Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications
Abstract
:1. Introduction
2. General Knowledge and Definitions
3. Bioceramics of CaPO4
3.1. History
3.2. Chemical Composition and Preparation
3.3. Forming and Shaping
3.4. Sintering and Firing
4. The Major Properties
4.1. Mechanical Properties
4.2. Electric/Dielectric and Piezoelectric Properties
4.3. Possible Transparency
4.4. Porosity
5. Biological Properties and In Vivo Behavior
5.1. Interactions with Surrounding Tissues and the Host Responses
5.2. Osteoinduction
5.3. Biodegradation
5.4. Bioactivity
5.5. Cellular Response
6. Biomedical Applications
6.1. Self-Setting (Self-Hardening) Formulations
6.2. CaPO4 Deposits (Coatings, Films, and Layers)
6.3. Functionally Graded Bioceramics
7. CaPO4 Bioceramics in Tissue Engineering
7.1. Tissue Engineering
7.2. Scaffolds and Their Properties
7.3. Bioceramic Scaffolds from CaPO4
7.4. A Clinical Experience
8. Non-Biomedical Applications of CaPO4
9. Conclusions and Outlook
- Improvement of the mechanical performance of existing types of bioceramics.
- Enhanced bioactivity in terms of gene activation.
- Improvement in the performance of biomedical coatings in terms of their mechanical stability and ability to deliver biological agents.
- Development of smart biomaterials capable of combining sensing with bioactivity.
- Development of improved biomimetic composites.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (Eds.) Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed.; Academic Press: Oxford, UK, 2013; p. 1573. [Google Scholar]
- Ducheyne, P.; Healy, K.; Hutmacher, D.E.; Grainger, D.W.; Kirkpatrick, C.J. (Eds.) Comprehensive Biomaterials II, 2nd ed.; Seven-Volume Set; Elsevier: Amsterdam, The Netherlands, 2017; p. 4858. [Google Scholar]
- Dorozhkin, S.V. Calcium Orthophosphate-Based Bioceramics and Biocomposites; Wiley-VCH: Weinheim, Germany, 2016; p. 405. [Google Scholar]
- Dorozhkin, S.V. Dental applications of calcium orthophosphates (CaPO4). J. Dent. Res. 2019, 1, 24–54. [Google Scholar]
- Available online: https://www.alliedmarketresearch.com/bone-graft-substitutes-market (accessed on 24 June 2022).
- Dorozhkin, S.V. Calcium Orthophosphates: Applications in Nature, Biology, and Medicine; Pan Stanford: Singapore, 2012; p. 850. [Google Scholar]
- Balazsi, C.; Weber, F.; Kover, Z.; Horvath, E.; Nemeth, C. Preparation of calcium-phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 2007, 27, 1601–1606. [Google Scholar] [CrossRef]
- Gergely, G.; Wéber, F.; Lukács, I.; Illés, L.; Tóth, A.L.; Horváth, Z.E.; Mihály, J.; Balázsi, C. Nano-hydroxyapatite preparation from biogenic raw materials. Cent. Eur. J. Chem. 2010, 8, 375–381. [Google Scholar] [CrossRef]
- Mondal, S.; Mahata, S.; Kundu, S.; Mondal, B. Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv. Appl. Ceram. 2010, 109, 234–239. [Google Scholar] [CrossRef]
- Lim, K.T.; Suh, J.D.; Kim, J.; Choung, P.H.; Chung, J.H. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 399–411. [Google Scholar] [CrossRef]
- Seo, D.S.; Hwang, K.H.; Yoon, S.Y.; Lee, J.K. Fabrication of hydroxyapatite bioceramics from the recycling of pig bone. J. Ceram. Proc. Res. 2012, 13, 586–589. [Google Scholar]
- Ho, W.F.; Hsu, H.C.; Hsu, S.K.; Hung, C.W.; Wu, S.C. Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram. Int. 2013, 39, 6467–6473. [Google Scholar] [CrossRef]
- González-Rodríguez, L.; López-Álvarez, M.; Astray, S.; Solla, E.L.; Serra, J.; González, P. Hydroxyapatite scaffolds derived from deer antler: Structure dependence on processing temperature. Mater. Charact. 2019, 155, 109805. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Al Bakri Abdullah, M.M.; Abd Rahim, S.Z.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabiałek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Grigoraviciute-Puroniene, I.; Zarkov, A.; Tsuru, K.; Ishikawa, K.; Kareiva, A. A novel synthetic approach for the calcium hydroxyapatite from the food products. J. Sol-Gel Sci. Technol. 2019, 91, 63–71. [Google Scholar] [CrossRef]
- Tosun, G.U.; Sakhno, Y.; Jaisi, D.P. Synthesis of hydroxyapatite nanoparticles from phosphorus recovered from animal wastes. ACS Sustain. Chem. Eng. 2021, 9, 15117–15126. [Google Scholar] [CrossRef]
- Ergun, C.; Webster, T.J.; Bizios, R.; Doremus, R.H. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J. Biomed. Mater. Res. 2002, 59, 305–311. [Google Scholar] [CrossRef]
- Webster, T.J.; Ergun, C.; Doremus, R.H.; Bizios, R. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J. Biomed. Mater. Res. 2002, 59, 312–317. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, J.H.; Kim, Y.T.; Riu, D.H.; Jung, S.J.; Lee, Y.J.; Chung, S.C.; Kim, Y.H. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 2003, 24, 1389–1398. [Google Scholar] [CrossRef]
- Landi, E.; Celotti, G.; Logroscino, G.; Tampieri, A. Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 2003, 23, 2931–2937. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Arcos, D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005, 15, 1509–1516. [Google Scholar] [CrossRef]
- Gbureck, U.; Thull, R.; Barralet, J.E. Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. J. Mater. Sci. Mater. Med. 2005, 16, 423–427. [Google Scholar] [CrossRef]
- Gbureck, U.; Knappe, O.; Grover, L.M.; Barralet, J.E. Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials 2005, 26, 6880–6886. [Google Scholar] [CrossRef]
- Reid, J.W.; Tuck, L.; Sayer, M.; Fargo, K.; Hendry, J.A. Synthesis and characterization of single-phase silicon substituted α-tricalcium phosphate. Biomaterials 2006, 27, 2916–2925. [Google Scholar] [CrossRef]
- Tas, A.C.; Bhaduri, S.B.; Jalota, S. Preparation of Zn-doped β-tricalcium phosphate (β-Ca3(PO4)2) bioceramics. Mater. Sci. Eng. C 2007, 27, 394–401. [Google Scholar]
- Gibson, I.R. Silicon-containing apatites. In Comprehensive Biomaterials II; Chapter 1.20; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 428–459. [Google Scholar]
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. A new rhenanite (β-NaCaPO4) and hydroxyapatite biphasic biomaterial for skeletal repair. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80B, 304–316. [Google Scholar] [CrossRef]
- Kannan, S.; Ventura, J.M.G.; Ferreira, J.M.F. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalcium phosphate mixtures. Ceram. Int. 2007, 33, 1489–1494. [Google Scholar] [CrossRef]
- Kannan, S.; Rebelo, A.; Lemos, A.F.; Barba, A.; Ferreira, J.M.F. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J. Eur. Ceram. Soc. 2007, 27, 2287–2294. [Google Scholar] [CrossRef]
- Kannan, S.; Goetz-Neunhoeffer, F.; Neubauer, J.; Ferreira, J.M.F. Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: Structural analysis by Rietveld refinement. J. Am. Ceram. Soc. 2008, 91, 1–12. [Google Scholar] [CrossRef]
- Meejoo, S.; Pon-On, W.; Charnchai, S.; Amornsakchai, T. Substitution of iron in preparation of enhanced thermal property and bioactivity of hydroxyapatite. Adv. Mater. Res. 2008, 55–57, 689–692. [Google Scholar] [CrossRef]
- Kannan, S.; Goetz-Neunhoeffer, F.; Neubauer, J.; Ferreira, J.M.F. Synthesis and structure refinement of zinc-doped β-tricalcium phosphate powders. J. Am. Ceram. Soc. 2009, 92, 1592–1595. [Google Scholar] [CrossRef]
- Matsumoto, N.; Yoshida, K.; Hashimoto, K.; Toda, Y. Thermal stability of β-tricalcium phosphate doped with monovalent metal ions. Mater. Res. Bull. 2009, 44, 1889–1894. [Google Scholar] [CrossRef]
- Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; Barralet, J.E. Bioinorganics and biomaterials: Bone repair. Acta Biomater. 2011, 7, 3013–3026. [Google Scholar] [CrossRef] [PubMed]
- Mellier, C.; Fayon, F.; Schnitzler, V.; Deniard, P.; Allix, M.; Quillard, S.; Massiot, D.; Bouler, J.M.; Bujoli, B.; Janvier, P. Characterization and properties of novel gallium-doped calcium phosphate ceramics. Inorg. Chem. 2011, 50, 8252–8260. [Google Scholar] [CrossRef] [PubMed]
- Ansar, E.B.; Ajeesh, M.; Yokogawa, Y.; Wunderlich, W.; Varma, H. Synthesis and characterization of iron oxide embedded hydroxyapatite bioceramics. J. Am. Ceram. Soc. 2012, 95, 2695–2699. [Google Scholar] [CrossRef]
- Shepherd, J.H.; Shepherd, D.V.; Best, S.M. Substituted hydroxyapatites for bone repair. J. Mater. Sci. Mater. Med. 2012, 23, 2335–2347. [Google Scholar] [CrossRef]
- Šupová, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Ratnayake, J.T.B.; Mucalo, M.; Dias, G.J. Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105B, 1285–1299. [Google Scholar] [CrossRef]
- Cacciotti, I. Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances. Int. J. Appl. Ceram. Technol. 2019, 16, 1864–1884. [Google Scholar] [CrossRef]
- Williams, D.F. The Williams Dictionary of Biomaterials; Liverpool University Press: Liverpool, UK, 1999; p. 368. [Google Scholar]
- Williams, D.F. On the nature of biomaterials. Biomaterials 2009, 30, 5897–5909. [Google Scholar] [CrossRef]
- Zhang, X.D.; Williams, D.F. (Eds.) Definitions of biomaterials for the twenty-first century. In Proceedings of the A Consensus Conference Held in Chengdu, Chengdu, China, 11–12 June 2018; Materials Today. Elsevier: Amsterdam, The Netherlands, 2019; p. 290. [Google Scholar]
- Williams, D.F. Specifications for innovative, enabling biomaterials based on the principles of biocompatibility mechanisms. Front. Bioeng. Biotechnol. 2019, 7, 255. [Google Scholar] [CrossRef]
- Mann, S. (Ed.) Biomimetic Materials Chemistry; Wiley-VCH: Weinheim, Germany, 1996; p. 400. [Google Scholar]
- Vallet-Regí, M. Bioceramics: Where do we come from and which are the future expectations. Key Eng. Mater. 2008, 377, 1–18. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Ceramic (accessed on 24 June 2022).
- Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Hench, L.L.; Day, D.E.; Höland, W.; Rheinberger, V.M. Glass and medicine. Int. J. Appl. Glass Sci. 2010, 1, 104–117. [Google Scholar] [CrossRef]
- Pinchuk, N.D.; Ivanchenko, L.A. Making calcium phosphate biomaterials. Powder Metall. Metal Ceram. 2003, 42, 357–371. [Google Scholar]
- Heimann, R.B. Materials science of crystalline bioceramics: A review of basic properties and applications. CMU J. 2002, 1, 23–46. [Google Scholar]
- Tomoda, K.; Ariizumi, H.; Nakaji, T.; Makino, K. Hydroxyapatite particles as drug carriers for proteins. Colloid Surf. B 2010, 76, 226–235. [Google Scholar] [CrossRef]
- Zamoume, O.; Thibault, S.; Regnié, G.; Mecherri, M.O.; Fiallo, M.; Sharrock, P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mater. Sci. Eng. C 2011, 31, 1352–1356. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 2012, 8, 1401–1421. [Google Scholar] [CrossRef]
- Arcos, D.; Vallet-Regí, M. Bioceramics for drug delivery. Acta Mater. 2013, 61, 890–911. [Google Scholar] [CrossRef]
- Ducheyne, P.; Qiu, Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999, 20, 2287–2303. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53–70. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770-s till 1950. Mater. Sci. Eng. C 2013, 33, 3085–3110. [Google Scholar] [CrossRef] [PubMed]
- De Groot, K. (Ed.) Bioceramics of Calcium Phosphate; CRC Press; Taylor & Francis: Boca Raton, FL, USA, 1983; p. 146. [Google Scholar]
- Vallet-Regí, M.; González-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Progr. Solid State Chem. 2004, 32, 1–31. [Google Scholar] [CrossRef]
- Layrolle, P.; Ito, A.; Tateishi, T. Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 1998, 81, 1421–1428. [Google Scholar] [CrossRef]
- Engin, N.O.; Tas, A.C. Manufacture of macroporous calcium hydroxyapatite bioceramics. J. Eur. Ceram. Soc. 1999, 19, 2569–2572. [Google Scholar] [CrossRef]
- Ahn, E.S.; Gleason, N.J.; Nakahira, A.; Ying, J.Y. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001, 1, 149–153. [Google Scholar] [CrossRef]
- Khalil, K.A.; Kim, S.W.; Dharmaraj, N.; Kim, K.W.; Kim, H.Y. Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. J. Mater. Process. Technol. 2007, 187–188, 417–420. [Google Scholar] [CrossRef]
- Laasri, S.; Taha, M.; Laghzizil, A.; Hlil, E.K.; Chevalier, J. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater. Res. Bull. 2010, 45, 1433–1437. [Google Scholar] [CrossRef]
- Kitamura, M.; Ohtsuki, C.; Ogata, S.; Kamitakahara, M.; Tanihara, M. Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method. Mater. Trans. 2004, 45, 983–988. [Google Scholar] [CrossRef]
- Kawagoe, D.; Ioku, K.; Fujimori, H.; Goto, S. Transparent β-tricalcium phosphate ceramics prepared by spark plasma sintering. J. Ceram. Soc. Jpn. 2004, 112, 462–463. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhou, X.; Wang, M. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater. Character. 2004, 52, 301–307. [Google Scholar] [CrossRef]
- Ioku, K.; Kawachi, G.; Nakahara, K.; Ishida, E.H.; Minagi, H.; Okuda, T.; Yonezawa, I.; Kurosawa, H.; Ikeda, T. Porous granules of β-tricalcium phosphate composed of rod-shaped particles. Key Eng. Mater. 2006, 309–311, 1059–1062. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Ohtsuki, C.; Miyazaki, T. Review paper: Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 2008, 23, 197–212. [Google Scholar] [CrossRef]
- Vorndran, E.; Klarner, M.; Klammert, U.; Grover, L.M.; Patel, S.; Barralet, J.E.; Gbureck, U. 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv. Eng. Mater. 2008, 10, B67–B71. [Google Scholar] [CrossRef]
- Descamps, M.; Duhoo, T.; Monchau, F.; Lu, J.; Hardouin, P.; Hornez, J.C.; Leriche, A. Manufacture of macroporous β-tricalcium phosphate bioceramics. J. Eur. Ceram. Soc. 2008, 28, 149–157. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, J.H.; Young, D.; Kim, S.; Nishimoto, S.K.; Yang, Y. Novel template-casting technique for fabricating β-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J. Biomed. Mater. Res. A 2010, 92A, 997–1006. [Google Scholar]
- Carrodeguas, R.G.; de Aza, S. α-tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 2011, 7, 3536–3546. [Google Scholar] [CrossRef]
- Kim, I.Y.; Wen, J.; Ohtsuki, C. Fabrication of α-tricalcium phosphate ceramics through two-step sintering. Key Eng. Mater. 2015, 631, 78–82. [Google Scholar] [CrossRef]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 2016, 42, 6529–6554. [Google Scholar] [CrossRef]
- LeGeros, R.Z.; Lin, S.; Rohanizadeh, R.; Mijares, D.; LeGeros, J.P. Biphasic calcium phosphate bioceramics: Preparation, properties and applications. J. Mater. Sci. Mater. Med. 2003, 14, 201–209. [Google Scholar] [CrossRef]
- Daculsi, G.; Laboux, O.; Malard, O.; Weiss, P. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 2003, 14, 195–200. [Google Scholar] [CrossRef]
- Dorozhkina, E.I.; Dorozhkin, S.V. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem. Mater. 2002, 14, 4267–4272. [Google Scholar] [CrossRef]
- Daculsi, G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv. Sci. Technol. 2006, 49, 9–13. [Google Scholar]
- Lecomte, A.; Gautier, H.; Bouler, J.M.; Gouyette, A.; Pegon, Y.; Daculsi, G.; Merle, C. Biphasic calcium phosphate: A comparative study of interconnected porosity in two ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 1–6. [Google Scholar] [CrossRef]
- Daculsi, G.; Baroth, S.; LeGeros, R.Z. 20 years of biphasic calcium phosphate bioceramics development and applications. Ceram. Eng. Sci. Proc. 2010, 30, 45–58. [Google Scholar]
- Lukić, M.; Stojanović, Z.; Škapin, S.D.; Maček-Kržmanc, M.; Mitrić, M.; Marković, S.; Uskoković, D. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J. Eur. Ceram. Soc. 2011, 31, 19–27. [Google Scholar] [CrossRef]
- Descamps, M.; Boilet, L.; Moreau, G.; Tricoteaux, A.; Lu, J.; Leriche, A.; Lardot, V.; Cambier, F. Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 2013, 33, 1263–1270. [Google Scholar] [CrossRef]
- Owen, R.G.; Dard, M.; Larjava, H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106B, 2493–2512. [Google Scholar]
- Li, Y.; Kong, F.; Weng, W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89B, 508–517. [Google Scholar] [CrossRef]
- Sureshbabu, S.; Komath, M.; Varma, H.K. In situ formation of hydroxyapatite –alpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity. J. Am. Ceram. Soc. 2012, 95, 915–924. [Google Scholar]
- Radovanović, Ž.; Jokić, B.; Veljović, D.; Dimitrijević, S.; Kojić, V.; Petrović, R.; Janaćković, D. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl. Surf. Sci. 2014, 307, 513–519. [Google Scholar]
- Oishi, M.; Ohtsuki, C.; Kitamura, M.; Kamitakahara, M.; Ogata, S.; Miyazaki, T.; Tanihara, M. Fabrication and chemical durability of porous bodies consisting of biphasic tricalcium phosphates. Phosphorus Res. Bull. 2004, 17, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Kamitakahara, M.; Ohtsuki, C.; Oishi, M.; Ogata, S.; Miyazaki, T.; Tanihara, M. Preparation of porous biphasic tricalcium phosphate and its in vivo behavior. Key Eng. Mater. 2005, 59, 281–284. [Google Scholar] [CrossRef]
- Wang, R.; Weng, W.; Deng, X.; Cheng, K.; Liu, X.; Du, P.; Shen, G.; Han, G. Dissolution behavior of submicron biphasic tricalcium phosphate powders. Key Eng. Mater. 2006, 309–311, 223–226. [Google Scholar] [CrossRef]
- Li, Y.; Weng, W.; Tam, K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomater. 2007, 3, 251–254. [Google Scholar] [CrossRef]
- Zou, C.; Cheng, K.; Weng, W.; Song, C.; Du, P.; Shen, G.; Han, G. Characterization and dissolution–reprecipitation behavior of biphasic tricalcium phosphate powders. J. Alloys Compd. 2011, 509, 6852–6858. [Google Scholar] [CrossRef]
- Xie, L.; Yu, H.; Deng, Y.; Yang, W.; Liao, L.; Long, Q. Preparation and in vitro degradation study of the porous dual alpha/beta-tricalcium phosphate bioceramics. Mater. Res. Inn. 2016, 20, 530–537. [Google Scholar] [CrossRef]
- Albuquerque, J.S.V.; Nogueira, R.E.F.Q.; da Silva, T.D.P.; Lima, D.O.; da Silva, M.H.P. Porous triphasic calcium phosphate bioceramics. Key Eng. Mater. 2004, 254–256, 1021–1024. [Google Scholar] [CrossRef]
- Mendonça, F.; Lourom, L.H.L.; de Campos, J.B.; da Silva, M.H.P. Porous biphasic and triphasic bioceramics scaffolds produced by gelcasting. Key Eng. Mater. 2008, 361–363, 27–30. [Google Scholar]
- Vani, R.; Girija, E.K.; Elayaraja, K.; Parthiban, P.S.; Kesavamoorthy, R.; Narayana Kalkura, S. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J. Mater. Sci. Mater. Med. 2009, 20 (Suppl. 1), S43–S48. [Google Scholar] [CrossRef]
- Ahn, M.K.; Moon, Y.W.; Koh, Y.H.; Kim, H.E. Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique. Ceram. Int. 2013, 39, 5879–5885. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Self-setting calcium orthophosphate (CaPO4) formulations and their biomedical applications. Adv. Nano-Bio. Mater. Dev. 2019, 3, 321–421. [Google Scholar]
