||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 8.4 | 3.5–4.5 | 3 | A | A | A | A | [44] | ||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 8.7 | 9.5 | 1 | B | B | [45] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 3.3 | 5.0 | 1 | A | A | [46] | ||||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 9.4 | 9.3 | 1 | A | A | C | A | [47] | ||||||||||||||||||||||||||||||||||||||
◆ | ◆ | ◆ | bp | 9.3 | 5.6 | 1 | A | A | A | [48] |
No. | Age–Year | Host Organism | Type of Infection | Delivery | Phage(s) Used | Outcome |
---|---|---|---|---|---|---|
[1] | 66 | MDR Klebsiella pneumoniae | Urinary tract infections | Irrigated simultaneously via the kidney and bladder | A two-phage cocktail (ΦJD902 + ΦJD905) and a three-phage cocktail (ΦJD905 + ΦJD907 + ΦJD908), combined with antibiotic treatment | Discharged and did not recur after two months of follow-up |
[2] | 65 | Complex pan-resistant Klebsiella pneumoniae | Urinary tract infections | Bladder infusion | A four-phage cocktail (117, 135, 178, and GD168 phage) and a three-phage cocktail (130, 131, and 909 phage) | Pan-resistant Klebsiella pneumoniae was cleared and bladder infection was significantly improved. |
[3] | Patient 1: 62 Patient 2: 64 Patient 3: 81 Patient 4: 78 | Carbapenem-resistant Acinetobacter baumannii (CRAB) | Pulmonary infection | Via nebulization | A phage cocktail (2Φ) | Patient 1 and Patient 2: Discharged Patient 3: CRAB was eliminated but an un-subdued Carbapenem-resistant CRKP infection was followed and died on day 10 Patient 4: Discharged from ICU Day 7, however died of respiratory failure a month. |
[4] | 54 | Klebsiella pneumoniae | Pulmonary infection | Via nebulization | Single-phage preparation (Φ59) | The symptoms of cough and expectoration were improved, and the inflammatory reaction was reduced |
[5] | 82 | Carbapenem-resistant Acinetobacter baumannii (CRAB) and Carbapenem-resistant Pseudomon asaeruginosa (CRPA) | Pulmonary infection | Via nebulization | A two-phage cocktail (ΦPA3 + ΦPA39) and single-phage preparation (ΦAB3), combined with antibiotic treatment | The pulmonary infection was significantly improved |
[6] | 88 | Carbapenem-resistant Acinetobacter baumannii (CRAB) | Pulmonary infection | Via nebulization | Single-phage preparation (Ab_SZ3), combined with antibiotic treatment | CRAB was cleared and the pulmonary infection was significantly improved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Qi, Y.; Yu, H.; Sun, W.; Raza, S.H.A.; Alkhorayef, N.; Alkhalil, S.S.; Salama, E.E.A.; Zhang, L. Bacteriophage Therapy as an Application for Bacterial Infection in China. Antibiotics 2023, 12, 417. https://doi.org/10.3390/antibiotics12020417
Liang S, Qi Y, Yu H, Sun W, Raza SHA, Alkhorayef N, Alkhalil SS, Salama EEA, Zhang L. Bacteriophage Therapy as an Application for Bacterial Infection in China. Antibiotics. 2023; 12(2):417. https://doi.org/10.3390/antibiotics12020417
Chicago/Turabian StyleLiang, Shuang, Yanling Qi, Huabo Yu, Wuwen Sun, Sayed Haidar Abbas Raza, Nada Alkhorayef, Samia S. Alkhalil, Essam Eldin Abdelhady Salama, and Lei Zhang. 2023. "Bacteriophage Therapy as an Application for Bacterial Infection in China" Antibiotics 12, no. 2: 417. https://doi.org/10.3390/antibiotics12020417
APA StyleLiang, S., Qi, Y., Yu, H., Sun, W., Raza, S. H. A., Alkhorayef, N., Alkhalil, S. S., Salama, E. E. A., & Zhang, L. (2023). Bacteriophage Therapy as an Application for Bacterial Infection in China. Antibiotics, 12(2), 417. https://doi.org/10.3390/antibiotics12020417