In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci
Abstract
:1. Introduction
2. Results
2.1. Enterococci Identification and Typing
2.2. Enterococci Virulence Signatures
2.3. Enterococci Antimicrobial Resistance Profile
3. Discussion
4. Materials and Methods
4.1. Nisin–Biogel Preparation
4.2. Clinical Trial and Sample Collection
4.3. Enterococci Identification and Typing
Target | Primers | Sequence | Product Size | Reference |
---|---|---|---|---|
Enterococcus spp. | Ent 1 | 5′-TACTGACAAACCATTCATGATG-3′ | 112 bp | [50] |
Ent 2 | 5′-AACTTCGTCACCAACGCGAAC-3′ | |||
E. faecalis | FL1 | 5′-ACTTATGTGACTAACTTAACC-3′ | 360 bp | [56] |
FL2 | 5′-TAATGGTGAATCTTGGTTTGG-3′ | |||
E. faecium | FM1 | 5′-GAAAAAACAATAGAAGAATTAT-3′ | 215 bp | |
FM2 | 5′-TGCTTTTTTGAATTCTTCTTTA-3′ | |||
E. hirae | HI1 | 5′-CTTTCTGATATGGATGCTGTC-3′ | 187 bp | |
HI2 | 5′-TAAATTCTTCCTTAAATGTTG-3′ | |||
E. durans | DU1 | 5′-CCTACTGATATTAAGACAGCG-3′ | 295 bp | |
DU2 | 5′-TAATCCTAAGATAGGTGTTTG-3′ | |||
Genotyping | OPC | 5′-GTTGCCAGCC-3′ | [200–3000] | [8,37] |
(GTG)5 | 5‘-GTGGTGGTGGTGGTG-3′ | [200–3000] |
4.4. Enterococci Virulence Signature
4.5. Enterococci Antimicrobial Resistance Profile
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geraldes, C.; Tavares, L.; Gil, S.; Oliveira, M. Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics 2022, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Coque, T.M.; Franz, C.M.A.P.; Grohmann, E.; Hegstad, K.; Jensen, L.; van Schaik, W.; Weaver, K. Antibiotic Resistant Enterococci—Tales of a Drug Resistance Gene Trafficker. Int. J. Med. Microbiol. 2013, 303, 360–379. [Google Scholar] [CrossRef]
- Cunha, E.; Trovão, T.; Pinheiro, A.; Nunes, T.; Santos, R.; Moreira da Silva, J.; São Braz, B.; Tavares, L.; Veiga, A.S.; Oliveira, M. Potential of Two Delivery Systems for Nisin Topical Application to Dental Plaque Biofilms in Dogs. BMC Vet. Res. 2018, 14, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Pubishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 10 May 2019).
- Kantele, A.; Mero, S.; Kirveskari, J.; Lääveri, T. Fluoroquinolone Antibiotic Users Select Fluoroquinolone-Resistant ESBL-Producing Enterobacteriaceae (ESBL-PE)—Data of a Prospective Traveller Study. Travel Med. Infect. Dis. 2017, 16, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.P.V.; Teles, R.P.; Torres, M.C.; Souto, R.; Rosalém, W.; Mendes, M.C.S.; Uzeda, M. Subgingival Microbiota of Brazilian Subjects With Untreated Chronic Periodontitis. J. Periodontol. 2002, 73, 360–369. [Google Scholar] [CrossRef]
- Souto, R.; Colombo, A.P.V. Prevalence of Enterococcus faecalis in Subgingival Biofilm and Saliva of Subjects with Chronic Periodontal Infection. Arch. Oral Biol. 2008, 53, 155–160. [Google Scholar] [CrossRef]
- Oliveira, M.; Tavares, M.; Gomes, D.; Touret, T.; São Braz, B.; Tavares, L.; Semedo-Lemsaddek, T. Virulence Traits and Antibiotic Resistance among Enterococci Isolated from Dogs with Periodontal Disease. Comp. Immunol. Microbiol. Infect. Dis. 2016, 46, 27–31. [Google Scholar] [CrossRef]
- Bertelloni, F.; Salvadori, C.; Lotti, G.; Cerri, D.; Ebani, V.V. Antimicrobial Resistance in Enterococcus Strains Isolated from Healthy Domestic Dogs. Acta Microbiol. Et Immunol. Hung. 2016, 64, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Stępień-Pyśniak, D.; Bertelloni, F.; Dec, M.; Cagnoli, G.; Pietras-Ożga, D.; Urban-Chmiel, R.; Ebani, V.V. Characterization and Comparison of Enterococcus Spp. Isolates from Feces of Healthy Dogs and Urine of Dogs with UTIs. Animals 2021, 11, 2845. [Google Scholar] [CrossRef]
