Epidemiological Characteristics and Antimicrobial Resistance Changes of Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii under the COVID-19 Outbreak: An Interrupted Time Series Analysis in a Large Teaching Hospital
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Setting
4.2. Data Collection
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onorato, L.; Sarnelli, B.; D'Agostino, F.; Signoriello, G.; Trama, U.; D'Argenzio, A.; Montemurro, M.V.; Coppola, N. Epidemiological, Clinical and Microbiological Characteristics of Patients with Bloodstream Infections Due to Carbapenem-Resistant K. Pneumoniae in Southern Italy: A Multicentre Study. Antibiotics 2022, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Alon, D.; Mudrik, H.; Chowers, M.; Shitrit, P. Control of a hospital-wide outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) using the Israeli national carbapenem-resistant Enterobacteriaceae (CRE) guidelines as a model. Infect. Control Hosp. Epidemiol. 2020, 41, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis. Emerg. Microbes Infect. 2022, 11, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Barnsteiner, S.; Baty, F.; Albrich, W.C.; Babouee Flury, B.; Gasser, M.; Plüss-Suard, C.; Schlegel, M.; Kronenberg, A.; Kohler, P. Antimicrobial resistance and antibiotic consumption in intensive care units, Switzerland, 2009 to 2018. Euro Surveill 2021, 26, 2001537. [Google Scholar] [CrossRef]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/drugresistance/covid19.html (accessed on 13 November 2022).
- Akova, M.; Daikos, G.L.; Tzouvelekis, L.; Carmeli, Y. Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria. Clin. Microbiol. Infect. 2012, 18, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Khan, S.; Hasan, S.S.; Bond, S.E.; Conway, B.R.; Aldeyab, M.A. Antimicrobial consumption in patients with COVID-19: A systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2022, 20, 749–772. [Google Scholar] [CrossRef]
- Lucien, M.A.B.; Canarie, M.F.; Kilgore, P.E.; Jean-Denis, G.; Fénélon, N.; Pierre, M.; Cerpa, M.; Joseph, G.A.; Maki, G.; Zervos, M.J.; et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int. J. Infect. Dis. 2021, 104, 250–254. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef]
- Wozniak, T.M.; Cuningham, W.; Ledingham, K.; McCulloch, K. Contribution of socio-economic factors in the spread of antimicrobial resistant infections in Australian primary healthcare clinics. J. Glob. Antimicrob. Resist. 2022, 30, 294–301. [Google Scholar] [CrossRef]
- Kusama, Y.; Ishiwada, N. Measures Against Antimicrobial Resistance in Children in Japan: Current Status and Future Prospects. Pediatr. Infect. Dis. J. 2022, 41, e383–e387. [Google Scholar] [CrossRef]
- Wang, J.; Lv, Y.; Yang, W.; Zhao, P.; Yin, C. Epidemiology and clinical characteristics of infection/colonization due to carbapenemase-producing Enterobacterales in neonatal patients. BMC Microbiol. 2022, 22, 177. [Google Scholar] [CrossRef]
- Fischer, P.; Pandrea, S.; Dan Grigorescu, M.; Stefanescu, H.; Tefas, C.; Hadade, A.; Procopet, B.; Ionescu, D. The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. Dig. Liver Dis. 2022, 54, 1385–1391. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Choi, J.S.; Croney, C.M.; Park, K.S.; Park, H.J.; Cho, J.; Son, S.; Kim, J.Y.; Choi, S.H.; et al. The Changes in Epidemiology of Imipenem-Resistant Acinetobacter baumannii Bacteremia in a Pediatric Intensive Care Unit for 17 Years. J. Korean Med. Sci. 2022, 37, e196. [Google Scholar] [CrossRef]