- Tamimi, F.; Sheikh, Z.; Barralet, J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomater. 2012, 8, 474–487. [Google Scholar] [CrossRef]
- Drouet, C.; Largeot, C.; Raimbeaux, G.; Estournès, C.; Dechambre, G.; Combes, C.; Rey, C. Bioceramics: Spark plasma sintering (SPS) of calcium phosphates. Adv. Sci. Technol. 2006, 49, 45–50. [Google Scholar]
- Ishihara, S.; Matsumoto, T.; Onoki, T.; Sohmura, T.; Nakahira, A. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater. Sci. Eng. C 2009, 29, 1885–1888. [Google Scholar] [CrossRef]
- Barinov, S.M.; Komlev, V.S. Osteoinductive ceramic materials for bone tissue restoration: Octacalcium phosphate (review). Inorg. Mater. Appl. Res. 2010, 1, 175–181. [Google Scholar] [CrossRef]
- Moseke, C.; Gbureck, U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 2010, 6, 3815–3823. [Google Scholar] [CrossRef]
- Morimoto, S.; Anada, T.; Honda, Y.; Suzuki, O. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Biomed. Mater. 2012, 7, 045020. [Google Scholar] [CrossRef]
- Tamimi, F.; Nihouannen, D.L.; Eimar, H.; Sheikh, Z.; Komarova, S.; Barralet, J. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomater. 2012, 8, 3161–3169. [Google Scholar] [CrossRef]
- Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials. Jpn. Dent. Sci. Rev. 2013, 49, 58–71. [Google Scholar] [CrossRef]
- Komlev, V.S.; Barinov, S.M.; Bozo, I.I.; Deev, R.V.; Eremin, I.I.; Fedotov, A.Y.; Gurin, A.N.; Khromova, N.V.; Kopnin, P.B.; Kuvshinova, E.A.; et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior. ACS Appl. Mater. Interf. 2014, 6, 16610–16620. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; Gbureck, U.; Bhaduri, S.B.; Sikder, P. Monetite, an important calcium phosphate compound–its synthesis, properties and applications in orthopedics. Acta Biomater. 2021, 127, 41–55. [Google Scholar] [CrossRef] [PubMed]
- LeGeros, R.Z. Calcium phosphates in oral biology and medicine. In Monographs in Oral Science; Karger: Basel, Switzerland, 1991; Volume 15, p. 201. [Google Scholar]
- Narasaraju, T.S.B.; Phebe, D.E. Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 1996, 31, 1–21. [Google Scholar] [CrossRef]
- Elliott, J.C. Structure and chemistry of the apatites and other calcium orthophosphates. In Studies in Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1994; Volume 18, p. 389. [Google Scholar]
- Brown, P.W.; Constantz, B. (Eds.) Hydroxyapatite and Related Materials; CRC Press: Boca Raton, FL, USA, 1994; p. 343. [Google Scholar]
- Amjad, Z. (Ed.) Calcium Phosphates in Biological and Industrial Systems; Kluwer Academic Publishers: Boston, MA, USA, 1997; p. 529. [Google Scholar]
- Da Silva, R.V.; Bertran, C.A.; Kawachi, E.Y.; Camilli, J.A. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. J. Craniofac. Surg. 2007, 18, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Okanoue, Y.; Ikeuchi, M.; Takemasa, R.; Tani, T.; Matsumoto, T.; Sakamoto, M.; Nakasu, M. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Arch. Orthop. Trauma Surg. 2012, 132, 1603–1610. [Google Scholar] [CrossRef]
- Draenert, M.; Draenert, A.; Draenert, K. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics. Microsc. Res. Tech. 2013, 76, 370–380. [Google Scholar] [CrossRef]
- Okuda, T.; Ioku, K.; Yonezawa, I.; Minagi, H.; Gonda, Y.; Kawachi, G.; Kamitakahara, M.; Shibata, Y.; Murayama, H.; Kurosawa, H.; et al. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials 2008, 29, 2719–2728. [Google Scholar] [CrossRef]
- Daculsi, G.; Bouler, J.M.; LeGeros, R.Z. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol. 1997, 172, 129–191. [Google Scholar]
- Zhu, X.D.; Zhang, H.J.; Fan, H.S.; Li, W.; Zhang, X.D. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 2010, 6, 1536–1541. [Google Scholar] [CrossRef]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31 (Suppl. 4), D37–D47. [Google Scholar] [CrossRef]
- Ahato, I. Reverse engineering the ceramic art of algae. Science 1999, 286, 1059–1061. [Google Scholar]
- Popişter, F.; Popescu, D.; Hurgoiu, D. A new method for using reverse engineering in case of ceramic tiles. Qual. Access Success 2012, 13 (Suppl. 5), 409–412. [Google Scholar]
- Yang, S.; Leong, K.F.; Du, Z.; Chua, C.K. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002, 8, 1–11. [Google Scholar] [CrossRef]
- Yeong, W.Y.; Chua, C.K.; Leong, K.F.; Chandrasekaran, M. Rapid prototyping in tissue engineering: Challenges and potential. Trends Biotechnol. 2004, 22, 643–652. [Google Scholar] [CrossRef]
- Ortona, A.; D’Angelo, C.; Gianella, S.; Gaia, D. Cellular ceramics produced by rapid prototyping and replication. Mater. Lett. 2012, 80, 95–98. [Google Scholar] [CrossRef]
- Eufinger, H.; Wehniöller, M.; Machtens, E.; Heuser, L.; Harders, A.; Kruse, D. Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data. J. Cranio Maxillofac. Surg. 1995, 23, 175–181. [Google Scholar] [CrossRef]
- Klein, M.; Glatzer, C. Individual CAD/CAM fabricated glass-bioceramic implants in reconstructive surgery of the bony orbital floor. Plastic Reconstruct. Surg. 2006, 117, 565–570. [Google Scholar] [CrossRef]
- Yin, L.; Song, X.F.; Song, Y.L.; Huang, T.; Li, J. An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. Int. J. Machine Tools Manufact. 2006, 46, 1013–1026. [Google Scholar]
- Li, J.; Hsu, Y.; Luo, E.; Khadka, A.; Hu, J. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthetic Plast. Surg. 2011, 35, 636–640. [Google Scholar] [CrossRef]
- Ciocca, L.; Donati, D.; Fantini, M.; Landi, E.; Piattelli, A.; Iezzi, G.; Tampieri, A.; Spadari, A.; Romagnoli, N.; Scotti, R. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: Preliminary results. J. Biomater. Appl. 2013, 28, 207–218. [Google Scholar] [CrossRef]
- Janek, M.; Žilinská, V.; Kovár, V.; Hajdúchová, Z.; Tomanová, K.; Peciar, P.; Veteška, P.; Gabošová, T.; Fialka, R.; Feranc, J.; et al. Mechanical testing of hydroxyapatite filaments for tissue scaffolds preparation by fused deposition of ceramics. J. Eur. Ceram. Soc. 2020, 40, 4932–4938. [Google Scholar] [CrossRef]
- Esslinger, S.; Grebhardt, A.; Jaeger, J.; Kern, F.; Killinger, A.; Bonten, C.; Gadow, R. Additive manufacturing of β-tricalcium phosphate components via fused deposition of ceramics (FDC). Materials 2021, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H.; Chua, C.K.; Leong, K.F.; Cheah, C.M.; Cheang, P.; Abu Bakar, M.S.; Cha, S.W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003, 24, 3115–3123. [Google Scholar] [CrossRef]
- Wiria, F.E.; Leong, K.F.; Chua, C.K.; Liu, Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007, 3, 1–12. [Google Scholar] [CrossRef]
- Shuai, C.J.; Li, P.J.; Feng, P.; Lu, H.B.; Peng, S.P.; Liu, J.L. Analysis of transient temperature distribution during the selective laser sintering of β-tricalcium phosphate. Laser Eng. 2013, 26, 71–80. [Google Scholar]
- Shuai, C.; Zhuang, J.; Hu, H.; Peng, S.; Liu, D.; Liu, J. In vitro bioactivity and degradability of β-tricalcium phosphate porous scaffold fabricated via selective laser sintering. Biotechnol. Appl. Biochem. 2013, 60, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Li, X.; Long, H.; Bin, S.; Xu, Y. Bioactive tetracalcium phosphate scaffolds fabricated by selective laser sintering for bone regeneration applications. Materials 2020, 13, 2268. [Google Scholar] [CrossRef]
- Bulina, N.V.; Titkov, A.I.; Baev, S.G.; Makarova, S.V.; Khusnutdinov, V.R.; Bessmeltsev, V.P.; Lyakhov, N.Z. Laser sintering of hydroxyapatite for potential fabrication of bioceramic scaffolds. Mater. Today Proc. 2021, 37, 4022–4026. [Google Scholar] [CrossRef]
- Lusquiños, F.; Pou, J.; Boutinguiza, M.; Quintero, F.; Soto, R.; León, B.; Pérez-Amor, M. Main characteristics of calcium phosphate coatings obtained by laser cladding. Appl. Surf. Sci. 2005, 247, 486–492. [Google Scholar] [CrossRef]
- Wang, D.G.; Chen, C.Z.; Ma, J.; Zhang, G. In situ synthesis of hydroxyapatite coating by laser cladding. Colloid Surf. B 2008, 66, 155–162. [Google Scholar] [CrossRef]
- Comesaña, R.; Lusquiños, F.; del Val, J.; Malot, T.; López-Álvarez, M.; Riveiro, A.; Quintero, F.; Boutinguiza, M.; Aubry, P.; de Carlos, A.; et al. Calcium phosphate grafts produced by rapid prototyping based on laser cladding. J. Eur. Ceram. Soc. 2011, 31, 29–41. [Google Scholar] [CrossRef]
- Jing, Z.; Cao, Q.; Jun, H. Corrosion, wear and biocompatibility of hydroxyapatite bio-functionally graded coating on titanium alloy surface prepared by laser cladding. Ceram. Int. 2021, 47, 24641–24651. [Google Scholar] [CrossRef]
- Leukers, B.; Gülkan, H.; Irsen, S.H.; Milz, S.; Tille, C.; Schieker, M.; Seitz, H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med. 2005, 16, 1121–1124. [Google Scholar] [CrossRef]
- Gbureck, U.; Hölzel, T.; Klammert, U.; Würzler, K.; Müller, F.A.; Barralet, J.E. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 2007, 17, 3940–3945. [Google Scholar] [CrossRef]
- Seitz, H.; Deisinger, U.; Leukers, B.; Detsch, R.; Ziegler, G. Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds. Adv. Eng. Mater. 2009, 11, B41–B46. [Google Scholar] [CrossRef]
- Butscher, A.; Bohner, M.; Roth, C.; Ernstberger, A.; Heuberger, R.; Doebelin, N.; von Rohr, R.P.; Müller, R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 2012, 8, 373–385. [Google Scholar] [CrossRef]
- Akkineni, A.R.; Luo, Y.; Schumacher, M.; Nies, B.; Lode, A.; Gelinsky, M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 2015, 27, 264–274. [Google Scholar] [CrossRef]
- Trombetta, R.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 2017, 45, 23–44. [Google Scholar] [CrossRef]
- Ma, H.; Feng, C.; Chang, J.; Wu, C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018, 79, 37–59. [Google Scholar] [CrossRef]
- Miranda, P.; Pajares, A.; Saiz, E.; Tomsia, A.P.; Guiberteau, F. Mechanical behaviour under uniaxial compression of robocast calcium phosphate scaffolds. Eur. Cells Mater. 2007, 14 (Suppl. 1), 79. [Google Scholar]
- Maazouz, Y.; Montufar, E.B.; Guillem-Marti, J.; Fleps, I.; Öhman, C.; Persson, C.; Ginebra, M.P. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J. Mater. Chem. B 2014, 2, 5378–5386. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Lu, W.F.; Zhai, W. Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis. Biomater. Adv. 2022, 134, 112578. [Google Scholar] [CrossRef]
- Porter, N.L.; Pilliar, R.M.; Grynpas, M.D. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: A study of processing parameters and in vitro degradation characteristics. J. Biomed. Mater. Res. 2001, 56, 504–515. [Google Scholar] [CrossRef]
- Leong, K.F.; Cheah, C.M.; Chua, C.K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24, 2363–2378. [Google Scholar] [CrossRef]
- Shanjani, Y.; de Croos, J.N.A.; Pilliar, R.M.; Kandel, R.A.; Toyserkani, E. Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lim, D.; Kim, Y.H.; Koh, Y.H.; Lee, M.H.; Han, I.; Lee, S.J.; Yoo, O.S.; Kim, H.S.; Park, J.C. A comparative study of the physical and mechanical properties of porous hydroxyapatite scaffolds fabricated by solid freeform fabrication and polymer replication method. Int. J. Precision Eng. Manuf. 2011, 12, 695–701. [Google Scholar] [CrossRef]
- Shanjani, Y.; Hu, Y.; Toyserkani, E.; Grynpas, M.; Kandel, R.A.; Pilliar, R.M. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: In vivo studies. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101B, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.J.; Kim, J.; Kim, Y.H.; Lee, M.H.; Baek, H.S.; Lee, D.H.; Kim, H.L.; Seo, H.J.; Lee, M.H.; Kwon, S.Y.; et al. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Artif. Organs 2013, 37, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Lu, B.; Wang, C. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques. J. Porous Mater. 2008, 15, 667–671. [Google Scholar] [CrossRef]
- Ronca, A.; Ambrosio, L.; Grijpma, D.W. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013, 9, 5989–5996. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, D.; Cao, Q.; Wang, J.; Wu, Y.; Yuan, B.; Li, X.; Chen, X.; Zhou, Y.; Yang, X.; et al. Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system. ACS Biomater. Sci. Eng. 2020, 6, 1787–1797. [Google Scholar] [CrossRef]
- Ullah, I.; Cao, L.; Cui, W.; Xu, Q.; Yang, R.; Tang, K.L.; Zhang, X. Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles. J. Mater. Sci. Technol. 2021, 88, 99–108. [Google Scholar]
- Paredes, C.; Martínez-Vázquez, F.J.; Elsayed, H.; Colombo, P.; Pajares, A.; Miranda, P. Evaluation of direct light processing for the fabrication of bioactive ceramic scaffolds: Effect of pore/strut size on manufacturability and mechanical performance. J. Eur. Ceram. Soc. 2021, 41, 892–900. [Google Scholar] [CrossRef]
- Gladman, A.S.; Matsumoto, E.A.; Nuzzo, R.G.; Mahadevan, L.; Lewis, J.A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413–418. [Google Scholar] [CrossRef]
- Hwangbo, H.; Lee, H.; Roh, E.J.; Kim, W.; Joshi, H.P.; Kwon, S.Y.; Choi, U.Y.; Han, I.B.; Kim, G.H. Bone tissue engineering via application of a collagen/hydroxyapatite 4D-printed biomimetic scaffold for spinal fusion. Appl. Phys. Rev. 2021, 8, 021403. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Vaishya, R. 5D printing and its expected applications in orthopaedics. J. Clin. Orthop. Trauma. 2019, 10, 809–810. [Google Scholar] [CrossRef]
- Du, X.; Fu, S.; Zhu, Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: An overview. J. Mater. Chem. B 2018, 6, 4397–4412. [Google Scholar] [CrossRef]
- Kumar, A.; Kargozar, S.; Baino, F.; Han, S.S. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: A review. Front. Mater. 2019, 6, 313. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; et al. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Qu, H. Additive manufacturing for bone tissue engineering scaffolds. Mater. Today Commun. 2020, 24, 101024. [Google Scholar] [CrossRef]
- Saber-Samandari, S.; Gross, K.A. The use of thermal printing to control the properties of calcium phosphate deposits. Biomaterials 2010, 31, 6386–6393. [Google Scholar] [CrossRef]
- De Meira, C.R.; Gomes, D.T.; Braga, F.J.C.; de Moraes Purquerio, B.; Fortulan, C.A. Direct manufacture of hydroxyapatite scaffolds using blue laser. Mater. Sci. Forum 2015, 805, 128–133. [Google Scholar] [CrossRef]
- Narayan, R.J.; Jin, C.; Doraiswamy, A.; Mihailescu, I.N.; Jelinek, M.; Ovsianikov, A.; Chichkov, B.; Chrisey, D.B. Laser processing of advanced bioceramics. Adv. Eng. Mater. 2005, 7, 1083–1098. [Google Scholar] [CrossRef]
- Nather, A. (Ed.) Bone Grafts and Bone Substitutes: Basic Science and Clinical Applications; World Scientific: Singapore, 2005; p. 592. [Google Scholar]
- Bártolo, P.; Bidanda, B. (Eds.) Bio-Materials and Prototyping Applications in Medicine; Springer: New York, NY, USA, 2008; p. 216. [Google Scholar]
- Kokubo, T. (Ed.) Bioceramics and Their Clinical Applications; Woodhead Publishing: Cambridge, UK, 2008; p. 784. [Google Scholar]
- Narayan, R. (Ed.) Biomedical Materials; Springer: New York, NY, USA, 2009; p. 566. [Google Scholar]
- Park, J. Bioceramics: Properties, Characterizations, and Applications; Springer: New York, NY, USA, 2008; p. 364. [Google Scholar]
- Rodríguez-Lorenzo, L.M.; Vallet-Regí, M.; Ferreira, J.M.F. Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials 2001, 22, 583–588. [Google Scholar] [CrossRef]
- Indra, A.; Putra, A.B.; Handra, N.; Fahmi, H.; Nurzal; Asfarizal; Perdana, M.; Anrinal; Subardi, A.; Affi, J.; et al. Behavior of sintered body properties of hydroxyapatite ceramics: Effect of uniaxial pressure on green body fabrication. Mater. Today Sustain. 2022, 17, 100100. [Google Scholar] [CrossRef]
- Uematsu, K.; Takagi, M.; Honda, T.; Uchida, N.; Saito, K. Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake. J. Am. Ceram. Soc. 1989, 72, 1476–1478. [Google Scholar] [CrossRef]
- Itoh, H.; Wakisaka, Y.; Ohnuma, Y.; Kuboki, Y. A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder. Dent. Mater. 1994, 13, 25–35. [Google Scholar] [CrossRef]
- Takikawa, K.; Akao, M. Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation in-vivo. J. Mater. Sci. Mater. Med. 1996, 7, 439–445. [Google Scholar] [CrossRef]
- Gautier, H.; Merle, C.; Auget, J.L.; Daculsi, G. Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: Comparison with a classical method. Biomaterials 2000, 21, 243–249. [Google Scholar] [CrossRef]
- Tadic, D.; Epple, M. Mechanically stable implants of synthetic bone mineral by cold isostatic pressing. Biomaterials 2003, 24, 4565–4571. [Google Scholar] [CrossRef]
- Onoki, T.; Hashida, T. New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique. Surf. Coat. Technol. 2006, 200, 6801–6807. [Google Scholar] [CrossRef]
- Ehsani, N.; Ruys, A.J.; Sorrell, C.C. Hot isostatic pressing (HIPing) of fecralloy-reinforced hydroxyapatite. J. Biomimet. Biomater. Tissue Eng. 2013, 17, 87–102. [Google Scholar] [CrossRef]
- Irsen, S.H.; Leukers, B.; Höckling, C.; Tille, C.; Seitz, H. Bioceramic granulates for use in 3D printing: Process engineering aspects. Materwiss. Werksttech. 2006, 37, 533–537. [Google Scholar] [CrossRef]
- Hsu, Y.H.; Turner, I.G.; Miles, A.W. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules. J. Mater. Sci. Mater. Med. 2007, 18, 1931–1937. [Google Scholar] [CrossRef]
- Zyman, Z.Z.; Glushko, V.; Dedukh, N.; Malyshkina, S.; Ashukina, N. Porous calcium phosphate ceramic granules and their behaviour in differently loaded areas of skeleton. J. Mater. Sci. Mater. Med. 2008, 19, 2197–2205. [Google Scholar] [CrossRef]
- Viana, M.; Désiré, A.; Chevalier, E.; Champion, E.; Chotard, R.; Chulia, D. Interest of high shear wet granulation to produce drug loaded porous calcium phosphate pellets for bone filling. Key Eng. Mater. 2009, 396–398, 535–538. [Google Scholar] [CrossRef]
- Chevalier, E.; Viana, M.; Cazalbou, S.; Chulia, D. Comparison of low-shear and high-shear granulation processes: Effect on implantable calcium phosphate granule properties. Drug Dev. Ind. Pharm. 2009, 35, 1255–1263. [Google Scholar] [CrossRef]
- 197 Lakevics, V.; Locs, J.; Loca, D.; Stepanova, V.; Berzina-Cimdina, L.; Pelss, J. Bioceramic hydroxyapatite granules for purification of biotechnological products. Adv. Mater. Res. 2011, 284–286, 1764–1769. [Google Scholar] [CrossRef]
- Camargo, N.H.A.; Franczak, P.F.; Gemelli, E.; da Costa, B.D.; de Moraes, A.N. Characterization of three calcium phosphate microporous granulated bioceramics. Adv. Mater. Res. 2014, 936, 687–694. [Google Scholar] [CrossRef]