- Tumpa, A.; Štritof, Z.; Pintarić, S. Prevalence and antimicrobial susceptibility of Enterococcus spp. from urine of dogs and cats in northwestern Croatia. Res. Vet. Sci. 2022, 151, 42–46. [Google Scholar] [CrossRef]
- Stella, J.L.; Bauer, A.E.; Croney, C.C. A cross-sectional study to estimate prevalence of periodontal disease in a population of dogs (Canis familiaris) in commercial breeding facilities in Indiana and Illinois. PLoS ONE 2018, 13, e0191395. [Google Scholar] [CrossRef] [PubMed]
- Kačírová, J.; Maďar, M.; Štrkolcová, G.; Maďari, A.; Nemcová, R. Dental Biofilm as Etiological Agent of Canine Periodontal Disease. In Bacterial Biofilms; Dincer, S., Sümengen Özdenefe, M., Arkut, A., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-899-0. [Google Scholar]
- Pavlica, Z.; Petelin, M.; Juntes, P.; Eržen, D.; Crossley, D.A.; Skalerič, U. Periodontal Disease Burden and Pathological Changes in Organs of Dogs. J. Vet. Dent. 2008, 25, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Glickman, L.T.; Glickman, N.W.; Moore, G.E.; Goldstein, G.S.; Lewis, H.B. Evaluation of the Risk of Endocarditis and Other Cardiovascular Events on the Basis of the Severity of Periodontal Disease in Dogs. JAVMA 2009, 234, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Glickman, L.T.; Glickman, N.W.; Moore, G.E.; Lund, E.M.; Lantz, G.C.; Pressler, B.M. Association between Chronic Azotemic Kidney Disease and the Severity of Periodontal Disease in Dogs. Prev. Vet. Med. 2011, 99, 193–200. [Google Scholar] [CrossRef]
- Pereira dos Santos, J.D.; Cunha, E.; Nunes, T.; Tavares, L.; Oliveira, M. Relation between Periodontal Disease and Systemic Diseases in Dogs. Res. Vet. Sci. 2019, 125, 136–140. [Google Scholar] [CrossRef]
- Howell, T.H.; Fiorellini, J.P.; Blackburn, P.; Projan, S.J.; Harpe, J.; Williams, R.C. The Effect of a Mouthrinse Based on Nisin, a Bacteriocin, on Developing Plaque and Gingivitis in Beagle Dogs. J. Clin. Periodontol. 1993, 20, 335–339. [Google Scholar] [CrossRef]
- Cunha, E.; Rebelo, S.; Carneiro, C.; Tavares, L.; Carreira, L.M.; Oliveira, M. A Polymicrobial Biofilm Model for Testing the Antimicrobial Potential of a Nisin-Biogel for Canine Periodontal Disease Control. BMC Vet. Res. 2020, 16, 469. [Google Scholar] [CrossRef] [PubMed]
- Cunha, E.; Freitas, F.B.; São Braz, B.; Moreira da Silva, J.; Tavares, L.; Veiga, A.S.; Oliveira, M. Polyphasic Validation of a Nisin-Biogel to Control Canine Periodontal Disease. Antibiotics 2020, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Davison, W.M.; Pitts, B.; Stewart, P.S. Spatial and Temporal Patterns of Biocide Action against Staphylococcus Epidermidis Biofilms. Antimicrob. Agents Chemother. 2010, 54, 2920–2927. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Qu, Y.; Liu, J.; Mai, S.; Gu, L. A Universal Adhesive Incorporating Antimicrobial Peptide Nisin: Effects on Streptococcus mutans and Saliva-Derived Multispecies Biofilms. Odontology 2020, 108, 376–385. [Google Scholar] [CrossRef]
- Cunha, E.; Janela, R.; Costa, M.; Tavares, L.; Veiga, A.S.; Oliveira, M. Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci. Antibiotics 2020, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.M.; Ateia, I.; Paulus, J.R.; Liu, H.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Antimicrobial Nisin Acts against Saliva Derived Multi-Species Biofilms without Cytotoxicity to Human Oral Cells. Front. Microbiol. 2015, 6, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, E.; Valente, S.; Nascimento, M.; Pereira, M.; Tavares, L.; Dias, R.; Oliveira, M. Influence of the Dental Topical Application of a Nisin-Biogel in the Oral Microbiome of Dogs: A Pilot Study. PeerJ 2021, 9, e11626. [Google Scholar] [CrossRef] [PubMed]
