The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii
Abstract
:1. Introduction
2. Results
2.1. Biofilm Formation Ability of A. baumannii Isolates and Enterobacterial Repetitive Intergenic Consensus (ERIC) Genotyping
2.2. The Effect of Efflux Pump Substrate and Efflux Pump Inhibitor on Biofilm Phenotype by A. baumannii Isolates
2.2.1. Efflux Pump Substrate (Levofloxacin)
Isolate Number | MIC (µg/mL) | MIC + CCCP (µg/mL) | Phenotypic Factor (F) # CCCP | Resistance Phenotype † (−/+ CCCP) |
---|---|---|---|---|
A. baumannii ATCC 19606 | 1 | 1 | 1 | S/S |
4 | 64 | 32 | 2 | R/R |
7 | 8 | 4 | 2 | R/R |
12 | 8 | 4 | 2 | R/R |
14 | 64 | 32 | 2 | R/R |
15 | 8 | 4 | 2 | R/R |
22 | 4 | 1 | 4 * | R/S |
23 | 8 | 1 | 8 * | R/S |
24 | 64 | 1 | 64 * | R/S |
25 | 8 | 1 | 8 * | R/S |
26 | 64 | 1 | 64 * | R/S |
27 | 4 | 1 | 4 * | R/S |
28 | 256 | 128 | 2 | R/R |
29 | 256 | 128 | 2 | R/R |
30 | 256 | 1 | 256 * | R/S |
32 | 64 | 8 | 8 * | R/R |
33 | 16 | 4 | 4 * | R/R |
35 | 32 | 8 | 4 * | R/R |
36 | 32 | 1 | 32 * | R/S |
37 | 32 | 16 | 2 | R/R |
39 | 8 | 1 | 8 * | R/S |
40 | 64 | 32 | 2 | R/R |
41 | 128 | 32 | 4 * | R/R |
43 | 4 | 2 | 2 | R/I |
44 | 32 | 16 | 2 | R/R |
45 | 16 | 2 | 8 * | R/I |
2.2.2. Efflux Pump Inhibitor (CCCP)
2.3. Expression Levels of the adeB, adeG, and adeJ Efflux Pump Genes in Planktonic and Biofilm Cells Using Quantitative Real-Time PCR (qRT-PCR)
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Assessment of the Biofilm Forming Ability of Isolates
4.3. Evaluation of the Role of Efflux Pumps on Biofilm Formation Phenotypes
4.4. Detection of the Efflux Pump Genes adeABC, adeFGH, and adeIJK
Primer | Sequence 5′—3′ | Annealing Temperature (°C) | Ampilicon Size bp | Reference |
---|---|---|---|---|
adeB | F: GCAGAGCGTACTCGGAATGT R:CCACTGAAACCCCATCCCAA | 57 | 101 | [47] |
adeG | F:GCGTTGCTGTGACAGATGTT R:TTGTGCACGGACCTGATAAA | 52 | 104 | [5] |
adeJ | F:TTCGGTGGCTCATACGCAAT R:GGAGCACCACCTAACTGACC | 57 | 137 | [47] |
16s rRNA | F:AGCTAACGCGATAAGTAGACCG R:TGTCAAGGCCAGGTAAGGTTC | 57 | 137 | [47] |
4.5. Extraction of Total Bacterial RNA from Planktonic and Biofilm Forming Cells
4.6. Quantification of the Expression of the RND Efflux Pump Genes (adeB, adeG, adeJ) in Biofilm and Planktonic Forms Using RT-qPCR
4.7. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.-R.; Shin, D.-S.; Jang, H.-I.; Eom, Y.-B. Anti-biofilm and anti-virulence effects of zerumbone against Acinetobacter baumannii. Microbiology 2020, 166, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Rasslan, F.; Hassan, S.S.; Ashour, H.M.; El-Rahman, O.A.A. Co-Existence of Carbapenemase-Encoding Genes in Acinetobacter baumannii from Cancer Patients. Infect. Dis. Ther. 2021, 10, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Zafer, M.M.; Hussein, A.F.A.; Al-Agamy, M.H.; Radwan, H.H.; Hamed, S.M. Genomic Characterization of Extensively Drug-Resistant NDM-Producing Acinetobacter baumannii Clinical Isolates With the Emergence of Novel blaADC-257. Front. Microbiol. 2021, 12, 736982. [Google Scholar] [CrossRef] [PubMed]
- Kengkla, K.; Kongpakwattana, K.; Saokaew, S.; Apisarnthanarak, A.; Chaiyakunapruk, N. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Antimicrob. Chemother. 2018, 73, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Nowak, J.; Seifert, H.; Higgins, P. Prevalence of eight resistance-nodulation-division efflux pump genes in epidemiologically characterized Acinetobacter baumannii of worldwide origin. J. Med. Microbiol. 2015, 64, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-M.; Park, G.; Ko, Y.J.; Kang, S.-H.; Jang, S.J. Relationships between Relative Expression of RND Efflux Pump Genes, H33342 Efflux Activity, Biofilm-Forming Activity, and Antimicrobial Resistance in Acinetobacter baumannii Clinical Isolates. Jpn. J. Infect. Dis. 2021, 74, 499–506. [Google Scholar] [CrossRef]
