A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin
Abstract
:1. Introduction
2. Chemical Characteristics of Silybin
3. Antibacterial Activity
4. Antifungal Activity
5. Antiviral Activity
6. Antiparasitic Activity
7. Mechanism of Antibacterial Activity
7.1. Inhibition of Efflux Pumps
7.2. Inhibition of Nucleic Acids and Protein Synthesis
7.3. Inhibition of Biofilm Formation and Reduction of Virulence Factor Expression
7.4. Induction of Apoptosis-Like Death
8. Mechanism of Antifungal Activity
9. Mechanism of Antiviral Activity
10. The Combined Use of Silybin with Other Antimicrobial Drugs
11. Bioavailability of Silybin
12. Silybin and Nanotechnology
13. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low-and lower-middle-income countries: A systematic review and meta-analysis. Emerg. Microbes Infect. 2022, 11, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Getahun, Y.A.; Ali, D.A.; Taye, B.W.; Alemayehu, Y.A. Multidrug-resistant microbial therapy using antimicrobial peptides and the CRISPR/Cas9 system. Vet. Med. Res. Rep. 2022, 13, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Gul, R.; Karuppiah, P.; Al-Dhabi, N.A.; Alfadda, A.A. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals 2022, 12, 179. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One health approach. Vet. World 2022, 15, 743. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, W.E.; Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug Resist. 2022, 15, 735–746. [Google Scholar] [CrossRef]
- Monteiro-Neto, V.; de Souza, C.D.; Gonzaga, L.F.; da Silveira, B.C.; Sousa, N.C.; Pontes, J.P.; Santos, D.M.; Martins, W.C.; Pessoa, J.F.; Carvalho Junior, A.R. Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS ONE 2020, 15, e0232987. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef]
- Donadio, G.; Mensitieri, F.; Santoro, V.; Parisi, V.; Bellone, M.L.; De Tommasi, N.; Izzo, V.; Dal Piaz, F. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics 2021, 13, 660. [Google Scholar] [CrossRef]
- Hurtová, M.; Káňová, K.; Dobiasová, S.; Holasová, K.; Čáková, D.; Hoang, L.; Biedermann, D.; Kuzma, M.; Cvačka, J.; Křen, V. Selectively halogenated flavonolignans—Preparation and antibacterial activity. Int. J. Mol. Sci. 2022, 23, 15121. [Google Scholar] [CrossRef]
- Monti, D.; Gažák, R.; Marhol, P.; Biedermann, D.; Purchartová, K.; Fedrigo, M.; Riva, S.; Křen, V. Enzymatic kinetic resolution of silybin diastereoisomers. J. Nat. Prod. 2010, 73, 613–619. [Google Scholar] [CrossRef]
- Yun, D.G.; Lee, D.G. Assessment of silibinin as a potential antifungal agent and investigation of its mechanism of action. IUBMB Life 2017, 69, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, M.L.F.; Rodrigues, R.P.; Kitagawa, R.R.; Gonçalves, R.d.C.R. The gastroprotective potential of silibinin against Helicobacter pylori infection and gastric tumor cells. Life Sci. 2020, 256, 117977. [Google Scholar] [CrossRef] [PubMed]
- Verdura, S.; Cuyàs, E.; Ruiz-Torres, V.; Micol, V.; Joven, J.; Bosch-Barrera, J.; Menendez, J.A. Lung cancer management with silibinin: A historical and translational perspective. Pharmaceuticals 2021, 14, 559. [Google Scholar] [CrossRef]
- Rakelly de Oliveira, D.; Relison Tintino, S.; Morais Braga, M.F.B.; Boligon, A.A.; Linde Athayde, M.; Douglas Melo Coutinho, H.; de Menezes, I.R.A.; Fachinetto, R. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. BioMed Res. Int. 2015, 2015, 292797. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Hamed, A.A.; Hassan, H.M.; Belbahri, L.; Rateb, M.E.; Sayed, A.M. Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimental study. Antibiotics 2020, 9, 562. [Google Scholar] [CrossRef]
- Zhang, C.; Sui, Y.; Liu, S.; Yang, M. Anti-viral activity of bioactive molecules of silymarin against COVID-19 via in silico studies. Pharmaceuticals 2023, 16, 1479. [Google Scholar] [CrossRef]
- Lê, H.G.; Võ, T.C.; Kang, J.-M.; Nguyễn, T.H.; Hwang, B.-S.; Oh, Y.-T.; Na, B.-K. Antiamoebic activities of flavonoids against pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba species. Parasites Hosts Dis. 2023, 61, 449. [Google Scholar] [CrossRef]
- Fallah, M.; Davoodvandi, A.; Nikmanzar, S.; Aghili, S.; Mirazimi, S.M.A.; Aschner, M.; Rashidian, A.; Hamblin, M.R.; Chamanara, M.; Naghsh, N. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed. Pharmacother. 2021, 142, 112024. [Google Scholar] [CrossRef]
- Pelter, A.; Hänsel, R. The structure of silybin (silybum substance E6), the first flavonolignan. Tetrahedron Lett. 1968, 9, 2911–2916. [Google Scholar] [CrossRef]
- Pelter, A.; Hansel, R. Structure of silybin. 1. Degradative experiments. Chem. Berichte-Recl. 1975, 108, 790–802. [Google Scholar] [CrossRef]