- Riggio, M.P.; Lennon, A.; Taylor, D.J.; Bennett, D. Molecular Identification of Bacteria Associated with Canine Periodontal Disease. Vet. Microbiol. 2011, 150, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holcombe, L.J.; Patel, N.; Colyer, A.; Deusch, O.; O’Flynn, C.; Harris, S. Early Canine Plaque Biofilms: Characterization of Key Bacterial Interactions Involved in Initial Colonization of Enamel. PLoS ONE 2014, 9, e113744. [Google Scholar] [CrossRef] [Green Version]
- Wallis, C.; Marshall, M.; Colyer, A.; O’Flynn, C.; Deusch, O.; Harris, S. A Longitudinal Assessment of Changes in Bacterial Community Composition Associated with the Development of Periodontal Disease in Dogs. Vet. Microbiol. 2015, 181, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Ruparell, A.; Inui, T.; Staunton, R.; Wallis, C.; Deusch, O.; Holcombe, L.J. The Canine Oral Microbiome: Variation in Bacterial Populations across Different Niches. BMC Microbiol. 2020, 20, 42. [Google Scholar] [CrossRef] [Green Version]
- Cunha, E.; Carreira, L.M.; Nunes, T.; Videira, M.; Tavares, L.; Veiga, A.S.; Oliveira, M. In Vivo Evaluation of the Efficacy of a Nisin–Biogel as a New Approach for Canine Periodontal Disease Control. Pharmaceutics 2022, 14, 2716. [Google Scholar] [CrossRef]
- Kamran, M.A. Clinical, Microbiological and Immunological Outcomes with Photodynamic Therapy as an Adjunct to Full-Mouth Scaling in Patients Undergoing Fixed Orthodontic Treatment. Photodiagnosis Photodyn. Ther. 2020, 29, 101585. [Google Scholar] [CrossRef]
- Elsadek, M.F. Clinical and bacterial outcomes of photodynamic therapy in the treatment of chronic necrotizing ulcerative periodontitis. Photodiagnosis Photodyn. Ther. 2022, 39, 102977. [Google Scholar] [CrossRef] [PubMed]
- Flancman, R.; Singh, A.; Weese, J.S. Evaluation of the Impact of Dental Prophylaxis on the Oral Microbiota of Dogs. PLoS ONE 2018, 13, e0199676. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Ferreira, F.B.; Campos Rabang, H.R.; Pinheiro, E.T.; Gadê-Neto, C.R.; Zaia, A.A.; Randi Ferraz, C.C.; de Souza-Filho, F.J.; de Almeida Gomes, B.P.F. Root Canal Microbiota of Dogs’ Teeth with Periapical Lesions Induced by Two Different Methods. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2006, 102, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Oliveira, M.; Fraqueza, M.J.; Lauková, A.; Elias, M.; Tenreiro, R.; Barreto, A.S.; Semedo-Lemsaddek, T. Antibiotic Resistance and Virulence Factors among Enterococci Isolated from Chouriço, a Traditional Portuguese Dry Fermented Sausage. J. Food Prot. 2011, 74, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Semedo-Lemsaddek, T.; Nóbrega, C.S.; Ribeiro, T.; Pedroso, N.M.; Sales-Luís, T.; Lemsaddek, A.; Tenreiro, R.; Tavares, L.; Vilela, C.L.; Oliveira, M. Virulence Traits and Antibiotic Resistance among Enterococci Isolated from Eurasian Otter (Lutra Lutra). Vet. Microbiol. 2013, 163, 378–382. [Google Scholar] [CrossRef]
- Medeiros, A.W.; Pereira, R.I.; Oliveira, D.V.; Martins, P.D.; d’Azevedo, P.A.; Van der Sand, S.; Frazzon, J.; Frazzon, A.P.G. Molecular Detection of Virulence Factors among Food and Clinical Enterococcus faecalis Strains in South Brazil. Braz. J. Microbiol. 2014, 45, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Semedo-Lemsaddek, T.; Mottola, C.; Alves-Barroco, C.; Cavaco-Silva, P.; Tavares, L.; Oliveira, M. Characterization of Multidrug-Resistant Diabetic Foot Ulcer Enterococci. Enferm. Infecc. Y Microbiol. Clínica 2016, 34, 114–116. [Google Scholar] [CrossRef]