- Navidifar, T.; Amin, M.; Rashno, M. Effects of sub-inhibitory concentrations of meropenem and tigecycline on the expression of genes regulating pili, efflux pumps and virulence factors involved in biofilm formation by Acinetobacter baumannii. Infect. Drug Resist. 2019, 12, 1099–1111. [Google Scholar] [CrossRef] [Green Version]
- Kornelsen, V.; Kumar, A. Update on Multidrug Resistance Efflux Pumps in Acinetobacter spp. Antimicrob. Agents Chemother. 2021, 65, e00514-21. [Google Scholar] [CrossRef]
- Abdi, S.N.; Ghotaslou, R.; Ganbarov, K.; Mobed, A.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect. Drug Resist. 2020, 13, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Hassan, K.A.; Liu, Q.; Elbourne, L.D.; Ahmad, I.; Sharples, D.; Naidu, V.; Chan, C.L.; Li, L.; Harborne, S.P.; Pokhrel, A.; et al. Pacing across the membrane: The novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res. Microbiol. 2018, 169, 450–454. [Google Scholar] [CrossRef]
- Barnie, P.A.; Xing, L.; Su, Z.; Xu, H. Development of Efflux Pumps and Inhibitors (EPIs) in A. baumanii. Clin. Microbiol. Open Access 2014, 3, 1. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Chabane, Y.N.; Goussard, S.; Snesrud, E.; Courvalin, P.; Dé, E.; Grillot-Courvalin, C. Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii. Mbio 2015, 6, e00309-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Li, H.; Wen, H.; Zhao, B.; Niu, Y.; Mo, Q.; Wu, Y. Biofilm formation in Acinetobacter baumannii was inhibited by PAβN while it had no association with antibiotic resistance. Microbiologyopen 2020, 9, e1063. [Google Scholar] [CrossRef]
- Singh, H.; Thangaraj, P.; Chakrabarti, A. Acinetobacter baumannii: A Brief Account of Mechanisms of Multidrug Resistance and Current and Future Therapeutic Management. J. Clin. Diagn. Res. 2013, 7, 2602–2605. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H.; Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta 2009, 1794, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Leus, I.V.; Adamiak, J.; Trinh, A.N.; Smith, R.D.; Smith, L.; Richardson, S.; Ernst, R.K.; Zgurskaya, H.I. Inactivation of AdeABC and AdeIJK efflux pumps elicits specific nonoverlapping transcriptional and phenotypic responses in Acinetobacter baumannii. Mol. Microbiol. 2020, 114, 1049–1065. [Google Scholar] [CrossRef]
- Damier-Piolle, L.; Magnet, S.; Brémont, S.; Lambert, T.; Courvalin, P. AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2008, 52, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Coyne, S.; Guigon, G.; Courvalin, P.; Périchon, B. Screening and Quantification of the Expression of Antibiotic Resistance Genes in Acinetobacter baumannii with a Microarray. Antimicrob. Agents Chemother. 2010, 54, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Zaki, M.E.S.; ElKheir, N.A.; Mofreh, M. Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of Acintobacter baumannii Resistant to Fluoroquinolone. Open Microbiol. J. 2018, 12, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Alkasaby, N.M.; Zaki, M.E.S. Molecular Study of Acinetobacter baumannii Isolates for Metallo-β-Lactamases and Extended-Spectrum-β-Lactamases Genes in Intensive Care Unit, Mansoura University Hospital, Egypt. Int. J. Microbiol. 2017, 2017, 3925868. [Google Scholar] [CrossRef] [Green Version]