- Bijak, M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, D.; Vavříková, E.; Cvak, L.; Křen, V. Chemistry of silybin. Nat. Prod. Rep. 2014, 31, 1138–1157. [Google Scholar] [CrossRef]
- Křen, V. Chirality Matters: Biological activity of optically pure silybin and its congeners. Int. J. Mol. Sci. 2021, 22, 7885. [Google Scholar] [CrossRef]
- Hao, Y.; Wei, Z.; Wang, Z.; Li, G.; Yao, Y.; Dun, B. Biotransformation of flavonoids improves antimicrobial and anti-breast cancer activities in vitro. Foods 2021, 10, 2367. [Google Scholar] [CrossRef]
- Hanci, H.; Igan, H. Antimicrobial synergistic effects of apigenin, (-)-epigallocatechin-3-gallate, myricetin and luteolin in combination with some antibiotics. Ann. Agric. Environ. Med. 2023, 30, 61–64. [Google Scholar] [CrossRef]
- Wang, D.; Xie, K.; Zou, D.; Meng, M.; Xie, M. Inhibitory effects of silybin on the efflux pump of methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 2018, 18, 827–833. [Google Scholar] [CrossRef]
- Jung, H.J.; Lee, D.G. Synergistic antibacterial effect between silybin and N, N′-dicyclohexylcarbodiimide in clinical Pseudomonas aeruginosa isolates. J. Microbiol. 2008, 46, 462–467. [Google Scholar] [CrossRef]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Sahibzada, M.U.K.; Sadiq, A.; Khan, S.; Faidah, H.S.; Naseemullah; Khurram, M.; Amin, M.U.; Haseeb, A. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: An attempt to enhance its oral bioavailability. Drug Des. Dev. Ther. 2017, 11, 1453–1464. [Google Scholar] [CrossRef]
- Cai, J.-Y.; Li, J.; Hou, Y.-N.; Ma, K.; Yao, G.-D.; Liu, W.-W.; Hayashi, T.; Itoh, K.; Tashiro, S.-i.; Onodera, S. Concentration-dependent dual effects of silibinin on kanamycin-induced cells death in Staphylococcus aureus. Biomed. Pharmacother. 2018, 102, 782–791. [Google Scholar] [CrossRef]
- Rahimifard, M.; Moini-Nodeh, S.; Niaz, K.; Baeeri, M.; Jamalifar, H.; Abdollahi, M. Improvement of the functionality of pancreatic Langerhans islets via reduction of bacterial contamination and apoptosis using phenolic compounds. Iran. J. Basic Med. Sci. 2018, 21, 920. [Google Scholar] [CrossRef] [PubMed]
- Vimalraj, S.; Rajalakshmi, S.; Saravanan, S.; Preeth, D.R.; Vasanthi, R.L.; Shairam, M.; Chatterjee, S. Synthesis and characterization of zinc-silibinin complexes: A potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering. Colloids Surf. B Biointerfaces 2018, 167, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Stermitz, F.R.; Tawara-Matsuda, J.; Lorenz, P.; Mueller, P.; Zenewicz, L.; Lewis, K. 5′-Methoxyhydnocarpin-D and Pheophorbide a: Berberis species components that potentiate Berberine growth inhibition of resistant Staphylococcus aureus. J. Nat. Prod. 2000, 63, 1146–1149. [Google Scholar] [CrossRef] [PubMed]
- Holasová, K.; Křížkovská, B.; Hoang, L.; Dobiasova, S.; Lipov, J.; Macek, T.; Křen, V.; Valentová, K.; Ruml, T.; Viktorova, J. Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomed. Pharmacother. 2022, 149, 112806. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Jang, K.-A.; Cha, J.-D. Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. Biomed. Res. Int. 2012, 2012, 618081. [Google Scholar] [CrossRef]
- Lee, B.; Lee, D.G. Reactive oxygen species depletion by silibinin stimulates apoptosis-like death in Escherichia coli. J. Microbiol. Biotechnol. 2017, 27, 2129–2140. [Google Scholar] [CrossRef]
- Islan, G.A.; Das, S.; Cacicedo, M.L.; Halder, A.; Mukherjee, A.; Cuestas, M.L.; Roy, P.; Castro, G.R.; Mukherjee, A. Silybin-conjugated gold nanoparticles for antimicrobial chemotherapy against Gram-negative bacteria. J. Drug Deliv. Sci. Technol. 2019, 53, 101181. [Google Scholar] [CrossRef]
- Chand, U.; Kushawaha, P.K. Silibinin-loaded chitosan-capped silver nanoparticles exhibit potent antimicrobial, antibiofilm, and anti-inflammatory activity against drug-resistant nosocomial pathogens. J. Biomater. Sci. Polym. Ed. 2024, 35, 1771–1793. [Google Scholar] [CrossRef]
- Fekri Kohan, S.; Nouhi Kararoudi, A.; Bazgosha, M.; Adelifar, S.; Hafezolghorani Esfahani, A.; Ghaderi Barmi, F.; Kouchakinejad, R.; Barzegari, E.; Shahriarinour, M.; Ranji, N. Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli. Int. Microbiol. 2024, 1–12. [Google Scholar] [CrossRef]
- Omer, F.H.; Al-Khafaji, N.S.; Al-Alaq, F.T.; Al-Dahmoshi, H.O.; Memariani, M.; Saki, M. Synergistic effects of silybin and curcumin on virulence and carbapenemase genes expression in multidrug resistant Klebsiella oxytoca. BMC Res. Notes 2022, 15, 330. [Google Scholar] [CrossRef]