- Alzahrani, O.M.; Fayez, M.; Alswat, A.S.; Alkafafy, M.; Mahmoud, S.F.; Al-Marri, T.; Almuslem, A.; Ashfaq, H.; Yusuf, S. Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics 2022, 11, 380. [Google Scholar] [CrossRef]
- Rotta, I.S.; Rodrigues, W.F.; Dos Santos, C.T.B.; Mantovani, H.C.; De Oliveira, A.G.; Machado, A.B.F.; Paiva, A.D. Clinical isolates of E. faecalis and E. faecium harboring virulence genes show the concomitant presence of CRISPR loci and antibiotic resistance determinants. Microb. Pathog. 2022, 171, 105715. [Google Scholar] [CrossRef]
- Woźniak-Biel, A.; Bugla-Płoskońska, G.; Burdzy, J.; Korzekwa, K.; Ploch, S.; Wieliczko, A. Antimicrobial Resistance and Biofilm Formation in Enterococcus Spp. Isolated from Humans and Turkeys in Poland. Microb. Drug Resist. 2019, 25, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Kubašová, I.; Strompfová, V.; Lauková, A. Safety Assessment of Commensal Enterococci from Dogs. Folia Microbiol. 2017, 62, 491–498. [Google Scholar] [CrossRef]
- Bjarnsholt, T. The Role of Bacterial Biofilms in Chronic Infections. APMIS 2013, 121, 1–58. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial Biofilms: From the Natural Environment to Infectious Diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Balcázar, J.L.; Subirats, J.; Borrego, C.M. The Role of Biofilms as Environmental Reservoirs of Antibiotic Resistance. Front. Microbiol. 2015, 6, 1216. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Ekka, R.; Mishra, M.; Mohapatra, H. Association Study of Multiple Antibiotic Resistance and Virulence: A Strategy to Assess the Extent of Risk Posed by Bacterial Population in Aquatic Environment. Environ. Monit. Assess 2017, 189, 320. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance in Enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Sienko, A.; Wieczorek, P.; Wieczorek, A.; Sacha, P.; Majewski, P.; Ojdana, D.; Michalska, A.; Tryniszewska, E. Occurrence of high-level aminoglycoside resistance (HLAR) among Enterococcus species strains. Prog. Health Sci. 2014, 4, 179–187. [Google Scholar]
- Santos, R.; Gomes, D.; Macedo, H.; Barros, D.; Tibério, C.; Veiga, A.S.; Tavares, L.; Castanho, M.; Oliveira, M. Guar Gum as a New Antimicrobial Peptide Delivery System against Diabetic Foot Ulcers Staphylococcus aureus Isolates. J. Med. Microbiol. 2016, 65, 1092–1099. [Google Scholar] [CrossRef]
- Niemiec, B.A. Periodontal Disease. Top. Companion Anim. Med. 2008, 23, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Bellows, J.; Berg, M.L.; Dennis, S.; Harvey, R.; Lobprise, H.B.; Snyder, C.J.; Stone, A.E.S.; Van de Wetering, A.G. 2019 AAHA Dental Care Guidelines for Dogs and Cats*. J. Am. Anim. Hosp. Assoc. 2019, 55, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Belo, L.; Serrano, I.; Cunha, E.; Carneiro, C.; Tavares, L.; Miguel Carreira, L.; Oliveira, M. Skin Asepsis Protocols as a Preventive Measure of Surgical Site Infections in Dogs: Chlorhexidine–Alcohol versus Povidone–Iodine. BMC Vet. Res. 2018, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Picard, F.J.; Martineau, F.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR Assay for Rapid Detection of Enterococci. J. Clin. Microbiol. 