- Reikerås, O.; Johansson, C.B.; Sundfeldt, M. Bone ingrowths to press-fit and loose-fit implants: Comparisons between titanium and hydroxyapatite. J. Long-Term Eff. Med. Implant. 2006, 16, 157–164. [Google Scholar] [CrossRef]
- Rao, R.R.; Kannan, T.S. Dispersion and slip casting of hydroxyapatite. J. Am. Ceram. Soc. 2001, 84, 1710–1716. [Google Scholar] [CrossRef]
- Sakka, Y.; Takahashi, K.; Matsuda, N.; Suzuki, T.S. Effect of milling treatment on texture development of hydroxyapatite ceramics by slip casting in high magnetic field. Mater. Trans. 2007, 48, 2861–2866. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yokogawa, Y.; Feng, X.; Tao, Y.; Li, Y. Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders. Ceram. Int. 2010, 36, 107–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Yokogawa, Y.; Feng, X.; Tao, Y.; Qiu, T. Fabrication of porous hydroxyapatite ceramic scaffolds with high flexural strength through the double slip-casting method using fine powders. J. Am. Ceram. Soc. 2012, 95, 147–152. [Google Scholar] [CrossRef]
- Hagio, T.; Yamauchi, K.; Kohama, T.; Matsuzaki, T.; Iwai, K. Beta tricalcium phosphate ceramics with controlled crystal orientation fabricated by application of external magnetic field during the slip casting process. Mater. Sci. Eng. C 2013, 33, 2967–2970. [Google Scholar] [CrossRef] [PubMed]
- Marçal, R.L.S.B.; da Rocha, D.N.; da Silva, M.H.P. Slip casting used as a forming technique for hydroxyapatite processing. Key Eng. Mater. 2017, 720, 219–222. [Google Scholar] [CrossRef]
- Sepulveda, P.; Ortega, F.S.; Innocentini, M.D.M.; Pandolfelli, V.C. Properties of highly porous hydroxyapatite obtained by the gel casting of foams. J. Am. Ceram. Soc. 2000, 83, 3021–3024. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, S.; Werner, J.; Vallet-Regí, M. Hierarchical pore structure of calcium phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods. Acta Biomater. 2008, 4, 913–922. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, T.; Zhang, J.; Lin, Q.; Jiang, D. Microstructure and mechanical properties of hydroxyapatite obtained by gel-casting process. Ceram. Int. 2008, 34, 359–364. [Google Scholar] [CrossRef]
- Marcassoli, P.; Cabrini, M.; Tirillò, J.; Bartuli, C.; Palmero, P.; Montanaro, L. Mechanical characterization of hydroxiapatite micro/macro-porous ceramics obtained by means of innovative gel-casting process. Key Eng. Mater. 2010, 417–418, 565–568. [Google Scholar] [CrossRef]
- Dash, S.R.; Sarkar, R.; Bhattacharyya, S. Gel casting of hydroxyapatite with naphthalene as pore former. Ceram. Int. 2015, 41, 3775–3790. [Google Scholar] [CrossRef]
- Ramadas, M.; Ferreira, J.M.F.; Ballamurugan, A.M. Fabrication of three dimensional bioactive Sr2+ substituted apatite scaffolds by gel-casting technique for hard tissue regeneration. J. Tissue Eng. Regen. Med. 2021, 15, 577–585. [Google Scholar] [CrossRef]
- Fomin, A.S.; Barinov, S.M.; Ievlev, V.M.; Smirnov, V.V.; Mikhailov, B.P.; Belonogov, E.K.; Drozdova, N.A. Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Dokl. Chem. 2008, 418, 22–25. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, H.M.; Hsiao, B.S.; Zhong, G.J.; Li, Z.M. Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. J. Mater. Sci. 2014, 49, 1648–1658. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Ding, J.X.; Wu, J.; Zhuang, X.; Chen, X.; Wang, J.; Yin, J.; Li, Z. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater. Sci. Eng. 2016, 2, 1471–1482. [Google Scholar] [CrossRef]
- Kankawa, Y.; Kaneko, Y.; Saitou, K. Injection molding of highly-purified hydroxylapatite and TCP utilizing solid phase reaction method. J. Ceram. Soc. Jpn. 1991, 99, 438–442. [Google Scholar] [CrossRef]
- Cihlář, J.; Trunec, M. Injection moulded hydroxyapatite ceramics. Biomaterials 1996, 17, 1905–1911. [Google Scholar] [CrossRef]
- Jewad, R.; Bentham, C.; Hancock, B.; Bonfield, W.; Best, S.M. Dispersant selection for aqueous medium pressure injection moulding of anhydrous dicalcium phosphate. J. Eur. Ceram. Soc. 2008, 28, 547–553. [Google Scholar] [CrossRef]
- McNamara, S.L.; McCarthy, E.M.; Schmidt, D.F.; Johnston, S.P.; Kaplan, D.L. Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites. Biomaterials 2021, 269, 120643. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jun, Y.K.; Hong, S.H.; Lee, I.S.; Kim, H.E.; Won, Y.Y. Calcium phosphate bioceramics with various porosities and dissolution rates. J. Am. Ceram. Soc. 2002, 85, 3129–3131. [Google Scholar] [CrossRef]
- Fooki, A.C.B.M.; Aparecida, A.H.; Fideles, T.B.; Costa, R.C.; Fook, M.V.L. Porous hydroxyapatite scaffolds by polymer sponge method. Key Eng. Mater. 2009, 396–398, 703–706. [Google Scholar] [CrossRef]
- Sopyan, I.; Kaur, J. Preparation and characterization of porous hydroxyapatite through polymeric sponge method. Ceram. Int. 2009, 35, 3161–3168. [Google Scholar] [CrossRef]
- Bellucci, D.; Cannillo, V.; Sola, A. Shell scaffolds: A new approach towards high strength bioceramic scaffolds for bone regeneration. Mater. Lett. 2010, 64, 203–206. [Google Scholar] [CrossRef]
- Cunningham, E.; Dunne, N.; Walker, G.; Maggs, C.; Wilcox, R.; Buchanan, F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J. Mater. Sci. Mater. Med. 2010, 21, 2255–2261. [Google Scholar] [CrossRef]
- Sung, J.H.; Shin, K.H.; Koh, Y.H.; Choi, W.Y.; Jin, Y.; Kim, H.E. Preparation of the reticulated hydroxyapatite ceramics using carbon-coated polymeric sponge with elongated pores as a novel template. Ceram. Int. 2011, 37, 2591–2596. [Google Scholar] [CrossRef]
- Mishima, F.D.; Louro, L.H.L.; Moura, F.N.; Gobbo, L.A.; da Silva, M.H.P. Hydroxyapatite scaffolds produced by hydrothermal deposition of monetite on polyurethane sponges substrates. Key Eng. Mater. 2012, 493–494, 820–825. [Google Scholar] [CrossRef]
- Hannickel, A.; da Silva, M.H.P. Novel bioceramic scaffolds for regenerative medicine. Bioceram. Dev. Appl. 2015, 5, 1000082. [Google Scholar]
- Das, S.; Kumar, S.; Doloi, B.; Bhattacharyya, B. Experimental studies of ultrasonic machining on hydroxyapatite bio-ceramics. Int. J. Adv. Manuf. Tech. 2016, 86, 829–839. [Google Scholar] [CrossRef]
- Velayudhan, S.; Ramesh, P.; Sunny, M.C.; Varma, H.K. Extrusion of hydroxyapatite to clinically significant shapes. Mater. Lett. 2000, 46, 142–146. [Google Scholar] [CrossRef]
- Yang, H.Y.; Thompson, I.; Yang, S.F.; Chi, X.P.; Evans, J.R.G.; Cook, R.J. Dissolution characteristics of extrusion freeformed hydroxyapatite–tricalcium phosphate scaffolds. J. Mater. Sci. Mater. Med. 2008, 19, 3345–3353. [Google Scholar] [CrossRef]
- Yang, S.; Yang, H.; Chi, X.; Evans, J.R.G.; Thompson, I.; Cook, R.J.; Robinson, P. Rapid prototyping of ceramic lattices for hard tissue scaffolds. Mater. Des. 2008, 29, 1802–1809. [Google Scholar] [CrossRef]
- Yang, H.Y.; Chi, X.P.; Yang, S.; Evans, J.R.G. Mechanical strength of extrusion freeformed calcium phosphate filaments. J. Mater. Sci. Mater. Med. 2010, 21, 1503–1510. [Google Scholar] [CrossRef]
- Cortez, P.P.; Atayde, L.M.; Silva, M.A.; da Silva, P.A.; Fernandes, M.H.; Afonso, A.; Lopes, M.A.; Maurício, A.C.; Santos, J.D. Characterization and preliminary in vivo evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 170–179. [Google Scholar] [CrossRef]
- Lim, S.; Chun, S.; Yang, D.; Kim, S. Comparison study of porous calcium phosphate blocks prepared by piston and screw type extruders for bone scaffold. Tissue Eng. Regen. Med. 2012, 9, 51–55. [Google Scholar] [CrossRef]
- Blake, D.M.; Tomovic, S.; Jyung, R.W. Extrusion of hydroxyapatite ossicular prosthesis. Ear Nose Throat J. 2013, 92, 490–494. [Google Scholar] [CrossRef]
- Muthutantri, A.I.; Huang, J.; Edirisinghe, M.J.; Bretcanu, O.; Boccaccini, A.R. Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering. Biomed. Mater. 2008, 3, 25009. [Google Scholar] [CrossRef]
- Roncari, E.; Galassi, C.; Pinasco, P. Tape casting of porous hydroxyapatite ceramics. J. Mater. Sci. Lett. 2000, 19, 33–35. [Google Scholar] [CrossRef]
- Tian, T.; Jiang, D.; Zhang, J.; Lin, Q. Aqueous tape casting process for hydroxyapatite. J. Eur. Ceram. Soc. 2007, 27, 2671–2677. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Shibata, Y.; Murakami, A.; Miyazaki, T.; Nishiyama, N. Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on responcce in vitro. J. Hard Tiss. Biol. 2009, 18, 71–76. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Teshima, M.; Nishiyama, N.; Yamaguchi, M.; Hirayama, S.; Shibata, Y.; Miyazaki, T. Tape-cast and sintered β-tricalcium phosphate laminates for biomedical applications: Effect of milled Al2O3 fiber additives on microstructural and mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 2261–2268. [Google Scholar] [CrossRef]
- Khamkasem, C.; Chaijaruwanich, A. Effect of binder/plasticizer ratios in aqueous-based tape casting on mechanical properties of bovine hydroxyapatite tape. Ferroelectrics 2013, 455, 129–135. [Google Scholar] [CrossRef]
- Suzuki, S.; Itoh, K.; Ohgaki, M.; Ohtani, M.; Ozawa, M. Preparation of sintered filter for ion exchange by a doctor blade method with aqueous slurries of needlelike hydroxyapatite. Ceram. Int. 1999, 25, 287–291. [Google Scholar] [CrossRef]
- Nishikawa, H.; Hatanaka, R.; Kusunoki, M.; Hayami, T.; Hontsu, S. Preparation of freestanding hydroxyapatite membranes excellent biocompatibility and flexibility. Appl. Phys. Express 2008, 1, 088001. [Google Scholar] [CrossRef]
- Padilla, S.; Roman, J.; Vallet-Regí, M. Synthesis of porous hydroxyapatites by combination of gel casting and foams burn out methods. J. Mater. Sci. Mater. Med. 2002, 13, 1193–1197. [Google Scholar] [CrossRef]
- Yang, T.Y.; Lee, J.M.; Yoon, S.Y.; Park, H.C. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. J. Mater. Sci. Mater. Med. 2010, 21, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Baradararan, S.; Hamdi, M.; Metselaar, I.H. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Adv. Appl. Ceram. 2012, 111, 367–373. [Google Scholar] [CrossRef]
- Inoue, K.; Sassa, K.; Yokogawa, Y.; Sakka, Y.; Okido, M.; Asai, S. Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field. Mater. Trans. 2003, 44, 1133–1137. [Google Scholar] [CrossRef]
- Iwai, K.; Akiyama, J.; Tanase, T.; Asai, S. Alignment of HAp crystal using a sample rotation in a static magnetic field. Mater. Sci. Forum. 2007, 539–543, 716–719. [Google Scholar] [CrossRef]
- Iwai, K.; Akiyama, J.; Asai, S. Structure control of hydroxyapatite using a magnetic field. Mater. Sci. Forum. 2007, 561–565, 1565–1568. [Google Scholar] [CrossRef]
- Sakka, Y.; Takahashi, K.; Suzuki, T.S.; Ito, S.; Matsuda, N. Texture development of hydroxyapatite ceramics by colloidal processing in a high magnetic field followed by sintering. Mater. Sci. Eng. A 2008, 475, 27–33. [Google Scholar] [CrossRef]
- Fleck, N.A. On the cold compaction of powders. J. Mech. Phys. Solids 1995, 43, 1409–1431. [Google Scholar] [CrossRef]
- Kang, J.; Hadfield, M. Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine. Proc. Inst. Mech. Eng. B 2001, 215, 69–78. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Yong, Y.; Rys, M.J.; Lei, S. Machining assessment of nano-crystalline hydroxyapatite bio-ceramic. J. Manuf. Processes 2013, 15, 666–672. [Google Scholar] [CrossRef]
- Kurella, A.; Dahotre, N.B. Surface modification for bioimplants: The role of laser surface engineering. J. Biomater. Appl. 2005, 20, 5–50. [Google Scholar] [CrossRef]
- Moriguchi, Y.; Lee, D.S.; Chijimatsu, R.; Thamina, K.; Masuda, K.; Itsuki, D.; Yoshikawa, H.; Hamaguchi, S.; Myoui, A. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE 2018, 13, e0194303. [Google Scholar]
- Bertol, L.S.; Schabbach, R.; dos Santos, L.A.L. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. J. Mater. Sci. Mater. Med. 2017, 28, 168. [Google Scholar] [CrossRef]
- Oktar, F.N.; Genc, Y.; Goller, G.; Erkmen, E.Z.; Ozyegin, L.S.; Toykan, D.; Demirkiran, H.; Haybat, H. Sintering of synthetic hydroxyapatite compacts. Key Eng. Mater. 2004, 264–268, 2087–2090. [Google Scholar] [CrossRef]
- Georgiou, G.; Knowles, J.C.; Barralet, J.E. Dynamic shrinkage behavior of hydroxyapatite and glass-reinforced hydroxyapatites. J. Mater. Sci. 2004, 39, 2205–2208. [Google Scholar] [CrossRef]
- Fellah, B.H.; Layrolle, P. Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater. 2009, 5, 735–742. [Google Scholar] [CrossRef]
- Kutty, M.G.; Bhaduri, S.B.; Zhou, H.; Yaghoubi, A. In situ measurement of shrinkage and temperature profile in microwave- and conventionally-sintered hydroxyapatite bioceramic. Mater. Lett. 2015, 161, 375–378. [Google Scholar] [CrossRef]
- Ben Ayed, F.; Bouaziz, J.; Bouzouita, K. Pressureless sintering of fluorapatite under oxygen atmosphere. J. Eur. Ceram. Soc. 2000, 20, 1069–1076. [Google Scholar] [CrossRef]
- He, Z.; Ma, J.; Wang, C. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics. Biomaterials 2005, 26, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.N. Sintering of Ceramics; CRC Press: Boca Raton, FL, USA, 2007; p. 388. [Google Scholar]
- Monroe, E.A.; Votava, W.; Bass, D.B.; McMullen, J. New calcium phosphate ceramic material for bone and tooth implants. J. Dent. Res. 1971, 50, 860–861. [Google Scholar] [CrossRef] [PubMed]
- Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 2000, 20, 2377–2387. [Google Scholar] [CrossRef]
- Döbelin, N.; Maazouz, Y.; Heuberger, R.; Bohner, M.; Armstrong, A.A.; Wagoner Johnson, A.J.; Wanner, C. A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation. J. Eur. Ceram. Soc. 2020, 40, 6095–6106. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Kono, H.; Sassa, K.; Asai, S. Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic field. J. Cryst. Growth 2010, 312, 323–326. [Google Scholar] [CrossRef]
- Ruys, A.J.; Wei, M.; Sorrell, C.C.; Dickson, M.R.; Brandwood, A.; Milthorpe, B.K. Sintering effect on the strength of hydroxyapatite. Biomaterials 1995, 16, 409–415. [Google Scholar] [CrossRef]
- Van Landuyt, P.; Li, F.; Keustermans, J.P.; Streydio, J.M.; Delannay, F.; Munting, E. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. J. Mater. Sci. Mater. Med. 1995, 6, 8–13. [Google Scholar] [CrossRef]
- Pramanik, S.; Agarwal, A.K.; Rai, K.N.; Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 2007, 33, 419–426. [Google Scholar] [CrossRef]
- Haberko, K.; Bućko, M.M.; Brzezińska-Miecznik, J.; Haberko, M.; Mozgawa, W.; Panz, T.; Pyda, A.; Zarebski, J. Natural hydroxyapatite–its behaviour during heat treatment. J. Eur. Ceram. Soc. 2006, 26, 537–542. [Google Scholar] [CrossRef]
- Haberko, K.; Bućko, M.M.; Mozgawa, W.; Pyda, A.; Brzezińska-Miecznik, J.; Carpentier, J. Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres. Ceram. Int. 2009, 35, 2537–2540. [Google Scholar] [CrossRef]
- Janus, A.M.; Faryna, M.; Haberko, K.; Rakowska, A.; Panz, T. Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Mikrochim. Acta 2008, 161, 349–353. [Google Scholar] [CrossRef]
- Bahrololoom, M.E.; Javidi, M.; Javadpour, S.; Ma, J. Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J. Ceram. Process. Res. 2009, 10, 129–138. [Google Scholar]
- Mostafa, N.Y. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 2005, 94, 333–341. [Google Scholar] [CrossRef]
- Suchanek, W.; Yashima, M.; Kakihana, M.; Yoshimura, M. Hydroxyapatite ceramics with selected sintering additives. Biomaterials 1997, 18, 923–933. [Google Scholar] [CrossRef]
- Kalita, S.J.; Bose, S.; Bandyopadhyay, A.; Hosick, H.L. Oxide based sintering additives for HAp ceramics. Ceram. Trans. 2003, 147, 63–72. [Google Scholar]
- Kalita, S.J.; Bose, S.; Hosick, H.L.; Bandyopadhyay, A. CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials 2004, 25, 2331–2339. [Google Scholar] [CrossRef]
- Safronova, T.V.; Putlyaev, V.I.; Shekhirev, M.A.; Tretyakov, Y.D.; Kuznetsov, A.V.; Belyakov, A.V. Densification additives for hydroxyapatite ceramics. J. Eur. Ceram. Soc. 2009, 29, 1925–1932. [Google Scholar] [CrossRef]
- Eskandari, A.; Aminzare, M.; Hassani, H.; Barounian, H.; Hesaraki, S.; Sadrnezhaad, S.K. Densification behavior and mechanical properties of biomimetic apatite nanocrystals. Curr. Nanosci. 2011, 7, 776–780. [Google Scholar] [CrossRef]
- Ramesh, S.; Tolouei, R.; Tan, C.Y.; Aw, K.L.; Yeo, W.H.; Sopyan, I.; Teng, W.D. Sintering of hydroxyapatite ceramic produced by wet chemical method. Adv. Mater. Res. 2011, 264–265, 1856–1861. [Google Scholar]
- Ou, S.F.; Chiou, S.Y.; Ou, K.L. Phase transformation on hydroxyapatite decomposition. Ceram. Int. 2013, 39, 3809–3816. [Google Scholar] [CrossRef]
- Bernache-Assollant, D.; Ababou, A.; Champion, E.; Heughebaert, M. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth. J. Eur. Ceram. Soc. 2003, 23, 229–241. [Google Scholar] [CrossRef]
- Ramesh, S.; Tan, C.Y.; Bhaduri, S.B.; Teng, W.D.; Sopyan, I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 2008, 206, 221–230. [Google Scholar] [CrossRef]
- Wang, J.; Shaw, L.L. Grain-size dependence of the hardness of submicrometer and nanometer hydroxyapatite. J. Am. Ceram. Soc. 2010, 93, 601–604. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kawai, W.; Wakayama, S. The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 2006, 17, 1089–1093. [Google Scholar] [CrossRef]
- Chen, I.W.; Wang, X.H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000, 404, 168–170. [Google Scholar] [CrossRef]
- Mazaheri, M.; Haghighatzadeh, M.; Zahedi, A.M.; Sadrnezhaad, S.K. Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics. J. Alloys Compd. 2009, 471, 180–184. [Google Scholar] [CrossRef]
- Panyata, S.; Eitssayeam, S.; Rujijanagul, G.; Tunkasiri, T.; Pengpat, K. Property development of hydroxyapatite ceramics by two-step sintering. Adv. Mater. Res. 2012, 506, 190–193. [Google Scholar] [CrossRef]
- Esnaashary, M.; Fathi, M.; Ahmadian, M. The effect of the two-step sintering process on consolidation of fluoridated hydroxyapatite and its mechanical properties and bioactivity. Int. J. Appl. Ceram. Technol. 2014, 11, 47–56. [Google Scholar] [CrossRef]
- Feng, P.; Niu, M.; Gao, C.; Peng, S.; Shuai, C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci. Rep. 2014, 4, 5599. [Google Scholar] [CrossRef]
- Halouani, R.; Bernache-Assolant, D.; Champion, E.; Ababou, A. Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 1994, 5, 563–568. [Google Scholar] [CrossRef]
- Kasuga, T.; Ota, Y.; Tsuji, K.; Abe, Y. Preparation of high-strength calcium phosphate ceramics with low modulus of elasticity containing β-Ca(PO3)2 fibers. J. Am. Ceram. Soc. 1996, 79, 1821–1824. [Google Scholar] [CrossRef]