- Lee, D.G.; Kim, H.K.; Park, Y.; Park, S.-C.; Woo, E.-R.; Jeong, H.G.; Hahm, K.-S. Gram-positive bacteria specific properties of silybin derived from Silybum marianum. Arch. Pharmacal Res. 2003, 26, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Flores, E.M.; Mata-Espinosa, D.; Barrios-Payan, J.; Marquina-Castillo, B.; Castañón-Arreola, M.; Hernández-Pando, R. A significant therapeutic effect of silymarin administered alone, or in combination with chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains: In vitro and in vivo studies. PLoS ONE 2019, 14, e0217457. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.K.; Kim, H.Y.; Cha, J.D. Synergistic effects between silibinin and antibiotics on methicillin-resistant Staphylococcus aureus isolated from clinical specimens. Biotechnol. J. 2011, 6, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Liu, H.; Li, G.; Deng, X.; Wang, J. Silibinin attenuates Streptococcus suis serotype 2 virulence by targeting suilysin. J. Appl. Microbiol. 2019, 126, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J. Food Meas. Charact. 2017, 11, 847–863. [Google Scholar] [CrossRef]
- Sahibzada, M.U.K.; Sadiq, A.; Zahoor, M.; Naz, S.; Shahid, M.; Qureshi, N.A. Enhancement of bioavailability and hepatoprotection by silibinin through conversion to nanoparticles prepared by liquid antisolvent method. Arab. J. Chem. 2020, 13, 3682–3689. [Google Scholar] [CrossRef]
- Yun, D.G.; Lee, D.G. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. Int. J. Biochem. Cell Biol. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Gowtham, R.; Yousuf, F.; Ezhilarasan, D.; Sambantham, S.; Anandan, B. In vitro antifungal effects of hesperetin and silibinin. Pharmacogn. J. 2018, 10, 789–792. [Google Scholar] [CrossRef]
- Umetsu, T.; Inoue, J.; Kogure, T.; Kakazu, E.; Ninomiya, M.; Iwata, T.; Takai, S.; Nakamura, T.; Sano, A.; Shimosegawa, T. Inhibitory effect of silibinin on hepatitis B virus entry. Biochem. Biophys. Rep. 2018, 14, 20–25. [Google Scholar] [CrossRef]
- Ferenci, P.; Scherzer, T.M.; Kerschner, H.; Rutter, K.; Beinhardt, S.; Hofer, H.; Schöniger–Hekele, M.; Holzmann, H.; Steindl–Munda, P. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology 2008, 135, 1561–1567. [Google Scholar] [CrossRef]
- Ahmed–Belkacem, A.; Ahnou, N.; Barbotte, L.; Wychowski, C.; Pallier, C.; Brillet, R.; Pohl, R.T.; Pawlotsky, J.M. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology 2010, 138, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Payer, B.; Reiberger, T.; Rutter, K.; Beinhardt, S.; Staettermayer, A.; Peck-Radosavljevic, M.; Ferenci, P. Successful HCV eradication and inhibition of HIV replication by intravenous silibinin in an HIV–HCV coinfected patient. J. Clin. Virol. 2010, 49, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Eurich, D.; Bahra, M.; Berg, T.; Boas-Knoop, S.; Biermer, M.; Neuhaus, R.; Neuhaus, P.; Neumann, U. Treatment of hepatitis C-virus-reinfection after liver transplant with silibinin in nonresponders to pegylated interferon-based therapy. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant. 2011, 9, 1–6. [Google Scholar]
- Wagoner, J.; Morishima, C.; Graf, T.N.; Oberlies, N.H.; Teissier, E.; Pécheur, E.-I.; Tavis, J.E.; Polyak, S.J. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS ONE 2011, 6, e16464. [Google Scholar] [CrossRef]
- Aghemo, A.; Bhoori, S.; Mazzaferro, V.; Colombo, M. Failure of intravenous silibinin monotherapy to prevent hepatitis C genotype 2A liver graft reinfection. Hepat. Mon. 2012, 12, 411. [Google Scholar] [CrossRef]
- Guedj, J.; Dahari, H.; Pohl, R.T.; Ferenci, P.; Perelson, A.S. Understanding silibinin’s modes of action against HCV using viral kinetic modeling. J. Hepatol. 2012, 56, 1019–1024. [Google Scholar] [CrossRef]
- Blaising, J.; Lévy, P.L.; Gondeau, C.; Phelip, C.; Varbanov, M.; Teissier, E.; Ruggiero, F.; Polyak, S.J.; Oberlies, N.H.; Ivanovic, T. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell. Microbiol. 2013, 15, 1866–1882. [Google Scholar] [CrossRef]
- Mariño, Z.; Crespo, G.; D’Amato, M.; Brambilla, N.; Giacovelli, G.; Rovati, L.; Costa, J.; Navasa, M.; Forns, X. Intravenous silibinin monotherapy shows significant antiviral activity in HCV-infected patients in the peri-transplantation period. J. Hepatol. 2013, 58, 415–420. [Google Scholar] [CrossRef]
- Esser-Nobis, K.; Romero-Brey, I.; Ganten, T.M.; Gouttenoire, J.; Harak, C.; Klein, R.; Schemmer, P.; Binder, M.; Schnitzler, P.; Moradpour, D. Analysis of hepatitis C virus resistance to silibinin in vitro and in vivo points to a novel mechanism involving nonstructural protein 4B. Hepatology 2013, 57, 953–963. [Google Scholar] [CrossRef]
- Braun, D.; Rauch, A.; Durisch, N.; Eberhard, N.; Anagnostopoulos, A.; Ledergerber, B.; Metzner, K.; Böni, J.; Weber, R.; Fehr, J. Efficacy of lead-in silibinin and subsequent triple therapy in difficult-to-treat HIV/hepatitis C virus-coinfected patients. HIV Med. 2014, 15, 625–630. [Google Scholar] [CrossRef]