- Al-Agamy, M.H.; Khalaf, N.G.; Tawfick, M.M.; Shibl, A.M.; Kholy, A.E. Molecular characterization of carbapenem-insensitive Acinetobacter baumannii in Egypt. Int. J. Infect. Dis. 2014, 22, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekyere, J.O.; Amoako, D.G. Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) Reverses Resistance to Colistin, but Not to Carbapenems and Tigecycline in Multidrug-Resistant Enterobacteriaceae. Front. Microbiol. 2017, 8, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Ling, B.-D.; Li, X.-Z. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii–Acinetobacter calcoaceticus complex. Int. J. Antimicrob. Agents 2009, 33, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chatterjee, S.; Bhattacharjee, A.; Chattopadhyay, P.; Saha, B.; Dutta, S.; Basu, S. Overexpression of Efflux Pumps, Mutations in the Pumps’ Regulators, Chromosomal Mutations, and AAC(6′)-Ib-cr Are Associated with Fluoroquinolone Resistance in Diverse Sequence Types of Neonatal Septicaemic Acinetobacter baumannii: A 7-Year Single Center Study. Front. Microbiol. 2021, 12, 602724. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lu, F.; Yuan, F.; Jiang, D.; Zhao, P.; Zhu, J.; Cheng, H.; Cao, J.; Lu, G. Biofilm Formation Caused by Clinical Acinetobacter baumannii Isolates Is Associated with Overexpression of the AdeFGH Efflux Pump. Antimicrob. Agents Chemother. 2015, 59, 4817–4825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, K. Outer Membranes and Efflux: The Path to Multidrug Resistance in Gram—Negative Bacteria. Curr. Pharm. Biotechnol. 2002, 3, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.; Baker, S. Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii: Acinetobacter baumannii therapeutics. J. Infect. 2020, 81, 857–861. [Google Scholar] [CrossRef]
- Amin, M.; Navidifar, T.; Shooshtari, F.S.; Rashno, M.; Savari, M.; Jahangirmehr, F.; Arshadi, M. Association Between Biofilm Formation, Structure, and the Expression Levels of Genes Related to biofilm formation and Biofilm-Specific Resistance of Acinetobacter baumannii Strains Isolated from Burn Infection in Ahvaz, Iran. Infect. Drug Resist. 2019, 12, 3867–3881. [Google Scholar] [CrossRef] [Green Version]
- Choquet, M.; Lohou, E.; Pair, E.; Sonnet, P.; Mullié, C. Efflux Pump Overexpression Profiling in Acinetobacter baumannii and Study of New 1-(1-Naphthylmethyl)-Piperazine Analogs as Potential Efflux Inhibitors. Antimicrob. Agents Chemother. 2021, 65, e00710-21. [Google Scholar] [CrossRef]
- Pérez-Varela, M.; Corral, J.; Aranda, J.; Barbé, J. Functional Characterization of AbaQ, a Novel Efflux Pump Mediating Quinolone Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2018, 62, e00906-18. [Google Scholar] [CrossRef] [Green Version]
- Su, X.-Z.; Chen, J.; Mizushima, T.; Kuroda, T.; Tsuchiya, T. AbeM, an H + -Coupled Acinetobacter baumannii Multidrug Efflux Pump Belonging to the MATE Family of Transporters. Antimicrob. Agents Chemother. 2005, 49, 4362–4364. [Google Scholar] [CrossRef] [Green Version]