- Suchanek, W.L.; Yoshimura, M. Preparation of fibrous, porous hydroxyapatite ceramics from hydroxyapatite whiskers. J. Am. Ceram. Soc. 1998, 81, 765–767. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.R.; Song, H.; Yoon, H. Preparation of porous hydroxyapatite/TCP composite block using a hydrothermal hot pressing method. Mater. Sci. Forum 2005, 486–487, 117–120. [Google Scholar] [CrossRef]
- Li, J.G.; Hashida, T. In situ formation of hydroxyapatite-whisker ceramics by hydrothermal hot-pressing method. J. Am. Ceram. Soc. 2006, 89, 3544–3546. [Google Scholar] [CrossRef]
- Li, J.G.; Hashida, T. Preparation of hydroxyapatite ceramics by hydrothermal hot-pressing method at 300 °C. J. Mater. Sci. 2007, 42, 5013–5019. [Google Scholar] [CrossRef]
- Petrakova, N.V.; Lysenkov, A.S.; Ashmarin, A.A.; Egorov, A.A.; Fedotov, A.Y.; Shvorneva, L.I.; Komlev, V.S.; Barinov, S.M. Effect of hot pressing temperature on the microstructure and strength of hydroxyapatite ceramic. Inorg. Mater. Appl. Res. 2013, 4, 362–367. [Google Scholar] [CrossRef]
- Nakahira, A.; Murakami, T.; Onoki, T.; Hashida, T.; Hosoi, K. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J. Am. Ceram. Soc. 2005, 88, 1334–1336. [Google Scholar] [CrossRef]
- Auger, M.A.; Savoini, B.; Muñoz, A.; Leguey, T.; Monge, M.A.; Pareja, R.; Victoria, J. Mechanical characteristics of porous hydroxyapatite/oxide composites produced by post-sintering hot isostatic pressing. Ceram. Int. 2009, 35, 2373–2380. [Google Scholar] [CrossRef]
- Guo, N.; Shen, H.Z.; Jin, Q.; Shen, P. Hydrated precursor-assisted densification of hydroxyapatite and its composites by cold sintering. Ceram. Int. 2020, 47, 14348–14353. [Google Scholar] [CrossRef]
- Silva, C.C.; Graça, M.P.F.; Sombra, A.S.B.; Valente, M.A. Structural and electrical study of calcium phosphate obtained by a microwave radiation assisted procedure. Phys. Rev. B Condens. Matter 2009, 404, 1503–1508. [Google Scholar] [CrossRef]
- Veljović, D.; Zalite, I.; Palcevskis, E.; Smiciklas, I.; Petrović, R.; Janaćković, D. Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram. Int. 2010, 36, 595–603. [Google Scholar] [CrossRef]
- Veljović, D.; Palcevskis, E.; Dindune, A.; Putić, S.; Balać, I.; Petrović, R.; Janaćković, D. Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing. J. Mater. Sci. 2010, 45, 3175–3183. [Google Scholar] [CrossRef]
- Tarafder, S.; Balla, V.K.; Davies, N.M.; Bandyopadhyay, A.; Bose, S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 2013, 7, 631–641. [Google Scholar] [CrossRef]
- Thuault, A.; Savary, E.; Hornez, J.C.; Moreau, G.; Descamps, M.; Marinel, S.; Leriche, A. Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity. J. Eur. Ceram. Soc. 2014, 34, 1865–1871. [Google Scholar] [CrossRef]
- Sikder, P.; Ren, Y.; Bhaduri, S.B. Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review. Acta Biomater. 2020, 111, 29–53. [Google Scholar] [CrossRef]
- Nakamura, T.; Fukuhara, T.; Izui, H. Mechanical properties of hydroxyapatites sintered by spark plasma sintering. Ceram. Trans. 2006, 194, 265–272. [Google Scholar]
- Grossin, D.; Rollin-Martinet, S.; Estournès, C.; Rossignol, F.; Champion, E.; Combes, C.; Rey, C.; Geoffroy, C.; Drouet, C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects. Acta Biomater. 2010, 6, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Ortali, C.; Julien, I.; Vandenhende, M.; Drouet, C.; Champion, E. Consolidation of bone-like apatite bioceramics by spark plasma sintering of amorphous carbonated calcium phosphate at very low temperature. J. Eur. Ceram. Soc. 2018, 38, 2098–2109. [Google Scholar] [CrossRef]
- Chesnaud, A.; Bogicevic, C.; Karolak, F.; Estournès, C.; Dezanneau, G. Preparation of transparent oxyapatite ceramics by combined use of freeze-drying and spark-plasma sintering. Chem. Comm. 2007, 1550–1552. [Google Scholar] [CrossRef]
- Eriksson, M.; Liu, Y.; Hu, J.; Gao, L.; Nygren, M.; Shen, Z. Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J. Eur. Ceram. Soc. 2011, 31, 1533–1540. [Google Scholar] [CrossRef]
- Yoshida, H.; Kim, B.N.; Son, H.W.; Han, Y.H.; Kim, S. Superplastic deformation of transparent hydroxyapatite. Scripta Mater. 2013, 69, 155–158. [Google Scholar] [CrossRef]
- Kim, B.N.; Prajatelistia, E.; Han, Y.H.; Son, H.W.; Sakka, Y.; Kim, S. Transparent hydroxyapatite ceramics consolidated by spark plasma sintering. Scripta Mater. 2013, 69, 366–369. [Google Scholar] [CrossRef]
- Yun, J.; Son, H.; Prajatelistia, E.; Han, Y.H.; Kim, S.; Kim, B.N. Characterisation of transparent hydroxyapatite nanoceramics prepared by spark plasma sintering. Adv. Appl. Ceram. 2014, 113, 67–72. [Google Scholar] [CrossRef]
- Li, Z.; Khor, K.A. Transparent hydroxyapatite obtained through spark plasma sintering: Optical and mechanical properties. Key Eng. Mater. 2015, 631, 51–56. [Google Scholar] [CrossRef]
- Frasnelli, M.; Sglavo, V.M. Flash sintering of tricalcium phosphate (TCP) bioceramics. J. Eur. Ceram. Soc. 2018, 38, 279–285. [Google Scholar] [CrossRef]
- Hwang, C.; Yun, J. Flash sintering of hydroxyapatite ceramics. J. Asian Ceram. Soc. 2021, 9, 281–288. [Google Scholar] [CrossRef]
- Biesuz, M.; Galotta, A.; Motta, A.; Kermani, M.; Grasso, S.; Vontorová, J.; Tyrpekl, V.; Vilémová, M.; Sglavo, V.M. Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering. Mater. Sci. Eng. C 2021, 127, 112246. [Google Scholar] [CrossRef]
- Yanagisawa, K.; Kim, J.H.; Sakata, C.; Onda, A.; Sasabe, E.; Yamamoto, T.; Matamoros-Veloza, Z.; Rendón-Angeles, J.C. Hydrothermal sintering under mild temperature conditions: Preparation of calcium-deficient hydroxyapatite compacts. Z. Naturforsch. B 2010, 65, 1038–1044. [Google Scholar] [CrossRef]
- Hosoi, K.; Hashida, T.; Takahashi, H.; Yamasaki, N.; Korenaga, T. New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J. Am. Ceram. Soc. 1996, 79, 2771–2774. [Google Scholar] [CrossRef]
- Champion, E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013, 9, 5855–5875. [Google Scholar] [CrossRef]
- Indurkar, A.; Choudhary, R.; Rubenis, K.; Locs, J. Advances in sintering techniques for calcium phosphates ceramics. Materials 2021, 14, 6133. [Google Scholar]
- Evans, J.R.G. Seventy ways to make ceramics. J. Eur. Ceram. Soc. 2008, 28, 1421–1432. [Google Scholar] [CrossRef]
- Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef]
- Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility, 4th ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 520. [Google Scholar]
- Carter, C.B.; Norton, M.G. Ceramic Materials: Science and Engineering, 2nd ed.; Springer: New York, NY, USA, 2013; p. 766. [Google Scholar]
- Benaqqa, C.; Chevalier, J.; Saädaoui, M.; Fantozzi, G. Slow crack growth behaviour of hydroxyapatite ceramics. Biomaterials 2005, 26, 6106–6112. [Google Scholar] [CrossRef]
- Pecqueux, F.; Tancret, F.; Payraudeau, N.; Bouler, J.M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment. J. Eur. Ceram. Soc. 2010, 30, 819–829. [Google Scholar] [CrossRef]
- Ramesh, S.; Tan, C.Y.; Sopyan, I.; Hamdi, M.; Teng, W.D. Consolidation of nanocrystalline hydroxyapatite powder. Sci. Technol. Adv. Mater. 2007, 8, 124–130. [Google Scholar] [CrossRef]
- Wagoner Johnson, A.J.; Herschler, B.A. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011, 7, 16–30. [Google Scholar] [CrossRef]
- Suchanek, W.L.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94–117. [Google Scholar] [CrossRef]
- Fan, X.; Case, E.D.; Ren, F.; Shu, Y.; Baumann, M.J. Part I: Porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials. J. Mech. Behav. Biomed. Mater. 2012, 8, 21–36. [Google Scholar] [CrossRef]
- Fan, X.; Case, E.D.; Gheorghita, I.; Baumann, M.J. Weibull modulus and fracture strength of highly porous hydroxyapatite. J. Mech. Behav. Biomed. Mater. 2013, 20, 283–295. [Google Scholar] [CrossRef]
- Cordell, J.; Vogl, M.; Johnson, A. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. J. Mech. Behav. Biomed. Mater. 2009, 2, 560–570. [Google Scholar] [CrossRef]
- Suzuki, S.; Sakamura, M.; Ichiyanagi, M.; Ozawa, M. Internal friction of hydroxyapatite and fluorapatite. Ceram. Int. 2004, 30, 625–627. [Google Scholar] [CrossRef]
- Suzuki, S.; Takahiro, K.; Ozawa, M. Internal friction and dynamic modulus of polycrystalline ceramics prepared from stoichiometric and Ca-deficient hydroxyapatites. Mater. Sci. Eng. B 1998, 55, 68–70. [Google Scholar] [CrossRef]
- Bouler, J.M.; Trecant, M.; Delecrin, J.; Royer, J.; Passuti, N.; Daculsi, G. Macroporous biphasic calcium phosphate ceramics: Influence of five synthesis parameters on compressive strength. J. Biomed. Mater. Res. 1996, 32, 603–609. [Google Scholar] [CrossRef]
- Tancret, F.; Bouler, J.M.; Chamousset, J.; Minois, L.M. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 2006, 26, 3647–3656. [Google Scholar] [CrossRef]
- Le Huec, J.C.; Schaeverbeke, T.; Clement, D.; Faber, J.; le Rebeller, A. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 1995, 16, 113–118. [Google Scholar] [CrossRef]
- Hsu, Y.H.; Turner, I.G.; Miles, A.W. Mechanical properties of three different compositions of calcium phosphate bioceramic following immersion in Ringer’s solution and distilled water. J. Mater. Sci. Mater. Med. 2009, 20, 2367–2374. [Google Scholar] [CrossRef]
- Torgalkar, A.M. Resonance frequency technique to determine elastic modulus of hydroxyapatite. J. Biomed. Mater. Res. 1979, 13, 907–920. [Google Scholar] [CrossRef]
- Gilmore, R.S.; Katz, J.L. Elastic properties of apatites. J. Mater. Sci. 1982, 17, 1131–1141. [Google Scholar] [CrossRef]
- Fan, X.; Case, E.D.; Ren, F.; Shu, Y.; Baumann, M.J. Part II: Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials. J. Mech. Behav. Biomed. Mater. 2012, 8, 99–110. [Google Scholar] [CrossRef]
- Garcia-Prieto, A.; Hornez, J.C.; Leriche, A.; Pena, P.; Baudín, C. Influence of porosity on the mechanical behaviour of single phase β-TCP ceramics. Ceram. Int. 2017, 43, 6048–6053. [Google Scholar] [CrossRef]
- De Aza, P.N.; de Aza, A.H.; de Aza, S. Crystalline bioceramic materials. Bol. Soc. Esp. Ceram. V 2005, 44, 135–145. [Google Scholar] [CrossRef]
- Fritsch, A.; Dormieux, L.; Hellmich, C.; Sanahuja, J. Mechanical behavior of hydroxyapatite biomaterials: An experimentally validated micromechanical model for elasticity and strength. J. Biomed. Mater. Res. A 2009, 88A, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Ching, W.Y.; Rulis, P.; Misra, A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 2009, 5, 3067–3075. [Google Scholar] [CrossRef]
- Fritsch, A.; Hellmich, C.; Dormieux, L. The role of disc-type crystal shape for micromechanical predictions of elasticity and strength of hydroxyapatite biomaterials. Philos. Trans. R. Soc. Lond. A 2010, 368, 1913–1935. [Google Scholar]
- Menéndez-Proupin, E.; Cervantes-Rodríguez, S.; Osorio-Pulgar, R.; Franco-Cisterna, M.; Camacho-Montes, H.; Fuentes, M.E. Computer simulation of elastic constants of hydroxyapatite and fluorapatite. J. Mech. Behav. Biomed. Mater. 2011, 4, 1011–1120. [Google Scholar] [CrossRef]
- Sun, J.P.; Song, Y.; Wen, G.W.; Wang, Y.; Yang, R. Softening of hydroxyapatite by vacancies: A first principles investigation. Mater. Sci. Eng. C 2013, 33, 1109–1115. [Google Scholar] [CrossRef]
- Sha, M.C.; Li, Z.; Bradt, R.C. Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J. Appl. Phys. 1994, 75, 7784–7787. [Google Scholar] [CrossRef]
- Wakai, F.; Kodama, Y.; Sakaguchi, S.; Nonami, T. Superplasticity of hot isostatically pressed hydroxyapatite. J. Am. Ceram. Soc. 1990, 73, 457–460. [Google Scholar] [CrossRef]
- Tago, K.; Itatani, K.; Suzuki, T.S.; Sakka, Y.; Koda, S. Densification and superplasticity of hydroxyapatite ceramics. J. Ceram. Soc. Jpn. 2005, 113, 669–673. [Google Scholar] [CrossRef]
- Burger, E.L.; Patel, V. Calcium phosphates as bone graft extenders. Orthopedics 2007, 30, 939–942. [Google Scholar]
- Guillaume, B. Filling bone defects with β-TCP in maxillofacial surgery: A review.|Comblement osseux par β-TCP en chirurgie maxillofaciale: Revue des indications. Morphologie 2017, 101, 113–119. [Google Scholar] [CrossRef]
- Song, J.; Liu, Y.; Zhang, Y.; Jiao, L. Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies. Mater. Sci. Eng. A 2011, 528, 5421–5427. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J. Funct. Biomater. 2015, 6, 708–832. [Google Scholar] [CrossRef]
- Bouslama, N.; Ben Ayed, F.; Bouaziz, J. Sintering and mechanical properties of tricalcium phosphate–fluorapatite composites. Ceram. Int. 2009, 35, 1909–1917. [Google Scholar] [CrossRef]
- Suchanek, W.; Yashima, M.; Kakihana, M.; Yoshimura, M. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials 1996, 17, 1715–1723. [Google Scholar] [CrossRef]
- Suchanek, W.; Yashima, M.; Kakihana, M.; Yoshimura, M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: Mechanical properties and microstructural evolution. J. Am. Ceram. Soc. 1997, 80, 2805–2813. [Google Scholar] [CrossRef]
- Simsek, D.; Ciftcioglu, R.; Guden, M.; Ciftcioglu, M.; Harsa, S. Mechanical properties of hydroxyapatite composites reinforced with hydroxyapatite whiskers. Key Eng. Mater. 2004, 264–268, 1985–1988. [Google Scholar] [CrossRef]
- Bose, S.; Banerjee, A.; Dasgupta, S.; Bandyopadhyay, A. Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J. Am. Ceram. Soc. 2009, 92, 323–330. [Google Scholar] [CrossRef]
- Lie-Feng, L.; Xiao-Yi, H.; Cai, Y.X.; Weng, J. Reinforcing of porous hydroxyapatite ceramics with hydroxyapatite fibres for enhanced bone tissue engineering. J. Biomim. Biomater. Tissue Eng. 2011, 1314, 67–73. [Google Scholar]
- Shiota, T.; Shibata, M.; Yasuda, K.; Matsuo, Y. Influence of β-tricalcium phosphate dispersion on mechanical properties of hydroxyapatite ceramics. J. Ceram. Soc. Jpn. 2009, 116, 1002–1005. [Google Scholar] [CrossRef] [Green Version]
- Shuai, C.; Feng, P.; Nie, Y.; Hu, H.; Liu, J.; Peng, S. Nano-hydroxyapatite improves the properties of β-tricalcium phosphate bone scaffolds. Int. J. Appl. Ceram. Technol. 2013, 10, 1003–1013. [Google Scholar] [CrossRef]
- Dorozhkin, S.V.; Ajaal, T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc. Inst. Mech. Eng. H 2009, 223, 459–470. [Google Scholar] [CrossRef]
- Dorozhkin, S.V.; Ajaal, T. Strengthening of dense bioceramic samples using bioresorbable polymers–a statistical approach. J. Biomim. Biomater. Tissue Eng. 2009, 4, 27–39. [Google Scholar] [CrossRef]
- Dressler, M.; Dombrowski, F.; Simon, U.; Börnstein, J.; Hodoroaba, V.D.; Feigl, M.; Grunow, S.; Gildenhaar, R.; Neumann, M. Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. J. Eur. Ceram. Soc. 2011, 31, 523–529. [Google Scholar] [CrossRef]
- Martinez-Vazquez, F.J.; Perera, F.H.; Miranda, P.; Pajares, A.; Guiberteau, F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010, 6, 4361–4368. [Google Scholar] [CrossRef]
- Fedotov, A.Y.; Bakunova, N.V.; Komlev, V.S.; Barinov, S.M. High-porous calcium phosphate bioceramics reinforced by chitosan infiltration. Dokl. Chem. 2011, 439, 233–236. [Google Scholar] [CrossRef]
- Martínez-Vázquez, F.J.; Pajares, A.; Guiberteau, F.; Miranda, P. Effect of polymer infiltration on the flexural behavior of β-tricalcium phosphate robocast scaffolds. Materials 2014, 7, 4001–4018. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Standard, O.C.; Huang, T.T.; Latella, B.A.; Swain, M.V. Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 2008, 4, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Owada, H.; Umegaki, T.; Kanazawa, T.; Futagamu, T. Ionic conduction in apatite solid solutions. Solid State Ionics 1988, 28–30, 660–663. [Google Scholar] [CrossRef]
- Nagai, M.; Nishino, T. Surface conduction of porous hydroxyapatite ceramics at elevated temperatures. Solid State Ionics 1988, 28–30, 1456–1461. [Google Scholar] [CrossRef]
- Valdes, J.J.P.; Rodriguez, A.V.; Carrio, J.G. Dielectric properties and structure of hydroxyapatite ceramics sintered by different conditions. J. Mater. Res. 1995, 10, 2174–2177. [Google Scholar] [CrossRef]
- Fanovich, M.A.; Castro, M.S.; Lopez, J.M.P. Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceram. Int. 1999, 25, 517–522. [Google Scholar] [CrossRef]
- Bensaoud, A.; Bouhaouss, A.; Ferhat, M. Electrical properties in compressed poorly crystalline apatite. J. Solid State Electrochem. 2001, 5, 362–365. [Google Scholar]
- Mahabole, M.P.; Aiyer, R.C.; Ramakrishna, C.V.; Sreedhar, B.; Khairnar, R.S. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 2005, 28, 535–545. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takata, S.; Shimoe, K.; Nakamura, M.; Nagai, A.; Toyama, T.; Yamashita, K. Conduction properties of non-stoichiometric hydroxyapatite whiskers for biomedical use. J. Ceram. Soc. Jpn. 2008, 116, 815–821. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nakamura, M.; Nagai, A.; Toyama, T.; Yamashita, K. Ionic conduction mechanism in Ca-deficient hydroxyapatite whiskers. Mater. Sci. Eng. B 2009, 161, 115–119. [Google Scholar] [CrossRef]
- Wang, W.; Itoh, S.; Yamamoto, N.; Okawa, A.; Nagai, A.; Yamashita, K. Electrical polarization of β-tricalcium phosphate ceramics. J. Am. Ceram. Soc. 2010, 93, 2175–2177. [Google Scholar] [CrossRef]
- Mahabole, M.P.; Mene, R.U.; Khairnar, R.S. Gas sensing and dielectric studies on cobalt doped hydroxyapatite thick films. Adv. Mater. Lett. 2013, 4, 46–52. [Google Scholar] [CrossRef]
- Suresh, M.B.; Biswas, P.; Mahender, V.; Johnson, R. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter hot isostatic pressing routes. Mater. Sci. Eng. C 2017, 70, 364–370. [Google Scholar] [CrossRef]
- Das, A.; Pamu, D. A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng. C 2019, 101, 539–563. [Google Scholar] [CrossRef] [PubMed]
- Prezas, P.R.; Dekhtyar, Y.; Sorokins, H.; Costa, M.M.; Soares, M.J.; Graça, M.P.F. Electrical charging of bioceramics by corona discharge. J. Electrost. 2022, 115, 103664. [Google Scholar] [CrossRef]
- Gandhi, A.A.; Wojtas, M.; Lang, S.B.; Kholkin, A.L.; Tofail, S.A.M. Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 2014, 97, 2867–2872. [Google Scholar] [CrossRef]
- Bystrov, V.S. Piezoelectricity in the ordered monoclinic hydroxyapatite. Ferroelectrics 2015, 475, 148–153. [Google Scholar] [CrossRef]
- Horiuchi, N.; Madokoro, K.; Nozaki, K.; Nakamura, M.; Katayama, K.; Nagai, A.; Yamashita, K. Electrical conductivity of polycrystalline hydroxyapatite and its application to electret formation. Solid State Ion. 2018, 315, 19–25. [Google Scholar] [CrossRef]
- Saxena, A.; Pandey, M.; Dubey, A.K. Induced electroactive response of hydroxyapatite: A review. J. Indian I. Sci. 2019, 99, 339–359. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Electret (accessed on 24 June 2022).