- Shilu Mathew, S.M.; Muhammad Faheem, M.F.; Govindaraju Archunan, G.A.; Muhammad Ilyas, M.I.; Nargis Begum, N.B.; Syed Jahangir, S.J.; Ishtiaq Qadri, I.Q.; Al-Qahtani, M.; Shiny Mathew, S.M. In silico studies of medicinal compounds against hepatitis C capsid protein from north India. Bioinform. Biol. Insights 2014, 8, 159–168. [Google Scholar] [CrossRef]
- Rendina, M.; D’Amato, M.; Castellaneta, A.; Castellaneta, N.M.; Brambilla, N.; Giacovelli, G.; Rovati, L.; Rizzi, S.F.; Zappimbulso, M.; Bringiotti, R.S. Antiviral activity and safety profile of silibinin in HCV patients with advanced fibrosis after liver transplantation: A randomized clinical trial. Transpl. Int. 2014, 27, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.L.; Rauch, A.; Aouri, M.; Durisch, N.; Eberhard, N.; Anagnostopoulos, A.; Ledergerber, B.; Müllhaupt, B.; Metzner, K.J.; Decosterd, L. A lead-in with silibinin prior to triple-therapy translates into favorable treatment outcomes in difficult-to-treat HIV/hepatitis C coinfected patients. PLoS ONE 2015, 10, e0133028. [Google Scholar] [CrossRef] [PubMed]
- Canini, L.; DebRoy, S.; Mariño, Z.; Conway, J.M.; Crespo, G.; Navasa, M.; D’Amato, M.; Ferenci, P.; Cotler, S.J.; Forns, X. Severity of liver disease affects HCV kinetics in patients treated with intravenous silibinin monotherapy. Antivir. Ther. 2015, 20, 149–155. [Google Scholar] [CrossRef]
- Dahari, H.; Shteingart, S.; Gafanovich, I.; Cotler, S.J.; D’Amato, M.; Pohl, R.T.; Weiss, G.; Ashkenazi, Y.J.; Tichler, T.; Goldin, E. Sustained virological response with intravenous silibinin: Individualized IFN-free therapy via real-time modelling of HCV kinetics. Liver Int. 2015, 35, 289–294. [Google Scholar] [CrossRef]
- Castellaneta, A.; Massaro, A.; Rendina, M.; D’Errico, F.; Carparelli, S.; Rizzi, S.F.; Thomson, A.W.; Di Leo, A. Immunomodulating effects of the anti-viral agent Silibinin in liver transplant patients with HCV recurrence. Transplant. Res. 2016, 5, 1. [Google Scholar] [CrossRef]
- Khan, H.; Paeshuyse, J.; Murad, S.; Neyts, J. Assessment of the activity of directly acting antivirals and other products against different genotypes of hepatitis C virus prevalent in resource-poor countries. Antivir. Res. 2016, 125, 43–45. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Bertino, G.; Chisari, G.; Motta, M.; Vecchio, M.; Vacante, M.; Caraci, F.; Greco, C.; Drago, F.; Nunnari, G. Silybin supplementation during HCV therapy with pegylated interferon-α plus ribavirin reduces depression and anxiety and increases work ability. BMC Psychiatry 2016, 16, 398. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lin, C.-C.; Hsu, W.-C.; Chung, C.-Y.; Lin, C.-C.; Jassey, A.; Chang, S.-P.; Tai, C.-J.; Tai, C.-J.; Shields, J. Highly bioavailable silibinin nanoparticles inhibit HCV infection. Gut 2017, 66, 1853–1861. [Google Scholar] [CrossRef]
- Cossiga, V.; Sanduzzi-Zamparelli, M.; Sapena, V.; Guarino, M.; Dallio, M.; Torrisi, E.; Pignata, L.; Federico, A.; Salomone, F.; Morisco, F. Beneficial Effects of Silybin Treatment After Viral Eradication in Patients with HCV-Related Advanced Chronic Liver Disease: A Pilot Study. Front. Pharmacol. 2022, 13, 824879. [Google Scholar] [CrossRef]
- McClure, J.; Lovelace, E.S.; Elahi, S.; Maurice, N.J.; Wagoner, J.; Dragavon, J.; Mittler, J.E.; Kraft, Z.; Stamatatos, L.; Horton, H. Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation. PLoS ONE 2012, 7, e41832. [Google Scholar] [CrossRef]
- Romanucci, V.; Agarwal, C.; Agarwal, R.; Pannecouque, C.; Iuliano, M.; De Tommaso, G.; Caruso, T.; Di Fabio, G.; Zarrelli, A. Silibinin phosphodiester glyco-conjugates: Synthesis, redox behaviour and biological investigations. Bioorg. Chem. 2018, 77, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.-P.; Wu, L.-Q.; Li, R.; Zhao, X.-F.; Wan, Q.-Y.; Chen, X.-X.; Li, W.-Z.; Wang, G.-F.; Li, K.-S. Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo. Antimicrob. Agents Chemother. 2013, 57, 4433–4443. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.K.; Sengupta, S.; Tripathi, A. In silico and in vitro evaluation of silibinin: A promising anti-Chikungunya agent. In Vitr. Cell. Dev. Biol.-Anim. 2022, 58, 255–267. [Google Scholar] [CrossRef]
- Su, Y.; Wu, T.; Yu, X.-Y.; Huo, W.-B.; Wang, S.-H.; Huan, C.; Liu, Y.-M.; Liu, J.-M.; Cui, M.-N.; Li, X.-H. Inhibitory effect of tanshinone IIA, resveratrol and silibinin on enterovirus 68 production through inhibiting ATM and DNA-PK pathway. Phytomedicine 2022, 99, 153977. [Google Scholar] [CrossRef]