- Leus, I.V.; Weeks, J.W.; Bonifay, V.; Smith, L.; Richardson, S.; Zgurskaya, H.I. Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of Acinetobacter baumannii. J. Bacteriol. 2018, 200, e00049-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, G.E.; Evans, L.P.; Anderson, M.J.; Wand, M.E.; Bonney, L.C.; Ivens, A.; Chua, K.L.; Webber, M.A.; Sutton, J.M.; Peterson, M.L.; et al. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner. Mbio 2016, 7, e00430-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, E.-J.; Courvalin, P.; Grillot-Courvalin, C. RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations. Antimicrob. Agents Chemother. 2013, 57, 2989–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, E.-J.; Balloy, V.; Fiette, L.; Chignard, M.; Courvalin, P.; Grillot-Courvalin, C. Contribution of the Ade Resistance-Nodulation-Cell Division-Type Efflux Pumps to Fitness and Pathogenesis of Acinetobacter baumannii. Mbio 2016, 7, e00697-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Cao, J.; Zhou, C.; Liu, H.; Zhang, X.; Zhou, T. Biofilm Formation Restrained by Subinhibitory Concentrations of Tigecyclin in Acinetobacter baumannii Is Associated with Downregulation of Efflux Pumps. Chemotherapy 2017, 62, 128–133. [Google Scholar] [CrossRef]
- Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018, 73, 2003–2020. [Google Scholar] [CrossRef] [Green Version]
- Hershberg, R. Antibiotic-Independent Adaptive Effects of Antibiotic Resistance Mutations. Trends Genet. 2017, 33, 521–528. [Google Scholar] [CrossRef]
- Jung, H.-W.; Kim, K.; Islam, M.M.; Lee, J.C.; Shin, M. Role of ppGpp-regulated efflux genes in Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 1130–1134. [Google Scholar] [CrossRef]
- Lin, M.-F.; Lin, Y.-Y.; Yeh, H.-W.; Lan, C.-Y. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol. 2014, 14, 119. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.; Crane, B.; Powell, D.; Lucas, D.D.; Li, Z.; Aranda, J.; Harrison, P.; Nation, R.L.; Adler, B.; Harper, M.; et al. The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J. Antimicrob. Chemother. 2015, 70, 1303–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, D.; Zhanel, G.; Kumar, A. Antibiotic Resistance and Expression Of Resistance-Nodulation-Division Pump- and Outer Membrane Porin-Encoding Genes inAcinetobacterSpecies Isolated from Canadian Hospitals. Can. J. Infect. Dis. Med. Microbiol. 2013, 24, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amer, M.; Wasfi, R.; Attia, A.; Ramadan, M. Indole Derivatives Obtained from Egyptian Enterobacter sp. Soil Isolates Exhibit Antivirulence Activities against Uropathogenic Proteus mirabilis. Antibiotics 2021, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Yaikhan, T.; Chuerboon, M.; Tippayatham, N.; Atimuttikul, N.; Nuidate, T.; Yingkajorn, M.; Tun, A.W.; Buncherd, H.; Tansila, N. Indole and Derivatives Modulate Biofilm Formation and Antibiotic Tolerance of Klebsiella pneumoniae. Indian J. Microbiol. 2019, 59, 460–467. [Google Scholar] [CrossRef]
- Sanchez-Carbonel, A.; Mondragón, B.; López-Chegne, N.; Peña-Tuesta, I.; Huayan-Dávila, G.; Blitchtein, D.; Carrillo-Ng, H.; Silva-Caso, W.; Aguilar-Luis, M.A.; del Valle-Mendoza, J. The effect of the efflux pump inhibitor Carbonyl Cyanide m-Chlorophenylhydrazone (CCCP) on the susceptibility to imipenem and cefepime in clinical strains of Acinetobacter baumannii. PLoS ONE 2021, 16, e0259915. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, A.; Tsakris, A.; Kanellopoulou, M.; Maniatis, A.; Pournaras, S. Effect of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development. Lett. Appl. Microbiol. 2008, 47, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; He, X.; Ding, F.; Wu, W.; Luo, Y.; Fan, B.; Cao, H. Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infect. Drug Resist. 2018, 11, 457–467. [Google Scholar] [CrossRef] [Green Version]
ERIC Cluster Group | Isolate Number | Biofilm Formation Pattern |