1999, 37, 3497–3503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a Genus- and Species-Specific Multiplex PCR for Identification of Enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New Method for Detecting Slime Production by Coagulase Negative Staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, M.; Grilo, M.L.; Carneiro, C.; Cunha, E.; Tavares, L.; Patino-Martinez, J.; Oliveira, M. Antibiotic Resistance and Virulence Profiles of Gram-Negative Bacteria Isolated from Loggerhead Sea Turtles (Caretta Caretta) of the Island of Maio, Cape Verde. Antibiotics 2021, 10, 771. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Second Informational Supplement VET01-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Tests: M100S, 26th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Krumperman, P.H. Multiple Antibiotic Resistance Indexing of Escherichia coli to Identify High-Risk Sources of Fecal Contamination of Foodst. Appl. Environ. Microbiol. 1983, 46, 6. [Google Scholar] [CrossRef] [Green Version]
Virulence Factor | Control Group | Treatment Group | ||
---|---|---|---|---|
Timepoint 0 | Timepoint 90 | Timepoint 0 | Timepoint 90 | |
Gelatinase | 7 | 4 | 5 | 5 |
Lipase | 14 | 13 | 9 | 18 |
DNase | 0 | 0 | 0 | 0 |
Lecithinase | 7 | 3 | 4 | 5 |
Haemolysin | 10 | 5 | 15 | 12 |
Proteinase | 6 | 3 | 4 | 5 |
Biofilm | 18 | 13 | 17 | 19 |
Total of isolates evaluated | 18 | 13 | 20 | 19 |
Mean virulence index ± SD | 0.49 ± 0.24 | 0.45 ± 0.24 | 0.39 ± 0.24 | 0.48 ± 0.24 |
Control Group | Treatment Group | ||||
---|---|---|---|---|---|
Timepoint 0 | Timepoint 90 | Timepoint 0 | Timepoint 90 | ||
Mean MAR index ± SD | 0.62 ± 0.20 | 0.83 ± 0.15 | 0.40 ± 0.22 | 0.61 ± 0.18 | |
Number of isolates with MDR profile | 18 | 13 | 18 | 19 | |
Number of isolates with HLAR | CN + S | 7 | 9 | 2 | 3 |
CN | 1 | 0 | 1 | 4 | |
S | 3 | 2 | 0 | 3 | |
Total of isolates evaluated | 18 | 13 | 20 | 19 |
Mechanism of Action | Antimicrobial Class | Antimicrobial Drug | Concentration (µg Per Disk) |
---|---|---|---|
Inhibition of cell-wall synthesis | Aminopenicillins | Ampicillin (AMP) | 10 |
Amoxicillin/Clavulanate (AMX) | 30 | ||
Glycopeptides | Vancomycin (VA) | 30 | |
Carbapenems | Imipenem (IMI) | 10 | |
Inhibition of nucleic acid synthesis | Fluoroquinolones | Enrofloxacin (ENR) | 5 |
Inhibition of protein synthesis | Tetracyclines | Tetracycline (T) | 30 |
Doxycycline (DTX) | 30 | ||
Aminoglycosides | Gentamicin (CN) | 120 | |
Streptomycin (S) | 300 | ||
Macrolides | Erythromycin (E) | 15 | |
Lincosamide | Clindamycin (DA) | 2 | |
Nitrobenzenes | Chloramphenicol (C) | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, E.; Ferreira, A.F.; Valente, S.; Matos, A.; Carreira, L.M.; Videira, M.; Chambel, L.; Tavares, L.; Oliveira, M. In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci. Antibiotics 2023, 12, 468. https://doi.org/10.3390/antibiotics12030468
Cunha E, Ferreira AF, Valente S, Matos A, Carreira LM, Videira M, Chambel L, Tavares L, Oliveira M. In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci. Antibiotics. 2023; 12(3):468. https://doi.org/10.3390/antibiotics12030468
Chicago/Turabian StyleCunha, Eva, Ana Filipa Ferreira, Sara Valente, Alice Matos, Luís Miguel Carreira, Marta Videira, Lélia Chambel, Luís Tavares, and Manuela Oliveira. 2023. "In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci" Antibiotics 12, no. 3: 468. https://doi.org/10.3390/antibiotics12030468
APA StyleCunha, E., Ferreira, A. F., Valente, S., Matos, A., Carreira, L. M., Videira, M., Chambel, L., Tavares, L., & Oliveira, M. (2023). In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci. Antibiotics, 12(3), 468. https://doi.org/10.3390/antibiotics12030468