- Bosch-Barrera, J.; Martin-Castillo, B.; Buxó, M.; Brunet, J.; Encinar, J.A.; Menendez, J.A. Silibinin and SARS-CoV-2: Dual targeting of host cytokine storm and virus replication machinery for clinical management of COVID-19 patients. J. Clin. Med. 2020, 9, 1770. [Google Scholar] [CrossRef]
- Sardanelli, A.M.; Isgrò, C.; Palese, L.L. SARS-CoV-2 main protease active site ligands in the human metabolome. Molecules 2021, 26, 1409. [Google Scholar] [CrossRef]
- Speciale, A.; Muscarà, C.; Molonia, M.S.; Cimino, F.; Saija, A.; Giofrè, S.V. Silibinin as potential tool against SARS-CoV-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother. Res. 2021, 35, 4616–4625. [Google Scholar] [CrossRef]
- Hamdy, R.; Mostafa, A.; Abo Shama, N.M.; Soliman, S.S.; Fayed, B. Comparative evaluation of flavonoids reveals the superiority and promising inhibition activity of silibinin against SARS-CoV-2. Phytother. Res. 2022, 36, 2921–2939. [Google Scholar] [CrossRef]
- Mäser, P.; Vogel, D.; Schmid, C.; Räz, B.; Kaminsky, R. Identification and characterization of trypanocides by functional expression of an adenosine transporter from Trypanosoma brucei in yeast. J. Mol. Med. 2001, 79, 121–127. [Google Scholar] [CrossRef]
- Torchelsen, F.K.V.d.S.; Silva, T.M.; Milagre, M.M.; Silva, R.R.; Reis, L.E.S.; Branquinho, R.T.; Silva, G.N.; de Lana, M. Evaluation of the anti-Trypanosoma cruzi activity in vitro and in vivo of silibinin and silibinin in association to benznidazole. Parasitol. Res. 2021, 120, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Victoria, J.M.; Pérez-Victoria, F.J.; Conseil, G.; Maitrejean, M.; Comte, G.; Barron, D.; Di Pietro, A.; Castanys, S.; Gamarro, F. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob. Agents Chemother. 2001, 45, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sehgal, R.; Kaur, S. Evaluation of nephroprotective and immunomodulatory activities of antioxidants in combination with cisplatin against murine visceral leishmaniasis. PLoS Neglected Trop. Dis. 2012, 6, e1629. [Google Scholar] [CrossRef] [PubMed]
- Olías-Molero, A.I.; Jiménez-Antón, M.D.; Biedermann, D.; Corral, M.J.; Alunda, J.M. In-vitro activity of silybin and related flavonolignans against Leishmania infantum and L. donovani. Molecules 2018, 23, 1560. [Google Scholar] [CrossRef]
- Hrčková, G.; Kubašková, T.M.; Benada, O.; Kofroňová, O.; Tumová, L.; Biedermann, D. Differential effects of the flavonolignans silybin, silychristin and 2, 3-dehydrosilybin on Mesocestoides vogae larvae (cestoda) under hypoxic and aerobic in vitro conditions. Molecules 2018, 23, 2999. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef]
- Dwyer, D.J.; Camacho, D.M.; Kohanski, M.A.; Callura, J.M.; Collins, J.J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 2012, 46, 561–572. [Google Scholar] [CrossRef]
- Lee, B.; Hwang, J.; Lee, D. Antibacterial action of lactoferricin B like peptide against Escherichia coli: Reactive oxygen species-induced apoptosis-like death. J. Appl. Microbiol. 2020, 129, 287–295. [Google Scholar] [CrossRef]
- Erental, A.; Sharon, I.; Engelberg-Kulka, H. Two programmed cell death systems in Escherichia coli: An apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 2012, 10, e1001281. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef]
- Tuli, H.S.; Mittal, S.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Upadhyay, S.K.; Barwal, T.S.; Jain, A.; Kaur, G.; Savla, R. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin. Cancer Biol. 2021, 73, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Dumas, T.E.; Schrieber, S.J.; Hawke, R.L.; Fried, M.W.; Smith, P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008, 36, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Hawke, R.L.; Schrieber, S.J.; Soule, T.A.; Wen, Z.; Smith, P.C.; Reddy, K.R.; Wahed, A.S.; Belle, S.H.; Afdhal, N.H.; Navarro, V.J. Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C. J. Clin. Pharmacol. 2010, 50, 434–449. [Google Scholar] [CrossRef]
- Lo, D.; Wang, Y.-T.; Wu, M.-C. Hepatoprotective effect of silymarin on di (2-ethylhexyl) phthalate (DEHP) induced injury in liver FL83B cells. Environ. Toxicol. Pharmacol. 2014, 38, 112–118. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, E.; Lee, E.; Kim, J.; Jang, S.; Kim, Y.; Kwon, J.; Kim, W.; Lee, M. Comparative bioavailability of silibinin in healthy male volunteers. Int. J. Clin. Pharmacol. Ther. 2003, 41, 593–596. [Google Scholar] [CrossRef]
- Loguercio, C.; Festi, D. Silybin and the liver: From basic research to clinical practice. World J. Gastroenterol. WJG 2011, 17, 2288. [Google Scholar] [CrossRef]