---|---|---|
A | 25 | Strong |
30 | Strong | |
B | 7 | Weak |
9 | Weak | |
37 | Weak | |
C | 22 | Strong |
27 | Moderate | |
39 | Strong | |
43 | Strong | |
D | 1 | Moderate |
26 | Moderate | |
44 | Moderate | |
45 | Moderate | |
47 | Moderate | |
E | 32 | Moderate |
33 | Moderate | |
46 | Moderate | |
F | 31 | Moderate |
35 | Moderate | |
G | 3 | Weak |
6 | Weak | |
24 | Non-Adherent | |
28 | Strong | |
29 | Weak | |
36 | Non-Adherent | |
40 | Non-Adherent | |
41 | Non-Adherent | |
H | 2 | Weak |
4 | Strong | |
14 | Weak | |
15 | Weak | |
23 | Strong | |
I | 12 | Weak |
21 | Weak |
ERIC Cluster Group | Isolate Number | BFI # | Biofilm Formation Pattern | BFI with Sub-MIC of Levofloxacin (Fold Change) | BFI with CCCP (Fold Change) |
---|---|---|---|---|---|
A | 25 # | 2.60 | Strong | 2.30(0.91) | 2.20 (0.88) |
30 | 1.30 | Strong | 1.24 (0.92) | 1.04 (0.80) | |
B | 7 # | 0.70 | Weak | 0.95 (1.35) * | 0.70 (1.00) |
9 | 0.70 | Weak | 0.73 (1.05) | 0.80 (1.17) | |
37 | 0.60 | Weak | 0.54 (0.90) | 0.61 (1.02) | |
C | 22 | 1.27 | Strong | 1.10 (0.90) | 1.20 (0.94) |
27 # | 2.37 | Moderate | 2.48 (1.05) | 2.08 (0.88) * | |
39 | 1.43 | Strong | 1.37 (0.89) | 1.43 (1.00) | |
43 | 1.10 | Strong | 0.99 (0.90) | 1.10 (0.90) * | |
D | 1 | 0.80 | Moderate | 0.84 (1.05) | 0.90 (1.12) |
26 | 0.70 | Moderate | 0.88 (1.26) * | 1.24 (1.77) | |
44 | 0.90 | Moderate | 1.80 (2.00) ** | 0.85 (0.95) | |
45 # | 0.79 | Moderate | 0.86 (1.08) | 0.66 (0.83) * | |
47 | 0.90 | Moderate | 1.00 (1.10) | 0.80 (0.88) | |
E | 32 | 0.95 | Moderate | 0.90 (0.94) | 0.95 (1.00) |
33 # | 0.96 | Moderate | 0.86 (0.90) | 0.96 (1.00) | |
46 | 0.80 | Moderate | 0.90 (1.12) | 0.85 (1.06) | |
F | 31 | 0.90 | Moderate | 0.95 (1.05) | 1.00 (1.10) |
35 # | 1.68 | Moderate | 1.39 (0.83) | 1.30 (0.78) | |
G | 3 | 0.65 | Weak | 0.70 (1.07) | 0.80 (1.23) |
6 | 0.60 | Weak | 0.65 (1.08) | 0.58 (0.96) | |
24 | 0.29 | Non-Adherent | 0.28 (0.99) | 0.49 (1.70) | |
28 # | 1.50 | Strong | 1.48 (0.98) | 1.29 (0.86) * | |
29 | 0.62 | Weak | 0.56 (0.90) | 0.62 (1.00) | |
36 # | 0.29 | Non-Adherent | 0.46 (1.30) * | 0.29 (1.00) | |
40 | 0.04 | Non-Adherent | 0.19 (5.00) * | 0.035 (0.90) | |
41 | 0.11 | Non-Adherent | 0.27 (2.50) ** | 0.09 (0.90) | |
H | 2 | 0.60 | Weak | 0.64 (1.08) | 0.67 (1.12) |
4 # | 2.00 | Strong | 1.78 (0.89) | 2.34 (1.17) | |
14 | 0.55 | Weak | 0.48 (0.89) | 0.42 (0.76) | |
15 | 0.59 | Weak | 0.87 (1.49) * | 0.67 (0.40) * | |
23 # | 2.40 | Strong | 2.16 (0.90) | 0.79 (0.33) * | |
I | 12 # | 0.52 | Weak | 0.58 (1.13) | 0.42 (0.80) |
21 | 0.50 | Weak | 0.60 (1.20) | 0.55 (1.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Rahman, O.A.; Rasslan, F.; Hassan, S.S.; Ashour, H.M.; Wasfi, R. The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii. Antibiotics 2023, 12, 419. https://doi.org/10.3390/antibiotics12020419
Abd El-Rahman OA, Rasslan F, Hassan SS, Ashour HM, Wasfi R. The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii. Antibiotics. 2023; 12(2):419. https://doi.org/10.3390/antibiotics12020419
Chicago/Turabian StyleAbd El-Rahman, Ola A., Fatma Rasslan, Safaa S. Hassan, Hossam M. Ashour, and Reham Wasfi. 2023. "The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii" Antibiotics 12, no. 2: 419. https://doi.org/10.3390/antibiotics12020419
APA StyleAbd El-Rahman, O. A., Rasslan, F., Hassan, S. S., Ashour, H. M., & Wasfi, R. (2023). The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii. Antibiotics, 12(2), 419. https://doi.org/10.3390/antibiotics12020419