- Liu, C.; Chen, K.; Wu, Y.; Huang, L.; Fang, Y.; Lu, J.; Zeng, Y.; Xie, M.; Chan, E.W.C.; Chen, S.; et al. Epidemiological and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii strains collected countrywide from hospital intensive care units (ICUs) in China. Emerg. Microbes Infect. 2022, 11, 1730–1741. [Google Scholar] [CrossRef]
- Sligl, W.I.; Dragan, T.; Smith, S.W. Nosocomial Gram-negative bacteremia in intensive care: Epidemiology, antimicrobial susceptibilities, and outcomes. Int. J. Infect. Dis. 2015, 37, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect? Clin. Infect. Dis. 2020, 71, 2736–2743. [Google Scholar] [CrossRef]
- Pascale, R.; Bussini, L.; Gaibani, P.; Bovo, F.; Fornaro, G.; Lombardo, D.; Ambretti, S.; Pensalfine, G.; Appolloni, L.; Bartoletti, M.; et al. Carbapenem-resistant bacteria in an intensive care unit during the coronavirus disease 2019 (COVID-19) pandemic: A multicenter before-and-after cross-sectional study. Infect. Control Hosp. Epidemiol. 2022, 43, 461–466. [Google Scholar] [CrossRef]
- Wang, M.; Earley, M.; Chen, L.; Hanson, B.M.; Yu, Y.; Liu, Z.; Salcedo, S.; Cober, E.; Li, L.; Kanj, S.S.; et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): A prospective, multicentre, cohort study. Lancet Infect. Dis. 2022, 22, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Rossolini, G.M.; Schultsz, C.; Tacconelli, E.; Murthy, S.; Ohmagari, N.; Holmes, A.; Bachmann, T.; Goossens, H.; Canton, R.; et al. Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2021, 25, 5–7. [Google Scholar] [CrossRef]
- De Waele, J.J.; Derde, L.; Bassetti, M. Antimicrobial stewardship in ICUs during the COVID-19 pandemic: Back to the 90s? Intensive Care Med. 2021, 47, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Tiri, B.; Sensi, E.; Marsiliani, V.; Cantarini, M.; Priante, G.; Vernelli, C.; Martella, L.A.; Costantini, M.; Mariottini, A.; Andreani, P.; et al. Antimicrobial Stewardship Program, COVID-19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? J. Clin. Med. 2020, 9, 2744. [Google Scholar] [CrossRef] [PubMed]
- Wee, L.E.I.; Conceicao, E.P.; Tan, J.Y.; Magesparan, K.D.; Amin, I.B.M.; Ismail, B.B.S.; Toh, H.X.; Jin, P.; Zhang, J.; Wee, E.G.L.; et al. Unintended consequences of infection prevention and control measures during COVID-19 pandemic. Am. J. Infect. Control 2021, 49, 469–477. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Shen, Z.; Zhou, H.; Cao, J.; Chen, S.; Lv, H.; Zhou, M.; Wang, Q.; Sun, L.; et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018. Emerg. Microbes Infect. 2020, 9, 1771–1779. [Google Scholar] [CrossRef]
- Yan, M.; Zheng, B.; Li, Y.; Lv, Y. Antimicrobial Susceptibility Trends Among Gram-Negative Bacilli Causing Bloodstream Infections: Results from the China Antimicrobial Resistance Surveillance Trial (CARST) Program, 2011–2020. Infect. Drug Resist. 2022, 15, 2325–2337. [Google Scholar] [CrossRef]
- Shami, A.; Al-Mijalli, S.; Pongchaikul, P.; Al-Barrag, A.; AbduRahim, S. The prevalence of the culturable human skin aerobic bacteria in Riyadh, Saudi Arabia. BMC Microbiol. 2019, 19, 189. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, Z.; Zhang, X.; Pan, L.; Wu, Q.; Wang, M.; Zhang, Y.; Li, F. Analysis of pathogens and risk factors of secondary pulmonary infection in patients with COVID-19. Microb. Pathog. 2021, 156, 104903. [Google Scholar] [CrossRef]
- Dinakaran, D.; Manjunatha, N.; Naveen Kumar, C.; Suresh, B.M. Neuropsychiatric aspects of COVID-19 pandemic: A selective review. Asian J. Psychiatr. 2020, 53, 102188. [Google Scholar] [CrossRef]
- CLSI Supplement M100. Clinical and Laboratory Standards Institute; 2022. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 13 November 2022).