- Nakamura, S.; Takeda, H.; Yamashita, K. Proton transport polarization and depolarization of hydroxyapatite ceramics. J. Appl. Phys. 2001, 89, 5386–5392. [Google Scholar] [CrossRef]
- Gittings, J.P.; Bowen, C.R.; Turner, I.G.; Baxter, F.R.; Chaudhuri, J.B. Polarisation behaviour of calcium phosphate based ceramics. Mater. Sci. Forum. 2008, 587–588, 91–95. [Google Scholar] [CrossRef]
- Rivas, M.; del Valle, L.J.; Armelin, E.; Bertran, O.; Turon, P.; Puiggalí, J.; Alemán, C. Hydroxyapatite with permanent electrical polarization: Preparation, characterization, and response against inorganic adsorbates. ChemPhysChem 2018, 19, 1746–1755. [Google Scholar] [CrossRef]
- Itoh, S.; Nakamura, S.; Kobayashi, T.; Shinomiya, K.; Yamashita, K.; Itoh, S. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif. Tissue Int. 2006, 78, 133–142. [Google Scholar] [CrossRef]
- Iwasaki, T.; Tanaka, Y.; Nakamura, M.; Nagai, A.; Hashimoto, K.; Toda, Y.; Katayama, K.; Yamashita, K. Rate of bonelike apatite formation accelerated on polarized porous hydroxyapatite. J. Am. Ceram. Soc. 2008, 91, 3943–3949. [Google Scholar] [CrossRef]
- Itoh, S.; Nakamura, S.; Kobayashi, T.; Shinomiya, K.; Yamashita, K. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials 2006, 27, 5572–5579. [Google Scholar] [CrossRef]
- Kobayashi, T.; Itoh, S.; Nakamura, S.; Nakamura, M.; Shinomiya, K.; Yamashita, K. Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization. J. Biomed. Mater. Res. A 2007, 82A, 145–151. [Google Scholar] [CrossRef]
- Bodhak, S.; Bose, S.; Bandyopadhyay, A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater. 2009, 5, 2178–2188. [Google Scholar] [CrossRef]
- Sagawa, H.; Itoh, S.; Wang, W.; Yamashita, K. Enhanced bone bonding of the hydroxyapatite/β-tricalcium phosphate composite by electrical polarization in rabbit long bone. Artif. Organs 2010, 34, 491–497. [Google Scholar] [CrossRef]
- Ohba, S.; Wang, W.; Itoh, S.; Nagai, A.; Yamashita, K. Enhanced effects of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite gel. Key Eng. Mater. 2013, 529–530, 82–87. [Google Scholar] [CrossRef]
- Yamashita, K.; Oikawa, N.; Umegaki, T. Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem. Mater. 1996, 8, 2697–2700. [Google Scholar] [CrossRef]
- Teng, N.C.; Nakamura, S.; Takagi, Y.; Yamashita, Y.; Ohgaki, M.; Yamashita, K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J. Dent. Res. 2001, 80, 1925–1929. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nakamura, S.; Yamashita, K. Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 2001, 57, 477–484. [Google Scholar] [CrossRef]
- Kato, R.; Nakamura, S.; Katayama, K.; Yamashita, K. Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants. J. Biomed. Mater. Res. A 2005, 74A, 652–658. [Google Scholar] [CrossRef]
- Nakamura, S.; Kobayashi, T.; Nakamura, M.; Itoh, S.; Yamashita, K. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/β-tricalcium phosphate ceramics. J. Biomed. Mater. Res. A 2010, 92A, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Tarafder, S.; Bodhak, S.; Bandyopadhyay, A.; Bose, S. Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Ohba, S.; Wang, W.; Itoh, S.; Takagi, Y.; Nagai, A.; Yamashita, K. Acceleration of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite. Acta Biomater. 2012, 8, 2778–2787. [Google Scholar] [CrossRef] [PubMed]
- Tarafder, S.; Banerjee, S.; Bandyopadhyay, A.; Bose, S. Electrically polarized biphasic calcium phosphates: Adsorption and release of bovine serum albumin. Langmuir 2010, 26, 16625–16629. [Google Scholar] [CrossRef]
- Itoh, S.; Nakamura, S.; Nakamura, M.; Shinomiya, K.; Yamashita, K. Enhanced bone regeneration by electrical polarization of hydroxyapatite. Artif. Organs 2006, 30, 863–869. [Google Scholar] [CrossRef]
- Nakamura, M.; Nagai, A.; Ohashi, N.; Tanaka, Y.; Sekilima, Y.; Nakamura, S. Regulation of osteoblast-like cell behaviors on hydroxyapatite by electrical polarization. Key Eng. Mater. 2008, 361–363, 1055–1058. [Google Scholar]
- Nakamura, M.; Nagai, A.; Tanaka, Y.; Sekilima, Y.; Yamashita, K. Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J. Biomed. Mater. Res. A 2010, 92A, 783–790. [Google Scholar] [CrossRef]
- Nakamura, M.; Nagai, A.; Yamashita, K. Surface electric fields of apatite electret promote osteoblastic responses. Key Eng. Mater. 2013, 529–530, 357–360. [Google Scholar] [CrossRef]
- Nakamura, S.; Kobayashi, T.; Yamashita, K. Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges. J. Biomed. Mater. Res. 2002, 61, 593–599. [Google Scholar] [CrossRef]
- Wang, W.; Itoh, S.; Tanaka, Y.; Nagai, A.; Yamashita, K. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Acta Biomater. 2009, 5, 3132–3140. [Google Scholar] [CrossRef]
- Cartmell, S.H.; Thurstan, S.; Gittings, J.P.; Griffiths, S.; Bowen, C.R.; Turner, I.G. Polarization of porous hydroxyapatite scaffolds: Influence on osteoblast cell proliferation and extracellular matrix production. J. Biomed. Mater. Res. A 2014, 102A, 1047–1052. [Google Scholar] [CrossRef]
- Nakamura, M.; Kobayashi, A.; Nozaki, K.; Horiuchi, N.; Nagai, A.; Yamashita, K. Improvement of osteoblast adhesion through polarization of plasma-sprayed hydroxyapatite coatings on metal. J. Med. Biol. Eng. 2014, 34, 44–48. [Google Scholar] [CrossRef]
- Nagai, A.; Tanaka, K.; Tanaka, Y.; Nakamura, M.; Hashimoto, K.; Yamashita, K. Electric polarization and mechanism of B-type carbonated apatite ceramics. J. Biomed. Mater. Res. A 2011, 99A, 116–124. [Google Scholar] [CrossRef]
- Nakamura, M.; Niwa, K.; Nakamura, S.; Sekijima, Y.; Yamashita, K. Interaction of a blood coagulation factor on electrically polarized hydroxyapatite surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 29–36. [Google Scholar] [CrossRef]
- Ioku, K. Tailored bioceramics of calcium phosphates for regenerative medicine. J. Ceram. Soc. Jpn. 2010, 118, 775–783. [Google Scholar] [CrossRef]
- Fang, Y.; Agrawal, D.K.; Roy, D.M.; Roy, R. Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Mater. Lett. 1995, 23, 147–151. [Google Scholar] [CrossRef]
- Varma, H.; Vijayan, S.P.; Babu, S.S. Transparent hydroxyapatite ceramics through gel-casting and low-temperature sintering. J. Am. Ceram. Soc. 2002, 85, 493–495. [Google Scholar] [CrossRef]
- Watanabe, Y.; Ikoma, T.; Monkawa, A.; Suetsugu, Y.; Yamada, H.; Tanaka, J.; Moriyoshi, Y. Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering. J. Am. Ceram. Soc. 2005, 88, 243–245. [Google Scholar] [CrossRef]
- Kotobuki, N.; Ioku, K.; Kawagoe, D.; Fujimori, H.; Goto, S.; Ohgushi, H. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 2005, 26, 779–785. [Google Scholar] [CrossRef]
- John, A.; Varma, H.K.; Vijayan, S.; Bernhardt, A.; Lode, A.; Vogel, A.; Burmeister, B.; Hanke, T.; Domaschke, H.; Gelinsky, M. in vitro investigations of bone remodeling on a transparent hydroxyapatite ceramic. Biomed. Mater. 2009, 4, 015007. [Google Scholar] [CrossRef]
- Wang, J.; Shaw, L.L. Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering. Scripta Mater. 2010, 63, 593–596. [Google Scholar] [CrossRef]
- Boilet, L.; Descamps, M.; Rguiti, E.; Tricoteaux, A.; Lu, J.; Petit, F.; Lardot, V.; Cambier, F.; Leriche, A. Processing and properties of transparent hydroxyapatite and β tricalcium phosphate obtained by HIP process. Ceram. Int. 2013, 39, 283–288. [Google Scholar] [CrossRef]
- Han, Y.H.; Kim, B.N.; Yoshida, H.; Yun, J.; Son, H.W.; Lee, J.; Kim, S. Spark plasma sintered superplastic deformed transparent ultrafine hydroxyapatite nanoceramics. Adv. Appl. Ceram. 2016, 115, 174–184. [Google Scholar] [CrossRef]
- Kobune, M.; Mineshige, A.; Fujii, S.; Iida, H. Preparation of translucent hydroxyapatite ceramics by HIP and their physical properties. J. Ceram. Soc. Jpn. 1997, 105, 210–213. [Google Scholar] [CrossRef]
- Barralet, J.E.; Fleming, G.J.P.; Campion, C.; Harris, J.J.; Wright, A.J. Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres. J. Mater. Sci. 2003, 38, 3979–3993. [Google Scholar] [CrossRef]
- Chaudhry, A.A.; Yan, H.; Gong, K.; Inam, F.; Viola, G.; Reece, M.J.; Goodall, J.B.M.; ur Rehman, I.; McNeil-Watson, F.K.; Corbett, J.C.W.; et al. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater. 2011, 7, 791–799. [Google Scholar] [CrossRef]
- Tancred, D.C.; McCormack, B.A.; Carr, A.J. A synthetic bone implant macroscopically identical to cancellous bone. Biomaterials 1998, 19, 2303–2311. [Google Scholar] [CrossRef]
- Miao, X.; Sun, D. Graded/gradient porous biomaterials. Materials 2010, 3, 26–47. [Google Scholar] [CrossRef]
- Schliephake, H.; Neukam, F.W.; Klosa, D. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. Int. J. Oral Maxillofac. Surg. 1991, 20, 53–58. [Google Scholar] [CrossRef]
- Otsuki, B.; Takemoto, M.; Fujibayashi, S.; Neo, M.; Kokubo, T.; Nakamura, T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 2006, 27, 5892–5900. [Google Scholar] [CrossRef]
- Hing, K.A.; Best, S.M.; Bonfield, W. Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 1999, 10, 135–145. [Google Scholar] [CrossRef]
- Lu, J.X.; Flautre, B.; Anselme, K.; Hardouin, P.; Gallur, A.; Descamps, M.; Thierry, B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J. Mater. Sci. Mater. Med. 1999, 10, 111–120. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Tamai, N.; Myoui, A.; Kudawara, I.; Ueda, T.; Yoshikawa, H. Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J. Orthop. Sci. 2010, 15, 560–568. [Google Scholar] [CrossRef]
- Panzavolta, S.; Torricelli, P.; Amadori, S.; Parrilli, A.; Rubini, K.; Della Bella, E.; Fini, M.; Bigi, A. 3D interconnected porous biomimetic scaffolds: In vitro cell response. J. Biomed. Mater. Res. A 2013, 101A, 3560–3570. [Google Scholar] [CrossRef]
- Jin, L.; Feng, Z.Q.; Wang, T.; Ren, Z.; Ma, S.; Wu, J.; Sun, D. A novel fluffy hydroxylapatite fiber scaffold with deep interconnected pores designed for three-dimensional cell culture. J. Mater. Chem. B 2014, 2, 129–136. [Google Scholar] [CrossRef]
- Flautre, B.; Descamps, M.; Delecourt, C.; Blary, M.C.; Hardouin, P. Porous HA ceramic for bone replacement: Role of the pores and interconnections–experimental study in the rabbits. J. Mater. Sci. Mater. Med. 2001, 12, 679–682. [Google Scholar] [CrossRef]
- Mastrogiacomo, M.; Scaglione, S.; Martinetti, R.; Dolcini, L.; Beltrame, F.; Cancedda, R.; Quarto, R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006, 27, 3230–3237. [Google Scholar] [CrossRef]
- Okamoto, M.; Dohi, Y.; Ohgushi, H.; Shimaoka, H.; Ikeuchi, M.; Matsushima, A.; Yonemasu, K.; Hosoi, H. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J. Mater. Sci. Mater. Med. 2006, 17, 327–336. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Niu, X.; Fan, Y.; Feng, Q.; Cui, F.Z.; Watari, F. Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 10–19. [Google Scholar] [CrossRef]
- Hong, M.H.; Kim, S.M.; Han, M.H.; Kim, Y.H.; Lee, Y.K.; Oh, D.S. Evaluation of microstructure effect of the porous spherical β-tricalcium phosphate granules on cellular responses. Ceram. Int. 2014, 40, 6095–6102. [Google Scholar] [CrossRef]
- De Godoy, R.F.; Hutchens, S.; Campion, C.; Blunn, G. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 54. [Google Scholar] [CrossRef]
- Omae, H.; Mochizuki, Y.; Yokoya, S.; Adachi, N.; Ochi, M. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. J. Biomed. Mater. Res. A 2006, 79A, 329–337. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Tamai, N.; Murase, T.; Myoui, A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J. R. Soc. Interface 2009, 6, S341–S348. [Google Scholar] [CrossRef]
- Ribeiro, G.B.M.; Trommer, R.M.; dos Santos, L.A.; Bergmann, C.P. Novel method to produce β-TCP scaffolds. Mater. Lett. 2011, 65, 275–277. [Google Scholar] [CrossRef]
- Silva, T.S.N.; Primo, B.T.; Silva, A.N., Jr.; Machado, D.C.; Viezzer, C.; Santos, L.A. Use of calcium phosphate cement scaffolds for bone tissue engineering: In vitro study. Acta Cir. Bras. 2011, 26, 7–11. [Google Scholar] [CrossRef]
- De Moraes MacHado, J.L.; Giehl, I.C.; Nardi, N.B.; dos Santos, L.A. Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications. IEEE Trans. Biomed. Eng. 2011, 58, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; de Wijn, J.R.; Layrolle, P.; de Groot, K. Novel method to manufacture porous hydroxyapatite by dual-phase mixing. J. Am. Ceram. Soc. 2003, 86, 65–72. [Google Scholar] [CrossRef]
- De Oliveira, J.F.; de Aguiar, P.F.; Rossi, A.M.; Soares, G.D.A. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif. Organs 2003, 27, 406–411. [Google Scholar] [CrossRef]
- Swain, S.K.; Bhattacharyya, S. Preparation of high strength macroporous hydroxyapatite scaffold. Mater. Sci. Eng. C 2013, 33, 67–71. [Google Scholar] [CrossRef]
- Maeda, H.; Kasuga, T.; Nogami, M.; Kagami, H.; Hata, K.; Ueda, M. Preparation of bonelike apatite composite sponge. Key Eng. Mater. 2004, 254–256, 497–500. [Google Scholar] [CrossRef]
- Le Ray, A.M.; Gautier, H.; Bouler, J.M.; Weiss, P.; Merle, C. A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceram. Int. 2010, 36, 93–101. [Google Scholar] [CrossRef]
- Li, S.H.; de Wijn, J.R.; Layrolle, P.; de Groot, K. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 2002, 61, 109–120. [Google Scholar]
- Hesaraki, S.; Sharifi, D. Investigation of an effervescent additive as porogenic agent for bone cement macroporosity. Biomed. Mater. Eng. 2007, 17, 29–38. [Google Scholar]
- Hesaraki, S.; Moztarzadeh, F.; Sharifi, D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res. A 2007, 83A, 80–87. [Google Scholar] [CrossRef]
- Tas, A.C. Preparation of porous apatite granules from calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 2231–2239. [Google Scholar] [CrossRef]
- Şahin, E.; Çiftçioğlu, M. Compositional, microstructural and mechanical effects of NaCl porogens in brushite cement scaffolds. J. Mech. Behav. Biomed. Mater. 2021, 116, 104363. [Google Scholar] [CrossRef]
- Yao, X.; Tan, S.; Jiang, D. Improving the properties of porous hydroxyapatite ceramics by fabricating methods. J. Mater. Sci. 2005, 40, 4939–4942. [Google Scholar] [CrossRef]
- Song, H.Y.; Youn, M.H.; Kim, Y.H.; Min, Y.K.; Yang, H.M.; Lee, B.T. Fabrication of porous β-TCP bone graft substitutes using PMMA powder and their biocompatibility study. Korean J. Mater. Res. 2007, 17, 318–322. [Google Scholar] [CrossRef]
- Indra, A.; Hadi, F.; Mulyadi, I.H.; Affi, J.; Gunawarman. A novel fabrication procedure for producing high strength hydroxyapatite ceramic scaffolds with high porosity. Ceram. Int. 2021, 47, 26991–27001. [Google Scholar] [CrossRef]
- Almirall, A.; Larrecq, G.; Delgado, J.A.; Martínez, S.; Planell, J.A.; Ginebra, M.P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004, 25, 3671–3680. [Google Scholar] [CrossRef]
- Huang, X.; Miao, X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J. Biomater. Appl. 2007, 21, 351–374. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Guo, B.; Wang, X.; Fan, H.; Zhang, X. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater. 2009, 5, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhao, K.; Wu, Z.P. Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceram. Int. 2015, 41, 8599–8604. [Google Scholar] [CrossRef]
- Lyu, Y.; Asoh, T.A.; Uyama, H. Facile synthesis of a three-dimensional hydroxyapatite monolith for protein adsorption. J. Mater. Chem. B 2021, 9, 9711–9719. [Google Scholar] [CrossRef] [PubMed]
- Tadic, D.; Beckmann, F.; Schwarz, K.; Epple, M. A novel method to produce hydroxylapatite objects with interconnecting porosity that avoids sintering. Biomaterials 2004, 25, 3335–3340. [Google Scholar] [CrossRef]
- Sepulveda, P.; Binner, J.G.; Rogero, S.O.; Higa, O.Z.; Bressiani, J.C. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J. Biomed. Mater. Res. 2000, 50, 27–34. [Google Scholar] [CrossRef]
- Chevalier, E.; Chulia, D.; Pouget, C.; Viana, M. Fabrication of porous substrates: A review of processes using pore forming agents in the biomaterial field. J. Pharm. Sci. 2008, 97, 1135–1154. [Google Scholar] [CrossRef]
- Tang, Y.J.; Tang, Y.F.; Lv, C.T.; Zhou, Z.H. Preparation of uniform porous hydroxyapatite biomaterials by a new method. Appl. Surf. Sci. 2008, 254, 5359–5362. [Google Scholar] [CrossRef]
- Abdulqader, S.T.; Rahman, I.A.; Ismail, H.; Ponnuraj Kannan, T.; Mahmood, Z. A simple pathway in preparation of controlled porosity of biphasic calcium phosphate scaffold for dentin regeneration. Ceram. Int. 2013, 39, 2375–2381. [Google Scholar] [CrossRef]
- Wen, F.H.; Wang, F.; Gai, Y.; Wang, M.T.; Lai, Q.H. Preparation of mesoporous hydroxylapatite ceramics using polystyrene microspheres as template. Appl. Mech. Mater. 2013, 389, 194–198. [Google Scholar] [CrossRef]
- Sari, M.; Hening, P.; Chotimah; Ana, I.D.; Yusuf, Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric porogen for bone tissue engineering. Biomater. Res. 2021, 25, 2. [Google Scholar] [CrossRef]
- Castillo-Paz, A.M.; Cañon-Davila, D.F.; Londoño-Restrepo, S.M.; Jimenez-Mendoza, D.; Pfeiffer, H.; Ramírez-Bon, R.; Rodriguez-Garcia, M.E. Fabrication and characterization of bioinspired nanohydroxyapatite scaffolds with different porosities. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Cho, S.; Kim, J.; Lee, S.B.; Choi, M.; Kim, D.H.; Jo, I.; Kwon, H.; Kim, Y. Fabrication of functionally graded hydroxyapatite and structurally graded porous hydroxyapatite by using multi-walled carbon nanotubes. Compos. A 2020, 139, 106138. [Google Scholar] [CrossRef]
- Guda, T.; Appleford, M.; Oh, S.; Ong, J.L. A cellular perspective to bioceramic scaffolds for bone tissue engineering: The state of the art. Curr. Top. Med. Chem. 2008, 8, 290–299. [Google Scholar] [CrossRef]
- Habraken, W.J.E.M.; Wolke, J.G.C.; Jansen, J.A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 234–248. [Google Scholar] [CrossRef]
- Lee, J.B.; Maeng, W.Y.; Koh, Y.H.; Kim, H.E. Porous calcium phosphate ceramic scaffolds with tailored pore orientations and mechanical properties using lithography-based ceramic 3D printing technique. Materials 2018, 11, 1711. [Google Scholar] [CrossRef]
- Tian, J.; Tian, J. Preparation of porous hydroxyapatite. J. Mater. Sci. 2001, 36, 3061–3066. [Google Scholar] [CrossRef]
- Swain, S.K.; Bhattacharyya, S.; Sarkar, D. Preparation of porous scaffold from hydroxyapatite powders. Mater. Sci. Eng. C 2011, 31, 1240–1244. [Google Scholar] [CrossRef]
- Zhao, K.; Tang, Y.F.; Qin, Y.S.; Luo, D.F. Polymer template fabrication of porous hydroxyapatite scaffolds with interconnected spherical pores. J. Eur. Ceram. Soc. 2011, 31, 225–229. [Google Scholar] [CrossRef]
- Sung, J.H.; Shin, K.H.; Moon, Y.W.; Koh, Y.H.; Choi, W.Y.; Kim, H.E. Production of porous calcium phosphate (CaP) ceramics with highly elongated pores using carbon-coated polymeric templates. Ceram. Int. 2012, 38, 93–97. [Google Scholar] [CrossRef]
- Morejón, L.; Delgado, J.A.; Ribeiro, A.A.; de Oliveira, M.V.; Mendizábal, E.; García, I.; Alfonso, A.; Poh, P.; van Griensven, M.; Balmayor, E.R. Development, characterization and in vitro biological properties of scaffolds fabricated from calcium phosphate nanoparticles. Int. J. Mol. Sci. 2019, 20, 1790. [Google Scholar] [CrossRef]
- Deville, S.; Saiz, E.; Tomsia, A.P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480–5489. [Google Scholar] [CrossRef]
- Lee, E.J.; Koh, Y.H.; Yoon, B.H.; Kim, H.E.; Kim, H.W. Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater. Lett. 2007, 61, 2270–2273. [Google Scholar] [CrossRef]
- Fu, Q.; Rahaman, M.N.; Dogan, F.; Bal, B.S. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 125–135. [Google Scholar] [CrossRef]
- Impens, S.; Schelstraete, R.; Luyten, J.; Mullens, S.; Thijs, I.; van Humbeeck, J.; Schrooten, J. Production and characterisation of porous calcium phosphate structures with controllable hydroxyapatite/β-tricalcium phosphate ratios. Adv. Appl. Ceram. 2009, 108, 494–500. [Google Scholar] [CrossRef]
- Macchetta, A.; Turner, I.G.; Bowen, C.R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009, 5, 1319–1327. [Google Scholar] [CrossRef]
- Potoczek, M.; Zima, A.; Paszkiewicz, Z.; Ślósarczyk, A. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram. Int. 2009, 35, 2249–2254. [Google Scholar] [CrossRef]
- Zuo, K.H.; Zeng, Y.P.; Jiang, D. Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater. Sci. Eng. C 2010, 30, 283–287. [Google Scholar] [CrossRef]
- Soon, Y.M.; Shin, K.H.; Koh, Y.H.; Lee, J.H.; Choi, W.Y.; Kim, H.E. Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. J. Eur. Ceram. Soc. 2011, 31, 13–18. [Google Scholar] [CrossRef]
- Hesaraki, S. Freeze-casted nanostructured apatite scaffold obtained from low temperature biomineralization of reactive calcium phosphates. Key Eng. Mater. 2014, 587, 21–26. [Google Scholar] [CrossRef]