- Gheybi, F.; Khooei, A.; Hoseinian, A.; Doagooyan, M.; Houshangi, K.; Jaafari, M.R.; Papi, A.; Khoddamipour, Z.; Sahebkar, A.; Alavizadeh, S.H. Alleviation of acetaminophen-induced liver failure using silibinin nanoliposomes: An in vivo study. Biochem. Biophys. Res. Commun. 2023, 676, 103–108. [Google Scholar] [CrossRef]
- Durymanov, M.; Permyakova, A.; Reineke, J. Pre-treatment with PLGA/silibinin nanoparticles mitigates dacarbazine-induced hepatotoxicity. Front. Bioeng. Biotechnol. 2020, 8, 495. [Google Scholar] [CrossRef]
Species * | Method | Activity ** | Location | References |
---|---|---|---|---|
Gram-negative bacteria | ||||
Acinetobacter baumannii | Microdilution | MIC: 8–64 µg/mL | Turkey | [28] |
Aggregatibacter actinomycetemcomitans | Microdilution Checkerboard Time kill curve | MIC: 1.6 µg/mL | Republic of Korea | [35] |
Escherichia coli | Microdilution Checkerboard | MIC: 20 µg/mL | Republic of Korea | [27] |
Microdilution | MIC: 8–64 µg/mL | Turkey | [28] | |
Microdilution Checkerboard | MIC: 64 µg/mL | Brazil | [14] | |
Microdilution Time kill | MIC: 40 µg/mL | Republic of Korea | [36] | |
Microdilution | MIC: >512 µg/mL | Pakistan | [29] | |
Microdilution | MIC: 1.25 µM | Iran | [31] | |
Microdilution Disc diffusion | MIC: 1–10 μg/mL IZ: 7–8 mm | India | [32] | |
Microdilution | MIC: 5.6 μg/mL | Argentina | [37] | |
Microdilution Disc diffusion | MIC: 1.55–3.12 µg/mL IZ: 8–12 mm | India | [38] | |
Microdilution Checkerboard | MIC: 128–512 μg/mL | Iran | [39] | |
Fusobacterium nucleatum | Microdilution Checkerboard Time kill curve | MIC: 3.2 µg/mL | Republic of Korea | [35] |
Helicobacter pylori | Microdilution | MIC: 256 µg/mL | Brazil | [12] |
Klebsiella oxytoca, Klebsiella pneumoniae | Microdilution | MIC: 8–64 µg/mL | Turkey | [28] |
Microdilution Biofilm formation | MIC: 100–500 mg/mL | Iraq | [40] | |
Microdilution Disc diffusion | MIC: 1.55–6.25 µg/mL IZ: 10–15 mm | India | [38] | |
Porphyromonas gingivalis | Microdilution Checkerboard Time kill curve | MIC: 0.4 µg/mL | Republic of Korea | [35] |
Prevotella intermedia | Microdilution Checkerboard Time kill curve | MIC: 1.6 µg/mL | Republic of Korea | [35] |
Proteus mirabilis | Microdilution | MIC: 8–64 µg/mL | Turkey | [28] |
Pseudomonas aeruginosa | Microdilution Checkerboard | MIC: 10–20 µg/mL | Republic of Korea | [27] |
Microdilution | MIC: 4–32 µg/mL | Turkey | [28] | |
Microdilution Checkerboard | MIC: 1.024 µg/mL | Brazil | [14] | |
Microdilution | MIC: >512 µg/mL | Pakistan | [29] | |
Microdilution | MIC: 0.625 µg/mL | Iran | [31] | |
Microdilution | MIC: 11.2 µg/mL | Argentina | [37] | |
Biofilm formation | Active in concentrations < 10 μM | Czech Republic | [9] | |
Microdilution Disc diffusion | MIC: 1.55–6.25 µg/mL IZ: 11–15 mm | India | [38] | |
Salmonella typhi | Microdilution | MIC: 0.312 µg/mL | Iran | [31] |
Vibrio campbellii | Quorum Sensing Inhibition | Active in concentrations < 10 μM | Czech Republic | [9] |
Gram-positive bacteria | ||||
Bacillus subtilis | Microdilution | IC50: 11.8 μg/mL | Republic of Korea | [41] |
Microdilution | MIC:16 μg/mL | Pakistan | [29] | |
Corynebacterium xerosis | Microdilution | MIC: 1.25 μg/mL | Iran | [31] |
Enterococcus faecalis, Enterococcus faecium | Microdilution Checkerboard | MIC: >20 µg/mL | Republic of Korea | [27] |
Microdilution | MIC: 2–64 µg/mL | Turkey | [28] | |
Microdilution Disc diffusion | MIC: 1.55 µg/mL IZ: 7–22 mm | India | [38] | |
Mycobacterium tuberculosis | Microdilution Colony forming unit assay | MIC: 50–400 μM | Mexico | [42] |
Staphylococcus aureus, Staphylococcus epidermidis, MRSA, MSSA | Microdilution | MIC: 1.25 µg/mL | United States of America | [33] |
Microdilution | IC50: 15.7 µg/mL | Korea | [41] | |
Microdilution Checkerboard | MIC: 1.25–10 µg/mL | Republic of Korea | [27] | |
Microdilution Checkerboard Time kill curve | MIC: 2–8 µg/mL | South Korea | [43] | |
Microdilution | MIC: 2–64 µg/mL | Turkey | [28] | |
Microdilution Checkerboard | MIC: 1.024 µg/mL | Brazil | [14] | |
Microdilution | MIC: 32 µg/mL | Pakistan | [29] | |
Colony forming unit assay | Active in concentrations of 400 µM | China | [30] | |
Microdilution | MIC: 0.312 µg/mL | Iran | [31] | |
Microdilution Disc diffusion | MIC: 1–10 µg/mL IZ: 7–8 mm | India | [32] | |
Double dilution | MIC: 32 μg/mL | China | [26] | |
Microdilution Checkerboard | MIC: 62.5–250 μg/mL | Saudi Arabia | [15] | |
Efflux pump inhibition Quorum Sensing Inhibition | MIC: 5–40 μM | Czech Republic | [34] | |
Biofilm inhibition | Active in concentrations < 10 μM | Czech Republic | [9] | |
Streptococcus anginosus, Streptococcus criceti, Streptococcus gordonii, Streptococcus mutans, Streptococcus ratti, Streptococcus sanguinis, Streptococcus sobrinus, Streptococcus suis | Microdilution Checkerboard Time kill curve | MIC: 0.1–0.8 μg/mL | Republic of Korea | [35] |