2018 | 2019 | 2020 | 2021 | Total | |||||
---|---|---|---|---|---|---|---|---|---|
n (% a) | CARSS | n (%) | CARSS | n (%) | CARSS | n (%) | CARSS | ||
K. pneumoniae | 535 (11.78%) | 465,322 (14.39%) | 722 (11.01%) | 503,230 (14.26%) | 572 (9.94%) | 482,330 (14.84%) | 666 (12.77%) | - | 2495 (11.31%) |
A. baumannii | 600 (13.21%) | 227,091 (7.02%) | 667 (10.17%) | 239,890 (6.80%) | 557 (9.70%) | 219,921 (6.77%) | 416 (7.97%) | - | 2240 (10.15%) |
Number of isolates of all species | 4542 | 3,234,372 | 6558 | 3,528,471 | 5745 | 3,249,123 | 5217 | - | 22062 |
Outcomes | Coefficient | Standard Error | t (z) | p-Value |
---|---|---|---|---|
Number of Acinetobacter baumannii detected (DW = 1.357) | ||||
Baseline level (β0) | 3.5561 | 0.0532 | 66.822 | <0.001 |
Baseline trend (β1) | −0.0103 | 0.0021 | −4.891 | <0.001 |
Level change after COVID-19 (β2) | −0.4436 | 0.1894 | −2.343 | <0.05 |
Trend change after COVID-19 (β3) | 0.009 | 0.0033 | 2.796 | <0.01 |
Resistance rate of CRAB (DW = 1.949) | ||||
Baseline level (β0) | 0.7712 | 0.0443 | 17.404 | <0.001 |
Baseline trend (β1) | −0.0008 | 0.0015 | −0.527 | 0.600 |
Level change after COVID-19 (β2) | 0.3873 | 0.1685 | 2.299 | <0.05 |
Trend change after COVID-19 (β3) | −0.0060 | 0.0027 | −2.234 | <0.05 |
Number of Klebsiella pneumoniae detected (DW = 1.826) | ||||
Baseline level (β0) | 3.4125 | 0.0552 | 61.831 | <0.001 |
Baseline trend (β1) | −0.0041 | 0.0021 | −2.006 | <0.05 |
Level change after COVID-19 (β2) | −1.4185 | 0.1786 | −7.944 | <0.001 |
Trend change after COVID-19 (β3) | 0.0226 | 0.0031 | 7.318 | <0.001 |
Resistance rate of CRKP (DW = 1.993) | ||||
Baseline level (β0) | 0.1031 | 0.0432 | 2.383 | <0.05 |
Baseline trend (β1) | 0.0029 | 0.0014 | 2.060 | <0.05 |
Level change after COVID-19 (β2) | 0.0115 | 0.1630 | 0.071 | 0.944 |
Trend change after COVID-19 (β3) | −0.0017 | 0.0026 | −0.657 | 0.513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liu, X.; Li, W.; Shi, L.; Zeng, Y.; Xia, H.; Huang, Q.; Li, J.; Li, X.; Hu, B.; et al. Epidemiological Characteristics and Antimicrobial Resistance Changes of Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii under the COVID-19 Outbreak: An Interrupted Time Series Analysis in a Large Teaching Hospital. Antibiotics 2023, 12, 431. https://doi.org/10.3390/antibiotics12030431
Yang X, Liu X, Li W, Shi L, Zeng Y, Xia H, Huang Q, Li J, Li X, Hu B, et al. Epidemiological Characteristics and Antimicrobial Resistance Changes of Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii under the COVID-19 Outbreak: An Interrupted Time Series Analysis in a Large Teaching Hospital. Antibiotics. 2023; 12(3):431. https://doi.org/10.3390/antibiotics12030431
Chicago/Turabian StyleYang, Xinyi, Xu Liu, Weibin Li, Lin Shi, Yingchao Zeng, Haohai Xia, Qixian Huang, Jia Li, Xiaojie Li, Bo Hu, and et al. 2023. "Epidemiological Characteristics and Antimicrobial Resistance Changes of Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii under the COVID-19 Outbreak: An Interrupted Time Series Analysis in a Large Teaching Hospital" Antibiotics 12, no. 3: 431. https://doi.org/10.3390/antibiotics12030431
APA StyleYang, X., Liu, X., Li, W., Shi, L., Zeng, Y., Xia, H., Huang, Q., Li, J., Li, X., Hu, B., & Yang, L. (2023). Epidemiological Characteristics and Antimicrobial Resistance Changes of Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii under the COVID-19 Outbreak: An Interrupted Time Series Analysis in a Large Teaching Hospital. Antibiotics, 12(3), 431. https://doi.org/10.3390/antibiotics12030431