- Ng, S.; Guo, J.; Ma, J.; Loo, S.C.J. Synthesis of high surface area mesostructured calcium phosphate particles. Acta Biomater. 2010, 6, 3772–3781. [Google Scholar] [CrossRef]
- Walsh, D.; Hopwood, J.D.; Mann, S. Crystal tectonics: Construction of reticulated calcium phosphate frameworks in bicontinuous reverse microemulsions. Science 1994, 264, 1576–1578. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.; Mann, S. Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem. Mater. 1996, 8, 1944–1953. [Google Scholar] [CrossRef]
- Zhao, K.; Tang, Y.F.; Qin, Y.S.; Wei, J.Q. Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceram. Int. 2011, 37, 635–639. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, Y.; Zhang, D.; Zhang, X.; Li, Z.; Liu, G.; Button, T.W. Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Mater. 2011, 64, 426–429. [Google Scholar] [CrossRef]
- Flauder, S.; Gbureck, U.; Muller, F.A. TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. Key Eng. Mater. 2013, 529–530, 129–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, K.; Bao, Y.; Zhang, D. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Mater. Sci. Eng. C 2013, 33, 340–346. [Google Scholar] [CrossRef]
- White, E.; Shors, E.C. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent. Clin. North Am. 1986, 30, 49–67. [Google Scholar] [CrossRef]
- Aizawa, M.; Howell, S.F.; Itatani, K.; Yokogawa, Y.; Nishizawa, K.; Toriyama, M.; Kameyama, T. Fabrication of porous ceramics with well-controlled open pores by sintering of fibrous hydroxyapatite particles. J. Ceram. Soc. Jpn. 2000, 108, 249–253. [Google Scholar] [CrossRef]
- Nakahira, A.; Tamai, M.; Sakamoto, K.; Yamaguchi, S. Sintering and microstructure of porous hydroxyapatite. J. Ceram. Soc. Jpn. 2000, 108, 99–104. [Google Scholar] [CrossRef]
- Koh, Y.H.; Kim, H.W.; Kim, H.E.; Halloran, J.W. Fabrication of macrochannelled-hydroxyapatite bioceramic by a coextrusion process. J. Am. Ceram. Soc. 2002, 85, 2578–2580. [Google Scholar] [CrossRef]
- Charriere, E.; Lemaitre, J.; Zysset, P. Hydroxyapatite cement scaffolds with controlled macroporosity: Fabrication protocol and mechanical properties. Biomaterials 2003, 24, 809–817. [Google Scholar] [CrossRef]
- Gonzalez-McQuire, R.; Green, D.; Walsh, D.; Hall, S.; Chane-Ching, J.Y.; Oreffo, R.O.C.; Mann, S. Fabrication of hydroxyapatite sponges by dextran sulphate/amino acid templating. Biomaterials 2005, 26, 6652–6656. [Google Scholar] [CrossRef]
- Eichenseer, C.; Will, J.; Rampf, M.; Wend, S.; Greil, P. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang). J. Mater. Sci. Mater. Med. 2010, 21, 131–137. [Google Scholar] [CrossRef]
- Walsh, D.; Boanini, E.; Tanaka, J.; Mann, S. Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting calcium phosphate films. J. Mater. Chem. 2005, 15, 1043–1048. [Google Scholar] [CrossRef]
- Song, H.Y.; Islam, S.; Lee, B.T. A novel method to fabricate unidirectional porous hydroxyapatite body using ethanol bubbles in a viscous slurry. J. Am. Ceram. Soc. 2008, 91, 3125–3127. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, D.; Huang, W.; Yao, A.; Kamitakahara, M.; Ioku, K. Preparation and characterization of periodic porous frame of hydroxyapatite. J. Ceram. Soc. Jpn. 2009, 117, 521–524. [Google Scholar] [CrossRef]
- Xu, S.; Li, D.; Lu, B.; Tang, Y.; Wang, C.; Wang, Z. Fabrication of a calcium phosphate scaffold with a three dimensional channel network and its application to perfusion culture of stem cells. Rapid Prototyp. J. 2007, 13, 99–106. [Google Scholar] [CrossRef]
- Saiz, E.; Gremillard, L.; Menendez, G.; Miranda, P.; Gryn, K.; Tomsia, A.P. Preparation of porous hydroxyapatite scaffolds. Mater. Sci. Eng. C 2007, 27, 546–550. [Google Scholar] [CrossRef]
- Sakamoto, M.; Nakasu, M.; Matsumoto, T.; Okihana, H. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J. Biomed. Mater. Res. A 2007, 82A, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhai, L.; Li, Y.; Shi, T. Preparation of irregular mesoporous hydroxyapatite. Mater. Res. Bull. 2008, 43, 1607–1614. [Google Scholar] [CrossRef]
- Sakamoto, M. Development and evaluation of superporous hydroxyapatite ceramics with triple pore structure as bone tissue scaffold. J. Ceram. Soc. Jpn. 2010, 118, 753–757. [Google Scholar] [CrossRef]
- Sakamoto, M.; Matsumoto, T. Development and evaluation of superporous ceramics bone tissue scaffold materials with triple pore structure a) hydroxyapatite, b) beta-tricalcium phosphate. In Bone Regeneration; Tal, H., Ed.; InTech Open: Rijeka, Croatia, 2012; pp. 301–320. [Google Scholar]
- Deisinger, U. Generating porous ceramic scaffolds: Processing and properties. Key Eng. Mater. 2010, 441, 155–179. [Google Scholar] [CrossRef]
- Ishikawa, K.; Tsuru, K.; Pham, T.K.; Maruta, M.; Matsuya, S. Fully-interconnected pore forming calcium phosphate cement. Key Eng. Mater. 2012, 493–494, 832–835. [Google Scholar]
- Yoon, H.J.; Kim, U.C.; Kim, J.H.; Koh, Y.H.; Choi, W.Y.; Kim, H.E. Fabrication and characterization of highly porous calcium phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. J. Ceram. Soc. Jpn. 2011, 119, 573–576. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.K.; Shin, K.H.; Moon, Y.W.; Koh, Y.H.; Choi, W.Y.; Kim, H.E. Highly porous biphasic calcium phosphate (BCP) ceramics with large interconnected pores by freezing vigorously foamed BCP suspensions under reduced pressure. J. Am. Ceram. Soc. 2011, 94, 4154–4156. [Google Scholar] [CrossRef]
- Schlosser, M.; Kleebe, H.J. Vapor transport sintering of porous calcium phosphate ceramics. J. Am. Ceram. Soc. 2012, 95, 1581–1587. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, G.; Yan, C.; Xiao, Y.; Miao, X.G. Strong and bioactive tri-calcium phosphate scaffolds with tube-like macropores. J. Biomim. Biomater. Tissue Eng. 2014, 19, 65–75. [Google Scholar] [CrossRef]
- Tsuru, K.; Nikaido, T.; Munar, M.L.; Maruta, M.; Matsuya, S.; Nakamura, S.; Ishikawa, K. Synthesis of carbonate apatite foam using β-TCP foams as precursors. Key Eng. Mater. 2014, 587, 52–55. [Google Scholar] [CrossRef]
- Chen, Z.C.; Zhang, X.L.; Zhou, K.; Cai, H.; Liu, C.Q. Novel fabrication of hierarchically porous hydroxyapatite scaffolds with refined porosity and suitable strength. Adv. Appl. Ceram. 2015, 114, 183–187. [Google Scholar] [CrossRef]
- Swain, S.K.; Bhattacharyya, S.; Sarkar, D. Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state. Mater. Res. Bull. 2015, 64, 257–261. [Google Scholar] [CrossRef]
- Charbonnier, B.; Laurent, C.; Marchat, D. Porous hydroxyapatite bioceramics produced by impregnation of 3D-printed wax mold: Slurry feature optimization. J. Eur. Ceram. Soc. 2016, 36, 4269–4279. [Google Scholar] [CrossRef]
- Roy, D.M.; Linnehan, S.K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247, 220–222. [Google Scholar] [CrossRef]
- Zhang, X.; Vecchio, K.S. Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front. Mater. Sci. 2013, 7, 103–117. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, Q.; Pu, X.; Hou, Z.; Zhang, Q. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chem. Eng. J. 2011, 173, 837–845. [Google Scholar] [CrossRef]
- Tampieri, A.; Sprio, S.; Ruffini, A.; Celotti, G.; Lesci, I.G.; Roveri, N. From wood to bone: Multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Chem. 2009, 19, 4973–4980. [Google Scholar] [CrossRef]
- Thanh, T.N.X.; Maruta, M.; Tsuru, K.; Matsuya, S.; Ishikawa, K. Three–dimensional porous carbonate apatite with sufficient mechanical strength as a bone substitute material. Adv. Mater. Res. 2014, 891–892, 1559–1564. [Google Scholar] [CrossRef]
- Moroni, L.; de Wijn, J.R.; van Blitterswijk, C.A. Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer Edn. 2008, 19, 543–572. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Hing, K.; Annaz, B.; Saeed, S.; Revell, P.; Buckland, T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci. Mater. Med. 2005, 16, 467–475. [Google Scholar] [CrossRef]
- Wang, Z.; Sakakibara, T.; Sudo, A.; Kasai, Y. Porosity of β-tricalcium phosphate affects the results of lumbar posterolateral fusion. J. Spinal Disord. Tech. 2013, 26, E40–E45. [Google Scholar] [CrossRef]
- Lan Levengood, S.K.; Polak, S.J.; Wheeler, M.B.; Maki, A.J.; Clark, S.G.; Jamison, R.D.; Wagoner Johnson, A.J. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 2010, 31, 3552–3563. [Google Scholar] [CrossRef]
- Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. The fabrication of nanoporous hydroxyapatite ceramics. Adv. Mater. Res. 2008; 47–50, 797–800. [Google Scholar]
- Li, Y.; Tjandra, W.; Tam, K.C. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates. Mater. Res. Bull. 2008, 43, 2318–2326. [Google Scholar] [CrossRef]
- El Asri, S.; Laghzizil, A.; Saoiabi, A.; Alaoui, A.; El Abassi, K.; M’hamdi, R.; Coradin, T. A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock. Colloid Surf. A 2009, 350, 73–78. [Google Scholar] [CrossRef]
- Raksujarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Processing and properties of nanoporous hydroxyapatite ceramics. Mater. Des. 2010, 31, 1658–1660. [Google Scholar] [CrossRef]
- Ramli, R.A.; Adnan, R.; Bakar, M.A.; Masudi, S.M. Synthesis and characterisation of pure nanoporous hydroxyapatite. J. Phys. Sci. 2011, 22, 25–37. [Google Scholar]
- LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742–4753. [Google Scholar] [CrossRef] [PubMed]
- Prokopiev, O.; Sevostianov, I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A 2006, 431, 218–227. [Google Scholar] [CrossRef]
- Daculsi, G.; Jegoux, F.; Layrolle, P. The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In Advanced Biomaterials: Fundamentals, Processing and Applications; Basu, B., Katti, D.S., Kumar, A., Eds.; American Ceramic Society: Columbus, OH, USA; Wiley: Hoboken, NJ, USA, 2009; p. 768. [Google Scholar]
- Shipman, P.; Foster, G.; Schoeninger, M. Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 1984, 11, 307–325. [Google Scholar] [CrossRef]
- Rice, R.W. Porosity of Ceramics; Marcel Dekker: New York, NY, USA, 1998; p. 560. [Google Scholar]
- Fan, J.; Lei, J.; Yu, C.; Tu, B.; Zhao, D. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater. Chem. Phys. 2007, 103, 489–493. [Google Scholar] [CrossRef]
- Hsu, Y.H.; Turner, I.G.; Miles, A.W. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci. Mater. Med. 2007, 18, 2251–2256. [Google Scholar] [CrossRef] [PubMed]
- Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A.P. Porous ceramic scaffolds with complex architectures. JOM 2008, 60, 54–59. [Google Scholar] [CrossRef]
- Naqshbandi, A.R.; Sopyan, I.; Gunawan. Development of porous calcium phosphate bioceramics for bone implant applications: A review. Rec. Pat. Mater. Sci. 2013, 6, 238–252. [Google Scholar]
- Jodati, H.; Yılmaz, B.; Evis, Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram. Int. 2020, 46, 15725–15739. [Google Scholar] [CrossRef]
- Yan, X.; Yu, C.; Zhou, X.; Tang, J.; Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 2004, 43, 5980–5984. [Google Scholar] [CrossRef] [PubMed]
- Barba, A.; Maazouz, Y.; Diez-Escudero, A.; Rappe, K.; Espanol, M.; Montufar, E.B.; Öhman-Mägi, C.; Persson, C.; Fontecha, P.; Manzanares, M.C.; et al. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture. Acta Biomater. 2018, 79, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Cosijns, A.; Vervaet, C.; Luyten, J.; Mullens, S.; Siepmann, F.; van Hoorebeke, L.; Masschaele, B.; Cnudde, V.; Remon, J.P. Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. 2007, 67, 498–506. [Google Scholar] [CrossRef]
- Uchida, A.; Shinto, Y.; Araki, N.; Ono, K. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop. Res. 1992, 10, 440–445. [Google Scholar] [CrossRef]
- Shinto, Y.; Uchida, A.; Korkusuz, F.; Araki, N.; Ono, K. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J. Bone. Joint. Surg. Br. 1992, 74, 600–604. [Google Scholar] [CrossRef]
- Martin, R.B.; Chapman, M.W.; Sharkey, N.A.; Zissimos, S.L.; Bay, B.; Shors, E.C. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 1993, 14, 341–348. [Google Scholar] [CrossRef]
- Kazakia, G.J.; Nauman, E.A.; Ebenstein, D.M.; Halloran, B.P.; Keaveny, T.M. Effects of in vitro bone formation on the mechanical properties of a trabeculated hydroxyapatite bone substitute. J. Biomed. Mater. Res. A 2006, 77A, 688–699. [Google Scholar] [CrossRef]
- Hing, K.A.; Best, S.M.; Tanner, K.E.; Bonfield, W.; Revell, P.A. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J. Biomed. Mater. Res. A 2004, 68A, 187–200. [Google Scholar] [CrossRef]
- Vuola, J.; Taurio, R.; Goransson, H.; Asko-Seljavaara, S. Compressive strength of calcium carbonate and hydroxyapatite implants after bone marrow induced osteogenesis. Biomaterials 1998, 19, 223–227. [Google Scholar] [CrossRef]
- Von Doernberg, M.C.; von Rechenberg, B.; Bohner, M.; Grünenfelder, S.; van Lenthe, G.H.; Müller, R.; Gasser, B.; Mathys, R.; Baroud, G.; Auer, J. In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 2006, 27, 5186–5198. [Google Scholar] [CrossRef]
- Mygind, T.; Stiehler, M.; Baatrup, A.; Li, H.; Zou, X.; Flyvbjerg, A.; Kassem, M.; Bunger, C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 2007, 28, 1036–1047. [Google Scholar] [CrossRef]
- Mankani, M.H.; Afghani, S.; Franco, J.; Launey, M.; Marshall, S.; Marshall, G.W.; Nissenson, R.; Lee, J.; Tomsia, A.P.; Saiz, E. Lamellar spacing in cuboid hydroxyapatite scaffolds regulates bone formation by human bone marrow stromal cells. Tissue Eng. A 2011, 17, 1615–1623. [Google Scholar] [CrossRef]
- Chan, O.; Coathup, M.J.; Nesbitt, A.; Ho, C.Y.; Hing, K.A.; Buckland, T.; Campion, C.; Blunn, G.W. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater. 2012, 8, 2788–2794. [Google Scholar] [CrossRef]
- Holmes, R.E. Bone regeneration within a coralline hydroxyapatite implant. Plast. Reconstr. Surg. 1979, 63, 626–633. [Google Scholar] [CrossRef]
- Tsuruga, E.; Takita, H.; Wakisaka, Y.; Kuboki, Y. Pore size of porous hydoxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 1997, 121, 317–324. [Google Scholar] [CrossRef]
- LeGeros, R.Z.; LeGeros, J.P. Calcium phosphate bioceramics: Past, present, future. Key Eng. Mater. 2003, 240–242, 3–10. [Google Scholar] [CrossRef]
- Woodard, J.R.; Hilldore, A.J.; Lan, S.K.; Park, C.J.; Morgan, A.W.; Eurell, J.A.C.; Clark, S.G.; Wheeler, M.B.; Jamison, R.D.; Wagoner Johnson, A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007, 28, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Jacovella, P.F.; Peiretti, C.B.; Cunille, D.; Salzamendi, M.; Schechtel, S.A. Long-lasting results with hydroxylapatite (Radiesse) facial filler. Plast. Reconstr. Surg. 2006, 118, 15S–21S. [Google Scholar] [CrossRef] [PubMed]
- Rustom, L.E.; Poellmann, M.J.; Wagoner Johnson, A.J. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater. 2019, 83, 435–455. [Google Scholar] [CrossRef] [PubMed]
- Dubok, V.A. Bioceramics–yesterday, today, tomorrow. Powder Metall. Met. Ceram. 2000, 39, 381–394. [Google Scholar] [CrossRef]
- Heness, G.; Ben-Nissan, B. Innovative bioceramics. Mater. Forum 2004, 27, 104–114. [Google Scholar]
- Williams, D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35, 10009–10014. [Google Scholar] [CrossRef]
- Punj, S.; Singh, J.; Singh, K. Ceramic biomaterials: Properties, state of the art and future prospectives. Ceram. Int. 2021, 47, 28059–28074. [Google Scholar] [CrossRef]
- Greenspan, D.C. Bioactive ceramic implant materials. Curr. Opin. Solid State Mater. Sci. 1999, 4, 389–393. [Google Scholar] [CrossRef]
- Blokhuis, T.J.; Termaat, M.F.; den Boer, F.C.; Patka, P.; Bakker, F.C.; Haarman, H.J.T.M. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J. Trauma 2000, 48, 179–189. [Google Scholar] [CrossRef]
- Kim, H.M. Bioactive ceramics: Challenges and perspectives. J. Ceram. Soc. Jpn. 2001, 109, S49–S57. [Google Scholar] [CrossRef]
- Seeley, Z.; Bandyopadhyay, A.; Bose, S. Tricalcium phosphate based resorbable ceramics: Influence of NaF and CaO addition. Mater. Sci. Eng. C 2008, 28, 11–17. [Google Scholar] [CrossRef]
- Descamps, M.; Richart, O.; Hardouin, P.; Hornez, J.C.; Leriche, A. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural. Ceram. Int. 2008, 34, 1131–1137. [Google Scholar] [CrossRef]
- Cushnie, E.K.; Khan, Y.M.; Laurencin, C.T. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: Physical characterization studies. J. Biomed. Mater. Res. A 2008, 84A, 54–62. [Google Scholar] [CrossRef]
- Hench, L.L.; Thompson, I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface 2010, 7, S379–S391. [Google Scholar] [CrossRef]
- Nagase, M.; Baker, D.G.; Schumacher, H.R. Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch model. J. Rheumatol. 1988, 15, 1334–1338. [Google Scholar]
- Rooney, T.; Berman, S.; Indersano, A.T. Evaluation of porous block hydroxylapatite for augmentation of alveolar ridges. J. Oral Maxillofac. Surg. 1988, 46, 15–18. [Google Scholar] [CrossRef]
- Prudhommeaux, F.; Schiltz, C.; Lioté, F.; Hina, A.; Champy, R.; Bucki, B.; Ortiz-Bravo, E.; Meunier, A.; Rey, C.; Bardin, T. Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum. 1996, 39, 1319–1326. [Google Scholar] [CrossRef]
- Ghanaati, S.; Barbeck, M.; Orth, C.; Willershausen, I.; Thimm, B.W.; Hoffmann, C.; Rasic, A.; Sader, R.A.; Unger, R.E.; Peters, F.; et al. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 2010, 6, 4476–4487. [Google Scholar] [CrossRef]
- Lin, K.; Yuan, W.; Wang, L.; Lu, J.; Chen, L.; Wang, Z.; Chang, J. Evaluation of host inflammatory responses of β-tricalcium phosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 99B, 350–358. [Google Scholar] [CrossRef]
- Velard, F.; Braux, J.; Amedee, J.; Laquerriere, P. Inflammatory cell response to calcium phosphate biomaterial particles: An overview. Acta Biomater. 2013, 9, 4956–4963. [Google Scholar] [CrossRef] [PubMed]
- Rydén, L.; Molnar, D.; Esposito, M.; Johansson, A.; Suska, F.; Palmquist, A.; Thomsen, P. Early inflammatory response in soft tissues induced by thin calcium phosphates. J. Biomed. Mater. Res. A 2013, 101A, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- Chatterjea, A.; van der Stok, J.; Danoux, C.B.; Yuan, H.; Habibovic, P.; van Blitterswijk, C.A.; Weinans, H.; de Boer, J. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in a critical size cortical bone defects. J. Biomed. Mater. Res. A 2014, 102A, 1399–1407. [Google Scholar] [CrossRef]
- Friesenbichler, J.; Maurer-Ertl, W.; Sadoghi, P.; Pirker-Fruehauf, U.; Bodo, K.; Leithner, A. Adverse reactions of artificial bone graft substitutes: Lessons learned from using tricalcium phosphate geneX®. Clin. Orthop. Relat. Res. 2014, 472, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.Y.; Pan, S.C.; Huang, Y.H.; Hsueh, Y.Y. Blindness after calcium hydroxylapatite injection at nose. J. Plast. Reconstr. Aesthet. Surg. 2014, 67, 1755–1757. [Google Scholar] [CrossRef]
- Ghanaati, S.; Barbeck, M.; Detsch, R.; Deisinger, U.; Hilbig, U.; Rausch, V.; Sader, R.; Unger, R.E.; Ziegler, G.; Kirkpatrick, C.J. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: Histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed. Mater. 2012, 7, 015005. [Google Scholar]
- Draenert, K.; Draenert, M.; Erler, M.; Draenert, A.; Draenert, Y. How bone forms in large cancellous defects: Critical analysis based on experimental work and literature. Injury 2011, 42 (Suppl. 2), S47–S55. [Google Scholar] [CrossRef]
- Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine. J. 2001, 10, S96–S101. [Google Scholar]
- Yuan, H.; Kurashina, K.; de Bruijn, D.J.; Li, Y.; de Groot, K.; Zhang, X. A preliminary study of osteoinduction of two kinds of calcium phosphate bioceramics. Biomaterials 1999, 20, 1799–1806. [Google Scholar] [CrossRef]
- Yuan, H.P.; de Bruijn, J.D.; Li, Y.B.; Feng, J.Q.; Yang, Z.J.; de Groot, K.; Zhang, X.D. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: A comparative study between porous α-TCP and β-TCP. J. Mater. Sci. Mater. Med. 2001, 12, 7–13. [Google Scholar] [CrossRef]
- Barrere, F.; van der Valk, C.M.; Dalmeijer, R.A.; Meijer, G.; van Blitterswijk, C.A.; de Groot, K.; Layrolle, P. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J. Biomed. Mater. Res. A 2003, 66A, 779–788. [Google Scholar] [CrossRef]
- Habibovic, P.; van der Valk, C.M.; van Blitterswijk, C.A.; de Groot, K.; Meijer, G. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials. J. Mater. Sci. Mater. Med. 2004, 15, 373–380. [Google Scholar] [CrossRef]