Microdilution | MIC: >1.024 μg/mL | China | [44] |
Gender | Species | Method | Activity * | Location | References |
---|---|---|---|---|---|
Aspergillus | A. flavus | Double dilution | MIC: 20 µM | Republic of Korea | [47] |
Candida | C. albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis | Microdilution | MIC: 4–8 µg/mL | Turkey | [28] |
Microdilution Checkerboard | MIC: 1.024 µg/mL | Brazil | [14] | ||
Double dilution | MIC: 20–40 µM | Republic of Korea | [47] | ||
Microdilution | MIC: 64–512 µg/mL | Pakistan | [29] | ||
Biofilm formation | Active in concentrations above 100 μM | Republic of Korea | [11] | ||
Disc diffusion | Active in concentrations of 15, 20, 25 mg/mL | India | [48] | ||
Malassezia | M. furfur | Double dilution | MIC: 40 µM | Republic of Korea | [47] |
Active in concentrations of 15, 20, 25 mg/mL | India | [48] | |||
Trichosporon | T. beigelii | Double dilution | MIC: 20–40 µM | Republic of Korea | [47] |
Protozoan | Identification | Forms of Development | Main Conclusions | Location | References |
---|---|---|---|---|---|
Trypanosoma brucei | STIB 900 | Trypomastigote forms of the bloodstream | (i) potent and non-competitive inhibition of TbAT1 mediated adenosine transport in yeast; (ii) inhibition of melarsen-induced lysis of bloodstream trypanosomes with IC50 ± SEM de 6.0 ± 0.0 × 102. | USA | [80] |
Leishmania tropica | DNM-R150 | Promastigotes | silybin and, mainly, its oxidized and prenylated derivatives show high binding affinity to the recombinant cytosolic domain of the Leishmania Pgp-like transporter and reverse the MDR of a L. tropica strain that overexpresses the transporter. | Spain | [82] |
Leishmania donovani | MHOM/IN/80/Dd8 | Promastigotes | reduction in parasite load, increase in Th1-type immune responses and normalization of several biochemical parameters occurred in animals treated with cisplatin in combination with silybin. | India | [83] |
Mesocestoides vogae | - | - | silybin and its derivative 2,3-dehydrosilybin suppressed mitochondrial functions and energy stores, inducing a physiological imbalance, while 2,3-dehydrosilybin exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism. | Czech Republic | [85] |
Leishmania infantum | Li UCM9 (M/CAN/ES/2001/UCM9) | Promastigotes | silybin did not cause any inhibition of Leishmania promastigotes; however, its derivative dehydrosilybin A significantly inhibited Li promastigotes with an approximate IC50 of 90.23 µM. | Spain | [84] |
Leishmania donovani | (MHOM/SD/43/124) | Promastigotes | there was a reduction of more than ≥30% (120 µM). | Spain | [84] |
Trypanosoma cruzi | Strain Y | Epimastigotes | inhibition of parasite growth (25 µM). | Brazil | [81] |
Trypanosoma cruzi | Strain Y | Amastigotes | (i) silybin presented IC50 and selectivity index of 79.81 μM and 3.13, respectively; (ii) the combination of silybin + benznidazole presented inhibition of 91.44%; (iii) monotherapy with silybin was not able to control parasitemia/mortality of the animals. | Brazil | [81] |
Naegleria fowleri | ATCC 30215 | Trophozoites | activity with IC50 ± SD < 25 µM with selectivity index equal to 4.13 μM. | Republic of Korea | [17] |
Acanthamoeba castellanii | ATCC 30868 | Trophozoites | activity with IC50 ± SD < 26 µM with selectivity index equal to 4.08 μM. | Republic of Korea | [17] |
Acanthamoeba polyphaga | ATCC 30461 | Trophozoites | activity with IC50 ± SD < 16 µM with selectivity index equal to 6.31 μM. | Republic of Korea | [17] |
Mechanism of Action | Name of the Bacteria | Detailed Mechanisms of Action | References |
---|---|---|---|
Inhibition of efflux pump | MRSA | It acts by inhibiting the NorA efflux pump. | [33] |
MRSA | It acts by inhibiting the ABC efflux pump. | [27] | |
MRSA | Reduced expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance protein A/B (qacA/B) efflux genes. | [26] | |
MRSA | Antibiotic-induced reduction of gene expression of representative efflux pumps belonging to the major facilitator (MFS), multiple and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) families. | [34] | |
Escherichia coli | Downregulation of the efflux pump genes AcrAB-TolC and upregulation of the porin genes ompC and ompF in combination with ciprofloxacin at the transcriptional level. | [39] | |
Inhibition of nucleic acid and protein synthesis | Bacillus subtilis, Staphylococcus epidermidis | It acts by inhibiting the synthesis of RNA and proteins. | [41] |
Escherichia coli | It acts on DNA fragmentation. | [36] | |
Biofilm inhibition and quorum sensing | MRSA | Reduction of virulence factors, namely bacterial communication between cells and cell adhesion to the surface. | [34] |
Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio campbellii | Reduction of virulence factors, namely cell adhesion to the surface and communication between bacteria. Prevention of biofilm formation. | [9] | |
Klebsiella oxytoca | Reduction of virulence factors. | [40] | |
Escherichia coli, Pseudomonas aeruginosa | Prevention of biofilm formation and inhibition of formed biofilm. | [38] | |
Escherichia coli | Notable reduction in bacterial growth and biofilm formation in ciprofloxacin-resistant isolates. | [39] | |
Induction of apoptosis-like death | Escherichia coli | Induction of apoptosis-like cell death mediated by membrane depolarization with Ca2+ signaling. Apoptosis induced by exposure to phosphatidylserine and activation of caspase-like proteins. | [36] |
Fungus Name | Mechanism of Action | References |
---|---|---|
Candida albicans | Induction of yeast apoptosis mediated by mitochondrial Ca2+ signaling. | [47] |
Mitochondrial dysfunction due to excess reactive oxygen species. | ||
Induced apoptosis caused mitochondrial membrane depolarization, cytochrome C release, caspase-like protein activation, phosphatidylserine exposure, and DNA damage. | ||
Apoptosis via oxidative stress increased by 24.17% compared to untreated cells. | ||
Damage to the plasma membrane occurs and inhibits biofilm development in its initial phase. | [11] |
Virus Name | Mechanism of Action | Location | References |
---|---|---|---|
Human enterovirus 68 (EV68) | Inhibition of ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK). | China | [75] |
Chikungunya virus | Interference with viral replication inhibition of viral attachment and entry and microneutralization. | India | [74] |
Hepatitis B virus (HBV) | Blockade of clathrin-mediated endocytosis. | Japan | [49] |
Hepatitis C virus (HCV) | Inhibition of the function of the RNA-dependent RNA polymerase NS5B. | France | [51] |
Hepatitis C virus (HCV) | Inhibited innate inflammatory and antiviral signaling from NF-κB and IFN-κB promoters. | USA | [54] |
Inhibited expression of tumor necrosis factor alpha in human peripheral blood mononuclear cells stimulated with anti-CD3 and NF-κB-dependent transcription. | USA | [56] | |
Inhibits the initial stages of infection by affecting the endosomal trafficking of virions. | France | [57] | |
Inhibition of RNA replication silybin may target an interaction between NS4B and NS3/4A. | Germany | [59] | |
Capsid protein binding. | India | [61] | |
Inhibition of oxidative stress. | Taiwan | [69] | |
Human immunodeficiency virus type 1 (HIV-1) | Disruption of T cell metabolism in vitro; blockade of T cell infection by HIV. | USA | [71] |
Influenza A virus (IAV) | S0 and S3 inhibited IAV replication and disrupted Atg5-Atg12/Atg16L complex formation. | China | [73] |
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) | Inhibition of STAT3 and RNA-dependent RNA polymerase (RdRp). | Spain | [76] |
Inhibition of spike protein and RNA-dependent RNA polymerase. | Italy | [78] | |
inhibition of SARS-CoV-2 main protease (Mpro). | Italy | [77] | |
Inhibition of spike protein (S), major protease (Mpro), RNA-dependent RNA polymerase (RdRp). | United Arab Emirates | [79] | |
Inhibition of viral entry, inhibition of viral replication and regulation of the immune response. | USA | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-Filho, J.L.; Mendes, A.G.G.; Campos, C.D.L.; Moreira, I.V.; Monteiro, C.R.A.V.; Soczek, S.H.d.S.; Fernandes, E.S.; Carvalho, R.C.; Monteiro-Neto, V. A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin. Antibiotics 2024, 13, 1091. https://doi.org/10.3390/antibiotics13111091
Pereira-Filho JL, Mendes AGG, Campos CDL, Moreira IV, Monteiro CRAV, Soczek SHdS, Fernandes ES, Carvalho RC, Monteiro-Neto V. A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin. Antibiotics. 2024; 13(11):1091. https://doi.org/10.3390/antibiotics13111091
Chicago/Turabian StylePereira-Filho, José Lima, Amanda Graziela Gonçalves Mendes, Carmem Duarte Lima Campos, Israel Viegas Moreira, Cinara Regina Aragão Vieira Monteiro, Suzany Hellen da Silva Soczek, Elizabeth Soares Fernandes, Rafael Cardoso Carvalho, and Valério Monteiro-Neto. 2024. "A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin" Antibiotics 13, no. 11: 1091. https://doi.org/10.3390/antibiotics13111091
APA StylePereira-Filho, J. L., Mendes, A. G. G., Campos, C. D. L., Moreira, I. V., Monteiro, C. R. A. V., Soczek, S. H. d. S., Fernandes, E. S., Carvalho, R. C., & Monteiro-Neto, V. (2024). A Comprehensive Review on the Antibacterial, Antifungal, Antiviral, and Antiparasitic Potential of Silybin. Antibiotics, 13(11), 1091. https://doi.org/10.3390/antibiotics13111091