- Ripamonti, U.; Richter, P.W.; Nilen, R.W.; Renton, L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non human primate Papio ursinus. J. Cell. Mol. Med. 2008, 12, 2609–2621. [Google Scholar] [CrossRef]
- Cheng, L.; Ye, F.; Yang, R.; Lu, X.; Shi, Y.; Li, L.; Fan, H.; Bu, H. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomater. 2010, 6, 1569–1574. [Google Scholar] [CrossRef]
- Yuan, H.; Fernandes, H.; Habibovic, P.; de Boer, J.; Barradas, A.M.C.; de Ruiter, A.; Walsh, W.R.; van Blitterswijk, C.A.; de Bruijn, J.D. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA 2010, 107, 13614–13619. [Google Scholar] [CrossRef]
- Barradas, A.M.; Yuan, H.; van der Stok, J.; le Quang, B.; Fernandes, H.; Chaterjea, A.; Hogenes, M.C.; Shultz, K.; Donahue, L.R.; van Blitterswijk, C.; et al. The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice. Biomaterials 2012, 33, 5696–5705. [Google Scholar] [CrossRef]
- Li, B.; Liao, X.; Zheng, L.; Zhu, X.; Wang, Z.; Fan, H.; Zhang, X. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Acta Biomater. 2012, 8, 3794–3804. [Google Scholar] [CrossRef]
- Cheng, L.; Shi, Y.; Ye, F.; Bu, H. Osteoinduction of calcium phosphate biomaterials in small animals. Mater. Sci. Eng. C 2013, 33, 1254–1260. [Google Scholar] [CrossRef]
- Davison, N.L.; Gamblin, A.L.; Layrolle, P.; Yuan, H.; de Bruijn, J.D.; Barrère-de Groot, F. Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials 2014, 35, 5088–5097. [Google Scholar] [CrossRef]
- Wang, L.; Barbieri, D.; Zhou, H.; de Bruijn, J.D.; Bao, C.; Yuan, H. Effect of particle size on osteoinductive potential of microstructured biphasic calcium phosphate ceramic. J. Biomed. Mater. Res. A 2015, 103A, 1919–1929. [Google Scholar] [CrossRef]
- He, Y.; Peng, Y.; Liu, L.; Hou, S.; Mu, J.; Lan, L.; Cheng, L.; Shi, Z. The relationship between osteoinduction and vascularization: Comparing the ectopic bone formation of five different calcium phosphate biomaterials. Materials 2022, 15, 3440. [Google Scholar] [CrossRef]
- Yuan, H.; Barbieri, D.; Luo, X.; van Blitterswijk, C.A.; de Bruijn, J.D. Calcium phosphates and bone induction. In Comprehensive Biomaterials II; Chapter 1.14; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 339–349. [Google Scholar]
- Murata, M.; Hino, J.; Kabir, M.A.; Yokozeki, K.; Sakamoto, M.; Nakajima, T.; Akazawa, T. Osteoinduction in novel micropores of partially dissolved and precipitated hydroxyapatite block in scalp of young rats. Materials 2021, 14, 196. [Google Scholar] [CrossRef]
- Iaquinta, M.R.; Torreggiani, E.; Mazziotta, C.; Ruffini, A.; Sprio, S.; Tampieri, A.; Tognon, M.; Martini, F.; Mazzoni, E. In vitro osteoinductivity assay of hydroxylapatite scaffolds, obtained with biomorphic transformation processes, assessed using human adipose stem cell cultures. Int. J. Mol. Sci. 2021, 22, 7092. [Google Scholar] [CrossRef]
- Habibovic, P.; Yuan, H.; van der Valk, C.M.; Meijer, G.; van Blitterswijk, C.A.; de Groot, K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005, 26, 3565–3575. [Google Scholar] [CrossRef]
- Habibovic, P.; Sees, T.M.; van den Doel, M.A.; van Blitterswijk, C.A.; de Groot, K. Osteoinduction by biomaterials–physicochemical and structural influences. J. Biomed. Mater. Res. A 2006, 77A, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Reddi, A.H. Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells and biomimetic biomaterials. Tissue Eng. 2000, 6, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained by conversion of calcium carbonate exoskeletons of coral. J. Bone Joint Surg. A 1991, 73, 692–703. [Google Scholar] [CrossRef]
- Kuboki, Y.; Takita, H.; Kobayashi, D. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J. Biomed. Mater. Res. 1998, 39, 190–199. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, X.; Barbieri, D.; Barradas, A.M.C.; de Bruijn, J.D.; van Blitterswijk, C.A.; Yuan, H. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014, 10, 3254–3263. [Google Scholar] [CrossRef]
- Zhang, J.; Barbieri, D.; Ten Hoopen, H.; de Bruijn, J.D.; van Blitterswijk, C.A.; Yuan, H. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J. Biomed. Mater. Res. A 2015, 103A, 1188–1199. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, J.; Zhang, C.; Barbieri, D.; Yuan, H.; Moroni, L.; Feng, G. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater. 2020, 106, 22–33. [Google Scholar] [CrossRef]
- Daskalova, A.; Angelova, L.; Trifonov, A.; Lasgorceix, M.; Hocquet, S.; Minne, M.; Declercq, H.; Leriche, A.; Aceti, D.; Buchvarov, I. Development of femtosecond laser-engineered β-tricalcium phosphate (β-TCP) biomimetic templates for orthopaedic tissue engineering. Appl. Sci. 2021, 11, 2565. [Google Scholar] [CrossRef]
- Diaz-Flores, L.; Gutierrez, R.; Lopez-Alonso, A.; Gonzalez, R.; Varela, H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin. Orthop. Relat. Res. 1992, 275, 280–286. [Google Scholar] [CrossRef]
- Bohner, M.; Miron, R.J. A proposed mechanism for material-induced heterotopic ossification. Mater. Today 2019, 22, 132–141. [Google Scholar] [CrossRef]
- Boyan, B.D.; Schwartz, Z. Are calcium phosphate ceramics ‘smart’ biomaterials? Nat. Rev. Rheumatol. 2011, 7, 8–9. [Google Scholar] [CrossRef]
- Li, X.; Ma, B.; Li, J.; Shang, L.; Liu, H.; Ge, S. A method to visually observe the degradation-diffusion-reconstruction behavior of hydroxyapatite in the bone repair process. Acta Biomater. 2020, 101, 554–564. [Google Scholar] [CrossRef]
- Lu, J.; Descamps, M.; Dejou, J.; Koubi, G.; Hardouin, P.; Lemaitre, J.; Proust, J.P. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 408–412. [Google Scholar] [CrossRef]
- Wang, H.; Lee, J.K.; Moursi, A.; Lannutti, J.J. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J. Biomed. Mater. Res. A 2003, 67A, 599–608. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comments Inorg. Chem. 1999, 20, 285–299. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: A review of literature. World J. Methodol. 2012, 2, 1–17. [Google Scholar] [CrossRef]
- Sakai, S.; Anada, T.; Tsuchiya, K.; Yamazaki, H.; Margolis, H.C.; Suzuki, O. Comparative study on the resorbability and dissolution behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions. Dent. Mater. J. 2016, 35, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Wenisch, S.; Stahl, J.P.; Horas, U.; Heiss, C.; Kilian, O.; Trinkaus, K.; Hild, A.; Schnettler, R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: Fine structural microscopy. J. Biomed. Mater. Res. A 2003, 67A, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Riihonen, R.; Nielsen, S.; Väänänen, H.K.; Laitala-Leinonen, T.; Kwon, T.H. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol. 2010, 29, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Meille, S.; Gallo, M.; Clément, P.; Tadier, S.; Chevalier, J. Spherical instrumented indentation as a tool to characterize porous bioceramics and their resorption. J. Eur. Ceram. Soc. 2019, 39, 4459–4472. [Google Scholar] [CrossRef]
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Matsunaga, A.; Takami, M.; Irié, T.; Mishima, K.; Inagaki, K.; Kamijo, R. Microscopic study on resorption of β-tricalcium phosphate materials by osteoclasts. Cytotechnology 2015, 67, 727–732. [Google Scholar] [CrossRef]
- Narducci, P.; Nicolin, V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: An in vitro study. Ann. Anat. 2009, 191, 349–355. [Google Scholar] [CrossRef]
- Wu, V.M.; Uskoković, V. Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro? Biochim. Biophys. Acta 2016, 1860, 2157–2168. [Google Scholar] [CrossRef]
- Stastny, P.; Sedlacek, R.; Suchy, T.; Lukasova, V.; Rampichova, M.; Trunec, M. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. Mater. Sci. Eng. C 2019, 100, 544–553. [Google Scholar] [CrossRef]
- Tamimi, F.; Torres, J.; Bassett, D.; Barralet, J.; Cabarcos, E.L. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010, 31, 2762–2769. [Google Scholar] [CrossRef]
- Sheikh, Z.; Abdallah, M.N.; Hanafi, A.A.; Misbahuddin, S.; Rashid, H.; Glogauer, M. Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials 2015, 8, 7913–7925. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Lafon, J.P.; Bernache-Assollant, D. Calcium phosphate apatites with variable Ca/P atomic ratio. III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials 2002, 23, 1081–1089. [Google Scholar] [CrossRef]
- Barrère, F.; van der Valk, C.M.; Dalmeijer, R.A.J.; van Blitterswijk, C.A.; de Groot, K.; Layrolle, P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J. Biomed. Mater. Res. A 2003, 64A, 378–387. [Google Scholar] [CrossRef]
- Souto, R.M.; Laz, M.M.; Reis, R.L. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials 2003, 24, 4213–4221. [Google Scholar] [CrossRef]
- Dellinger, J.G.; Wojtowicz, A.M.; Jamison, R.D. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds. J. Biomed. Mater. Res. A 2006, 77A, 563–571. [Google Scholar] [CrossRef]
- Gallo, M.; Tadier, S.; Meille, S.; Chevalier, J. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation. J. Eur. Ceram. Soc. 2018, 38, 899–914. [Google Scholar] [CrossRef]
- Okuda, T.; Ioku, K.; Yonezawa, I.; Minagi, H.; Kawachi, G.; Gonda, Y.; Murayama, H.; Shibata, Y.; Minami, S.; Kamihara, S.; et al. The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials 2007, 28, 2612–2621. [Google Scholar] [CrossRef]
- Maazouz, Y.; Rentsch, I.; Lu, B.; Santoni, B.L.G.; Doebelin, N.; Bohner, M. In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes. Acta Biomater. 2020, 102, 440–457. [Google Scholar] [CrossRef]
- Li, X.; Zou, Q.; Chen, H.; Li, W. In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite. Sci. Adv. 2019, 5, eaay6484. [Google Scholar] [CrossRef]
- Orly, I.; Gregoire, M.; Menanteau, J.; Heughebaert, M.; Kerebel, B. Chemical changes in hydroxyapatite biomaterial under in vivo and in vitro biological conditions. Calcif. Tissue Int. 1989, 45, 20–26. [Google Scholar] [CrossRef]
- Sun, L.; Berndt, C.C.; Gross, K.A.; Kucuk, A. Review: Material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 570–592. [Google Scholar] [CrossRef]
- Bertazzo, S.; Zambuzzi, W.F.; Campos, D.D.P.; Ogeda, T.L.; Ferreira, C.V.; Bertran, C.A. Hydroxyapatite surface solubility and effect on cell adhesion. Colloid Surf. B 2010, 78, 177–184. [Google Scholar] [CrossRef]
- Arbez, B.; Manero, F.; Mabilleau, G.; Libouban, H.; Chappard, D. Human macrophages and osteoclasts resorb β-tricalcium phosphate in vitro but not mouse macrophages. Micron 2019, 125, 102730. [Google Scholar] [CrossRef]
- Schwartz, Z.; Boyan, B.D. Underlying mechanisms at the bone-biomaterial interface. J. Cell. Biochem. 1994, 56, 340–347. [Google Scholar] [CrossRef]
- Puleo, D.A.; Nanci, A. Understanding and controlling the bone-implant interface. Biomaterials 1999, 20, 2311–2321. [Google Scholar] [CrossRef]
- Xin, R.; Leng, Y.; Chen, J.; Zhang, Q. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 2005, 26, 6477–6486. [Google Scholar] [CrossRef]
- Knabe, C.; Adel-Khattab, D.; Ducheyne, P. Bioactivity: Mechanisms. In Comprehensive Biomaterials II; Chapter 1.12; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 291–310. [Google Scholar]
- Girija, E.K.; Parthiban, S.P.; Suganthi, R.V.; Elayaraja, K.; Joshy, M.I.A.; Vani, R.; Kularia, P.; Asokan, K.; Kanjilal, D.; Yokogawa, Y.; et al. High energy irradiation–a tool for enhancing the bioactivity of hydroxyapatite. J. Ceram. Soc. Jpn. 2008, 116, 320–324. [Google Scholar] [CrossRef]
- Okada, M.; Furukawa, K.; Serizawa, T.; Yanagisawa, Y.; Tanaka, H.; Kawai, T.; Furuzono, T. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir 2009, 25, 6300–6306. [Google Scholar] [CrossRef]
- Callis, P.D.; Donaldson, K.; McCord, J.F. Early cellular responses to calcium phosphate ceramics. Clin. Mater. 1988, 3, 183–190. [Google Scholar] [CrossRef]
- Okumura, M.; Ohgushi, H.; Tamai, S. Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 1990, 12, 28–37. [Google Scholar] [CrossRef]
- Doi, Y.; Iwanaga, H.; Shibutani, T.; Moriwaki, Y.; Iwayama, Y. Osteoclastic responses to various calcium phosphates in cell cultures. J. Biomed. Mater. Res. 1999, 47, 424–433. [Google Scholar] [CrossRef]
- Guo, X.; Gough, J.E.; Xiao, P.; Liu, J.; Shen, Z. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. A 2007, 82A, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Zeng, X.; Ma, L.L.; Weng, W.; Yan, W.; Qian, M. Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomater. 2007, 3, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.J.; Chang, S.W.; Lee, S.I.; Kum, K.Y.; Bae, K.S.; Kim, E.C. Human periodontal ligament cell response to a newly developed calcium phosphate-based root canal sealer. J. Endod. 2010, 36, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Heng, B.C.; Xiong, S.; Guo, J.; Tan, T.T.Y.; Boey, F.Y.C.; Ng, K.W.; Loo, J.S.C. In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 2011, 5, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, M.; Lu, J.; Ma, J.; Wei, J.; Wei, S. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int. J. Nanomed. 2012, 7, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Lobo, S.E.; Glickman, R.; da Silva, W.N.; Arinzeh, T.L.; Kerkis, I. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tiss. Res. 2015, 361, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.L.; da Rosa, W.L.O.; Cuevas-Suárez, C.E.; Carreño, N.L.V.; da Silva, A.F.; Guim, T.N.; Dellagostin, O.A.; Piva, E. Histological evaluation of bone repair with hydroxyapatite: A systematic review. Calcif. Tissue Int. 2017, 101, 341–354. [Google Scholar] [CrossRef]
- Sadowska, J.M.; Wei, F.; Guo, J.; Guillem-Marti, J.; Lin, Z.; Ginebra, M.P.; Xiao, Y. The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis. Acta Biomater. 2019, 96, 605–618. [Google Scholar] [CrossRef]
- Šupová, M.; Suchý, T.; Sucharda, Z.; Filová, E.; der Kinderen, J.N.L.M.; Steinerová, M.; Bačáková, L.; Martynková, G.S. The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behavior. J. Amer. Ceram. Soc. 2019, 102, 2882–2904. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Y.; Ji, L.; Geng, Z.; Wang, J.; Liu, C. Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioact. Mater. 2021, 6, 4517–4530. [Google Scholar] [CrossRef]
- Suzuki, T.; Ohashi, R.; Yokogawa, Y.; Nishizawa, K.; Nagata, F.; Kawamoto, Y.; Kameyama, T.; Toriyama, M. Initial anchoring and proliferation of fibroblast L-929 cells on unstable surface of calcium phosphate ceramics. J. Biosci. Bioeng. 1999, 87, 320–327. [Google Scholar] [CrossRef]
- Arinzeh, T.L.; Tran, T.; McAlary, J.; Daculsi, G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 2005, 26, 3631–3638. [Google Scholar] [CrossRef]
- Oh, S.; Oh, N.; Appleford, M.; Ong, J.L. Bioceramics for tissue engineering applications–a review. Am. J. Biochem. Biotechnol. 2006, 2, 49–56. [Google Scholar] [CrossRef]
- Appleford, M.; Oh, S.; Cole, J.A.; Carnes, D.L.; Lee, M.; Bumgardner, J.D.; Haggard, W.O.; Ong, J.L. Effects of trabecular calcium phosphate scaffolds on stress signaling in osteoblast precursor cells. Biomaterials 2007, 28, 2747–2753. [Google Scholar] [CrossRef]
- Gamie, Z.; Tran, G.T.; Vyzas, G.; Korres, N.; Heliotis, M.; Mantalaris, A.; Tsiridis, E. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Expert Opin. Biol. Ther. 2012, 12, 713–729. [Google Scholar] [CrossRef]
- Manfrini, M.; di Bona, C.; Canella, A.; Lucarelli, E.; Pellati, A.; d’Agostino, A.; Barbanti-Bròdano, G.; Tognon, M. Mesenchymal stem cells from patients to assay bone graft substitutes. J. Cell. Physiol. 2013, 228, 1229–1237. [Google Scholar] [CrossRef]
- Unger, R.E.; Sartoris, A.; Peters, K.; Motta, A.; Migliaresi, C.; Kunkel, M.; Bulnheim, U.; Rychly, J.; Kirkpatrick, C.J. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary like structures on three-dimensional porous biomaterials. Biomaterials 2007, 28, 3965–3976. [Google Scholar] [CrossRef]
- Nazir, N.M.; Dasmawati, M.; Azman, S.M.; Omar, N.S.; Othman, R. Biocompatibility of in house β-tricalcium phosphate ceramics with normal human osteoblast cell. J. Eng. Sci. Technol. 2012, 7, 169–176. [Google Scholar]
- Tan, F.; O’Neill, F.; Naciri, M.; Dowling, D.; Al-Rubeai, M. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating. Acta Biomater. 2012, 8, 1627–1638. [Google Scholar] [CrossRef]
- Arbez, B.; Libouban, H. Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate)|Comportement de lignées cellulaires de macrophages et d’ostéoblastes en contact avec le biomatériau β-TCP (phosphate bêta tricalcique).]. Morphologie 2017, 101, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Frayssinet, P.; Rouquet, N.; Vidalain, P.O. Calcium phosphates for cell transfection. In Comprehensive Biomaterials II; Chapter 1.15.; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 350–359. [Google Scholar]
- Teixeira, S.; Fernandes, M.H.; Ferraz, M.P.; Monteiro, F.J. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J. Biomed. Mater. Res. A 2010, 95A, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Treccani, L.; Klein, T.Y.; Meder, F.; Pardun, K.; Rezwan, K. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 2013, 9, 7115–7150. [Google Scholar] [CrossRef] [PubMed]
- Bigi, A.; Boanini, E. Functionalized biomimetic calcium phosphates for bone tissue repair. J. Appl. Biomater. Funct. Mater. 2017, 15, e313–e325. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Functionalized calcium orthophosphates (CaPO4) and their biomedical applications. J. Mater. Chem. B 2019, 7, 7471–7489. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yoshimura, H.; Aizawa, M. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel. Mater. Sci. Eng. C 2013, 33, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Fujimi, T.J.; Nakamura, M.; Konishi, T.; Yoshimura, H.; Aizawa, M. Development of a,b-plane-oriented hydroxyapatite ceramics as models for living bones and their cell adhesion behavior. Acta Biomater. 2013, 9, 6732–6740. [Google Scholar] [CrossRef]
- Aizawa, M.; Matsuura, T.; Zhuang, Z. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications. Biol. Pharm. Bull. 2013, 36, 1654–1661. [Google Scholar] [CrossRef]
- Lin, K.; Wu, C.; Chang, J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 2014, 10, 4071–4102. [Google Scholar] [CrossRef]
- Chen, W.; Long, T.; Guo, Y.J.; Zhu, Z.A.; Guo, Y.P. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays. RSC Adv. 2014, 4, 185–191. [Google Scholar] [CrossRef]
- Guan, J.J.; Tian, B.; Tang, S.; Ke, Q.F.; Zhang, C.Q.; Zhu, Z.A.; Guo, Y.P. Hydroxyapatite coatings with oriented nanoplate arrays: Synthesis, formation mechanism and cytocompatibility. J. Mater. Chem. B 2015, 3, 1655–1666. [Google Scholar] [CrossRef]
- Ribeiro, C.; Rigo, E.C.S.; Sepúlveda, P.; Bressiani, J.C.; Bressiani, A.H.A. Formation of calcium phosphate layer on ceramics with different reactivities. Mater. Sci. Eng. C 2004, 24, 631–636. [Google Scholar] [CrossRef]
- Barba, A.; Diez-Escudero, A.; Maazouz, Y.; Rappe, K.; Espanol, M.; Montufar, E.B.; Bonany, M.; Sadowska, J.M.; Guillem-Marti, J.; Öhman-Mägi, C.; et al. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: Effect of nanostructure and pore architecture. ACS Appl. Mater. Interfaces 2017, 9, 41722–41736. [Google Scholar] [CrossRef]
- Tsukanaka, M.; Fujibayashi, S.; Otsuki, B.; Takemoto, M.; Matsuda, S. Osteoinductive potential of highly purified porous β-TCP in mice. J. Mater. Sci. Mater. Med. 2015, 26, 132. [Google Scholar] [CrossRef]
- Duan, R.; Barbieri, D.; Luo, X.; Weng, J.; Bao, C.; de Bruijn, J.D.; Yuan, H. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes. Biomater. Sci. 2018, 6, 136–145. [Google Scholar] [CrossRef]
- Davison, N.L.; ten Harkel, B.; Schoenmaker, T.; Luo, X.; Yuan, H.; Everts, V.; Barrère-de Groot, F.; de Bruijn, J.D. Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture. Biomaterials 2014, 35, 7441–7451. [Google Scholar] [CrossRef]
- Al-Maawi, S.; Barbeck, M.; Vizcaíno, C.H.; Egli, R.; Sader, R.; Kirkpatrick, C.J.; Bohner, M.; Ghanaati, S. Thermal treatment at 500 °C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study. Acta Biomater. 2021, 121, 621–636. [Google Scholar] [CrossRef]
- Levitt, G.E.; Crayton, P.H.; Monroe, E.A.; Condrate, R.A. Forming methods for apatite prosthesis. J. Biomed. Mater. Res. 1969, 3, 683–685. [Google Scholar] [CrossRef]
- Fukuba, S.; Okada, M.; Nohara, K.; Iwata, T. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry: Current status and prospects. Materials 2021, 14, 1096. [Google Scholar] [CrossRef]
- Roca-Millan, E.; Jané-Salas, E.; Marí-Roig, A.; Jiménez-Guerra, Á.; Ortiz-García, I.; Velasco-Ortega, E.; López-López, J.; Monsalve-Guil, L. The application of beta-tricalcium phosphate in implant dentistry: A systematic evaluation of clinical studies. Materials 2022, 15, 655. [Google Scholar] [CrossRef]
- Easwer, H.V.; Rajeev, A.; Varma, H.K.; Vijayan, S.; Bhattacharya, R.N. Cosmetic and radiological outcome following the use of synthetic hydroxyapatite porous-dense bilayer burr-hole buttons. Acta Neurochir. 2007, 149, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Kashimura, H.; Ogasawara, K.; Kubo, Y.; Yoshida, K.; Sugawara, A.; Ogawa, A. A newly designed hydroxyapatite ceramic burr-hole button. Vasc. Health Risk Manag. 2010, 6, 105–108. [Google Scholar] [CrossRef]
- Jordan, D.R.; Gilberg, S.; Bawazeer, A. Coralline hydroxyapatite orbital implant (Bio-Eye): Experience with 158 patients. Ophthal. Plast. Reconstr. Surg. 2004, 20, 69–74. [Google Scholar] [CrossRef]
- Yoon, J.S.; Lew, H.; Kim, S.J.; Lee, S.Y. Exposure rate of hydroxyapatite orbital implants. A 15-year experience of 802 cases. Ophthalmology 2008, 115, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaee, Z.; Mazloumi, M.; Rajabi, T.M.; Khalilzadeh, O.; Kassaee, A.; Moghimi, S.; Eftekhar, H.; Goldberg, R.A. Comparison of the exposure rate of wrapped hydroxyapatite (Bio-Eye) versus unwrapped porous polyethylene (Medpor) orbital implants in enucleated patients. Ophthal. Plast. Reconstr. Surg. 2011, 27, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Z.; Bi, H.S.; Zhang, X. Effect of hydroxyapatite orbital implant for plastic surgery of eye in 52 cases. Int. Eye Sci. 2012, 12, 988–990. [Google Scholar]
- Baino, F.; Vitale-Brovarone, C. Bioceramics in ophthalmology. Acta Biomater. 2014, 10, 3372–3397. [Google Scholar] [CrossRef]
- Thiesmann, R.; Anagnostopoulos, A.; Stemplewitz, B. Long-term results of the compatibility of a coralline hydroxyapatite implant as eye replacement|Langzeitergebnisse zur Verträglichkeit eines korallinen Hydroxylapatitimplantats als Bulbusersatz. Ophthalmologe 2018, 115, 131–136. [Google Scholar] [CrossRef]
- Wehrs, R.E. Hearing results with incus and incus stapes prostheses of hydroxylapatite. Laryngoscope 1991, 101, 555–556. [Google Scholar] [CrossRef]
- Smith, J.; Gardner, E.; Dornhoffer, J.L. Hearing results with a hydroxylapatite/titanium bell partial ossicular replacement prosthesis. Laryngoscope 2002, 112, 1796–1799. [Google Scholar] [CrossRef]
- Doi, T.; Hosoda, Y.; Kaneko, T.; Munemoto, Y.; Kaneko, A.; Komeda, M.; Furukawa, M.; Kuriyama, H.; Kitajiri, M.; Tomoda, K.; et al. Hearing results for ossicular reconstruction using a cartilage-connecting hydroxyapatite prosthesis with a spearhead. Otol. Neurotol. 2007, 28, 1041–1044. [Google Scholar] [CrossRef]
- Thalgott, J.S.; Fritts, K.; Giuffre, J.M.; Timlin, M. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine 1999, 24, 1295–1299. [Google Scholar] [CrossRef]
- Mashoof, A.A.; Siddiqui, S.A.; Otero, M.; Tucci, J.J. Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. Orthopedics 2002, 25, 1073–1076. [Google Scholar] [CrossRef]
- Liu, W.Y.; Mo, J.W.; Gao, H.; Liu, H.L.; Wang, M.Y.; He, C.L.; Tang, W.; Ye, Y.J. Nano-hydroxyapatite artificial bone serves as a spacer for fusion with the cervical spine after bone grafting. Chin. J. Tissue Eng. Res. 2012, 16, 5327–5330. [Google Scholar]
- Litak, J.; Czyzewski, W.; Szymoniuk, M.; Pastuszak, B.; Litak, J.; Litak, G.; Grochowski, C.; Rahnama-Hezavah, M.; Kamieniak, P. Hydroxyapatite use in spine surgery–molecular and clinical aspect. Materials 2022, 15, 2906. [Google Scholar] [CrossRef]
- Silva, R.V.; Camilli, J.A.; Bertran, C.A.; Moreira, N.H. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int. J. Oral Maxillofac. Surg. 2005, 34, 178–184. [Google Scholar] [CrossRef]
- Damron, T.A. Use of 3D β-tricalcium phosphate (Vitoss®) scaffolds in repairing bone defects. Nanomedicine 2007, 2, 763–775. [Google Scholar] [CrossRef]
- Zaed, I.; Cardia, A.; Stefini, R. From reparative surgery to regenerative surgery: State of the art of porous hydroxyapatite in cranioplasty. Int. J. Mol. Sci. 2022, 23, 5434. [Google Scholar] [CrossRef]
- Alsahafi, R.A.; Mitwalli, H.A.; Balhaddad, A.A.; Weir, M.D.; Xu, H.H.K.; Melo, M.A.S. Regenerating craniofacial dental defects with calcium phosphate cement scaffolds: Current status and innovative scope review. Front. Dent. Med. 2021, 2, 743065. [Google Scholar] [CrossRef]
- Bass, L.S.; Smith, S.; Busso, M.; McClaren, M. Calcium hydroxylapatite (Radiesse) for treatment of nasolabial folds: Long-term safety and efficacy results. Aesthetic Surg. J. 2010, 30, 235–238. [Google Scholar] [CrossRef]
- Low, K.L.; Tan, S.H.; Zein, S.H.S.; Roether, J.A.; Mouriño, V.; Boccaccini, A.R. Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94B, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Daculsi, G.; Uzel, A.P.; Weiss, P.; Goyenvalle, E.; Aguado, E. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J. Mater. Sci. Mater. Med. 2010, 21, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Anada, T.; Honda, Y.; Kishimoto, K.N.; Miyatake, N.; Hosaka, M.; Imaizumi, H.; Itoi, E.; Suzuki, O. Cortical bone tissue response of injectable octacalcium phosphate-hyaluronic acid complexes. Key Eng. Mater. 2013; 529–530, 296–299. [Google Scholar]
- Pastorino, D.; Canal, C.; Ginebra, M.P. Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity-drug interaction. Acta Biomater. 2015, 12, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Moussi, H.; Weiss, P.; le Bideau, J.; Gautier, H.; Charbonnier, B. Injectable macromolecules-based calcium phosphate bone substitutes. Mater. Adv. 2022, 3, 6125–6141. [Google Scholar] [CrossRef]
- Bohner, M.; Baroud, G. Injectability of calcium phosphate pastes. Biomaterials 2005, 26, 1553–1563. [Google Scholar] [CrossRef]
- Laschke, M.W.; Witt, K.; Pohlemann, T.; Menger, M.D. Injectable nanocrystalline hydroxyapatite paste for bone substitution: In vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 494–505. [Google Scholar] [CrossRef]
- Lopez-Heredia, M.A.; Barnewitz, D.; Genzel, A.; Stiller, M.; Peters, F.; Huebner, W.D.; Stang, B.; Kuhr, A.; Knabe, C. In vivo osteogenesis assessment of a tricalcium phosphate paste and a tricalcium phosphate foam bone grafting materials. Key Eng. Mater. 2015, 631, 426–429. [Google Scholar] [CrossRef]
- Torres, P.M.C.; Gouveia, S.; Olhero, S.; Kaushal, A.; Ferreira, J.M.F. Injectability of calcium phosphate pastes: Effects of particle size and state of aggregation of β-tricalcium phosphate powders. Acta Biomater. 2015, 21, 204–216. [Google Scholar] [CrossRef]
- Salinas, A.J.; Esbrit, P.; Vallet-Regí, M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013, 1, 40–51. [Google Scholar] [CrossRef]
- ISO 13175-3:2012 Implants for Surgery—Calcium Phosphates—Part 3: Hydroxyapatite and Beta-Tricalcium Phosphate Bone Substitutes. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13175:-3:ed-1:v1:en (accessed on 24 June 2022).
- Chow, L.C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 2009, 28, 1–10. [Google Scholar] [CrossRef]
- Victor, S.P.; Kumar, T.S.S. Processing and properties of injectable porous apatitic cements. J. Ceram. Soc. Jpn. 2008, 116, 105–107. [Google Scholar] [CrossRef]
- Hesaraki, S.; Nemati, R.; Nosoudi, N. Preparation and characterisation of porous calcium phosphate bone cement as antibiotic carrier. Adv. Appl. Ceram. 2009, 108, 231–240. [Google Scholar] [CrossRef]
- Stulajterova, R.; Medvecky, L.; Giretova, M.; Sopcak, T. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate–monetite cement and in vitro osteoblast response. J. Mater. Sci. Mater. Med. 2015, 26, 183. [Google Scholar] [CrossRef]
- Bohner, M. Resorbable biomaterials as bone graft substitutes. Mater. Today 2010, 13, 24–30. [Google Scholar] [CrossRef]
- Moussa, H.; Jiang, W.; Alsheghri, A.; Mansour, A.; Hadad, A.E.; Pan, H.; Tang, R.; Song, J.; Vargas, J.; McKee, M.D.; et al. High strength brushite bioceramics obtained by selective regulation of crystal growth with chiral biomolecules. Acta Biomater. 2020, 106, 351–359. [Google Scholar] [CrossRef]
- Schröter, L.; Kaiser, F.; Stein, S.; Gbureck, U.; Ignatius, A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater. 2020, 117, 1–20. [Google Scholar] [CrossRef]
- Paital, S.R.; Dahotre, N.B. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. R 2009, 66, 1–70. [Google Scholar] [CrossRef]
- León, B.; Jansen, J.A. (Eds.) Thin Calcium Phosphate Coatings for Medical Implants; Springer: New York, NY, USA, 2009; p. 326. [Google Scholar]
- Dorozhkin, S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater. Sci. Eng. C 2015, 55, 272–326. [Google Scholar] [CrossRef]
- Kon, M.; Ishikawa, K.; Miyamoto, Y.; Asaoka, K. Development of calcium phosphate based functional gradient bioceramics. Biomaterials 1995, 16, 709–714. [Google Scholar] [CrossRef]
- Wong, L.H.; Tio, B.; Miao, X. Functionally graded tricalcium phosphate/fluoroapatite composites. Mater. Sci. Eng. C 2002, 20, 111–115. [Google Scholar] [CrossRef]
- Tampieri, A.; Celotti, G.; Sprio, S.; Delcogliano, A.; Franzese, S. Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 2001, 22, 1365–1370. [Google Scholar] [CrossRef]
- Werner, J.; Linner-Krcmar, B.; Friess, W.; Greil, P. Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials 2002, 23, 4285–4294. [Google Scholar] [CrossRef]
- Watanabe, T.; Fukuhara, T.; Izui, H.; Fukase, Y.; Okano, M. Properties of HAp/β-TCP functionally graded material by spark plasma sintering. Trans. Jpn. Soc. Mech. Eng. A 2009, 75, 612–618. [Google Scholar] [CrossRef]
- Bai, X.; Sandukas, S.; Appleford, M.R.; Ong, J.L.; Rabiei, A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009, 5, 3563–3572. [Google Scholar] [CrossRef]
- Tamura, A.; Asaoka, T.; Furukawa, K.; Ushida, T.; Tateishi, T. Application of α-TCP/HAp functionally graded porous beads for bone regenerative scaffold. Adv. Sci. Technol. 2013, 86, 63–69. [Google Scholar]
- Gasik, M.; Keski-Honkola, A.; Bilotsky, Y.; Friman, M. Development and optimisation of hydroxyapatite-β-TCP functionally gradated biomaterial. J. Mech. Behav. Biomed. Mater. 2014, 30, 266–273. [Google Scholar] [CrossRef]
- Zhou, C.; Deng, C.; Chen, X.; Zhao, X.; Chen, Y.; Fan, Y.; Zhang, X. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2015, 48, 1–11. [Google Scholar] [CrossRef]
- Marković, S.; Lukić, M.J.; Škapin, S.D.; Stojanović, B.; Uskoković, D. Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics. Ceram. Int. 2015, 41, 2654–2667. [Google Scholar] [CrossRef]
- Salimi, E. Functionally graded calcium phosphate bioceramics: An overview of preparation and properties. Ceram. Int. 2020, 46, 19664–19668. [Google Scholar] [CrossRef]
- Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524. [Google Scholar] [CrossRef]
- Jones, J.R.; Hench, L.L. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 2003, 7, 301–307. [Google Scholar] [CrossRef]
- Williams, D.F. To engineer is to create; the link between engineering and regeneration. Trends Biotech. 2006, 24, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Griffith, L.G.; Naughton, G. Tissue engineering–current challenges and expanding opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, V.M.; Caplan, A.I. Orthopedic Tissue Engineering Basic Science and Practice; Marcel Dekker: New York, NY, USA, 2004; p. 338. [Google Scholar]
- Bahraminasab, M.; Janmohammadi, M.; Arab, S.; Talebi, A.; Nooshabadi, V.T.; Koohsarian, P.; Nourbakhsh, M.S. Bone scaffolds: An incorporation of biomaterials, cells, and biofactors. ACS Biomater. Sci. Eng. 2021, 7, 5397–5431. [Google Scholar] [CrossRef]
- Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 2006, 3, 589–601. [Google Scholar] [CrossRef]
- Cima, L.G.; Langer, R. Engineering human tissue. Chem. Eng. Prog. 1993, 89, 46–54. [Google Scholar]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [Green Version]
- El-Ghannam, A. Bone reconstruction: From bioceramics to tissue engineering. Expert Rev. Med. Dev. 2005, 2, 87–101. [Google Scholar] [CrossRef]
- Kneser, U.; Schaefer, D.J.; Polykandriotis, E.; Horch, R.E. Tissue engineering of bone: The reconstructive surgeon’s point of view. J. Cell. Mol. Med. 2006, 10, 7–19. [Google Scholar] [CrossRef]
- Boyan, B.D.; Cohen, D.J.; Schwartz, Z. Bone tissue grafting and tissue engineering concepts. In Comprehensive Biomaterials II; Chapter 7.17.; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 298–313. [Google Scholar]
- Koons, G.L.; Diba, M.; Mikos, A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55. [Google Scholar] [CrossRef]
- Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008, 60, 184–198. [Google Scholar] [CrossRef]
- Yang, S.; Leong, K.F.; Du, Z.; Chua, C.K. The design of scaffolds for use in tissue engineering. Part, I. Traditional factors. Tissue Eng. 2001, 7, 679–689. [Google Scholar] [CrossRef]
- Ma, P.X.; Elisseeff, J. (Eds.) Scaffolding in Tissue Engineering; CRC Press: Boca Raton, FL, USA, 2006; p. 638. [Google Scholar]
- Alvarez-Urena, P.; Kim, J.; Bhattacharyya, S.; Ducheyne, P. Bioactive ceramics and bioactive ceramic composite-based scaffolds. In Comprehensive Biomaterials II; Chapter 6.1.; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 1–19. [Google Scholar]
- Baldwin, J.; Henkel, J.; Hutmacher, D.W. Engineering the organ bone. In Comprehensive Biomaterials II; Chapter 6.3.; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 54–74. [Google Scholar]
- Williams, D.F. The biomaterials conundrum in tissue engineering. Tissue Eng. A 2014, 20, 1129–1131. [Google Scholar] [CrossRef]
- Freed, L.E.; Guilak, F.; Guo, X.E.; Gray, M.L.; Tranquillo, R.; Holmes, J.W.; Radisic, M.; Sefton, M.V.; Kaplan, D.; Vunjak-Novakovic, G. Advanced tools for tissue engineering: Scaffolds, bioreactors, and signaling. Tissue Eng. 2006, 12, 3285–3305. [Google Scholar] [CrossRef]
- Gandaglia, A.; Bagno, A.; Naso, F.; Spina, M.; Gerosa, G. Cells, scaffolds and bioreactors for tissue-engineered heart valves: A journey from basic concepts to contemporary developmental innovations. Eur. J. Cardiothorac. Surg. 2011, 39, 523–531. [Google Scholar] [CrossRef]
- Hui, J.H.P.; Buhary, K.S.; Chowdhary, A. Implantation of orthobiologic, biodegradable scaffolds in osteochondral repair. Orthop. Clin. North Am. 2012, 43, 255–261. [Google Scholar] [CrossRef]
- Vanderleyden, E.; Mullens, S.; Luyten, J.; Dubruel, P. Implantable (bio)polymer coated titanium scaffolds: A review. Curr. Pharm. Des. 2012, 18, 2576–2590. [Google Scholar] [CrossRef]
- Service, R.F. Tissue engineers build new bone. Science 2000, 289, 1498–1500. [Google Scholar] [CrossRef]
- Deligianni, D.D.; Katsala, N.D.; Koutsoukos, P.G.; Missirlis, Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001, 22, 87–96. [Google Scholar] [CrossRef]
- Fini, M.; Giardino, R.; Borsari, V.; Torricelli, P.; Rimondini, L.; Giavaresi, G.; Aldini, N.N. In vitro behaviour of osteoblasts cultured on orthopaedic biomaterials with different surface roughness, uncoated and fluorohydroxyapatite-coated, relative to the in vivo osteointegration rate. Int. J. Artif. Organs 2003, 26, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Waters, M.S.; Farooque, T.M.; Young, M.F.; Simon, C.G. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials 2012, 33, 4022–4030. [Google Scholar] [CrossRef] [PubMed]
- Holthaus, M.G.; Treccani, L.; Rezwan, K. Osteoblast viability on hydroxyapatite with well-adjusted submicron and micron surface roughness as monitored by the proliferation reagent WST2-1. J. Biomater. Appl. 2013, 27, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Edreira, E.R.U.; Wolke, J.G.C.; Birgani, Z.T.; Habibovic, P.; Jansen, J.A.; Tampieri, A.; Marcacci, M.; Leeuwenburgh, S.C.G.; van den Beucken, J.J.J.P. Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics. Acta Biomater. 2014, 10, 661–669. [Google Scholar] [CrossRef]
- Sadowska, J.M.; Wei, F.; Guo, J.; Guillem-Marti, J.; Ginebra, M.P.; Xiao, Y. Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 2018, 181, 318–332. [Google Scholar] [CrossRef]
- Ebaretonbofa, E.; Evans, J.R. High porosity hydroxyapatite foam scaffolds for bone substitute. J. Porous Mater. 2002, 9, 257–263. [Google Scholar] [CrossRef]
- Hing, K.A. Bioceramic bone graft substitutes: Influence of porosity and chemistry. Int. J. Appl. Ceram. Technol. 2005, 2, 184–199. [Google Scholar] [CrossRef]
- Malmström, J.; Adolfsson, E.; Arvidsson, A.; Thomsen, P. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Clin. Implant. Dent. Rel. Res. 2007, 9, 79–88. [Google Scholar]
- Lew, K.S.; Othman, R.; Ishikawa, K.; Yeoh, F.Y. Macroporous bioceramics: A remarkable material for bone regeneration. J. Biomater. Appl. 2012, 27, 345–358. [Google Scholar] [CrossRef]
- Ren, L.M.; Todo, M.; Arahira, T.; Yoshikawa, H.; Myoui, A. A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics. Appl. Surf. Sci. 2012, 262, 81–88. [Google Scholar] [CrossRef]
- Guda, T.; Walker, J.A.; Singleton, B.; Hernandez, J.; Oh, D.S.; Appleford, M.R.; Ong, J.L.; Wenke, J.C. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J. Biomater. Appl. 2014, 28, 1016–1027. [Google Scholar] [CrossRef]
- Shao, R.; Quan, R.; Zhang, L.; Wei, X.; Yang, D.; Xie, S. Porous hydroxyapatite bioceramics in bone tissue engineering: Current uses and perspectives. J. Ceram. Soc. Jpn. 2015, 123, 17–20. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, F.; Ho, S.T.; Woodruff, M.A.; Lim, T.M.; Hutmacher, D.W. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 2007, 28, 814–824. [Google Scholar] [CrossRef]
- Vitale-Brovarone, C.; Baino, F.; Verné, E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J. Mater. Sci. Mater. Med. 2009, 20, 643–653. [Google Scholar] [CrossRef]
- Stevens, M.M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11, 18–25. [Google Scholar] [CrossRef]
- Artzi, Z.; Weinreb, M.; Givol, N.; Rohrer, M.D.; Nemcovsky, C.E.; Prasad, H.S.; Tal, H. Biomaterial resorbability and healing site morphology of inorganic bovine bone and beta tricalcium phosphate in the canine: A 24-month longitudinal histologic study and morphometric analysis. Int. J. Oral Max. Impl. 2004, 19, 357–368. [Google Scholar]
- Burg, K.J.L.; Porter, S.; Kellam, J.F. Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21, 2347–2359. [Google Scholar] [CrossRef]
- Huebsch, N.; Mooney, D.J. Inspiration and application in the evolution of biomaterials. Nature 2009, 462, 426–432. [Google Scholar] [CrossRef]
- Ajaal, T.T.; Smith, R.W. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts. J. Mater. Process. Technol. 2009, 209, 1521–1532. [Google Scholar] [CrossRef]
- Daculsi, G. Smart scaffolds: The future of bioceramic. J. Mater. Sci. Mater. Med. 2015, 26, 154. [Google Scholar] [CrossRef]
- Daculsi, G.; Miramond, T.; Borget, P.; Baroth, S. Smart calcium phosphate bioceramic scaffold for bone tissue engineering. Key Eng. Mater. 2013, 529–530, 19–23. [Google Scholar] [CrossRef]
- Bohner, M.; Loosli, Y.; Baroud, G.; Lacroix, D. Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 2011, 7, 478–484. [Google Scholar] [CrossRef]
- Peppas, N.A.; Langer, R. New challenges in biomaterials. Science 1994, 263, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Biomaterials: A forecast for the future. Biomaterials 1998, 19, 1419–1423. [Google Scholar] [CrossRef]
- Barrère, F.; Mahmood, T.A.; de Groot, K.; van Blitterswijk, C.A. Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater. Sci. Eng. R 2008, 59, 38–71. [Google Scholar] [CrossRef]
- Liu, H.; Webster, T.J. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2007, 28, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Duan, Y.; Markovic, B.; Barbara, J.; Howlett, C.R.; Zhang, X.; Zreiqat, H. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 2004, 25, 2949–2956. [Google Scholar] [CrossRef] [PubMed]
- Samavedi, S.; Whittington, A.R.; Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013, 9, 8037–8045. [Google Scholar] [CrossRef]
- Matsumoto, T.; Okazaki, M.; Nakahira, A.; Sasaki, J.; Egusa, H.; Sohmura, T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr. Med. Chem. 2007, 14, 2726–2733. [Google Scholar] [CrossRef]
- Chai, Y.C.; Carlier, A.; Bolander, J.; Roberts, S.J.; Geris, L.; Schrooten, J.; van Oosterwyck, H.; Luyten, F.P. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 2012, 8, 3876–3887. [Google Scholar] [CrossRef]
- Denry, I.; Kuhn, L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent. Mater. 2016, 32, 43–53. [Google Scholar] [CrossRef]
- Lodoso-Torrecilla, I.; Gunnewiek, R.K.; Grosfeld, E.C.; de Vries, R.B.M.; Habibović, P.; Jansen, J.A.; van den Beucken, J.J.J.P. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: A systematic review and meta-analysis of animal studies. Biomater. Sci. 2020, 8, 4792–4809. [Google Scholar] [CrossRef]
- Ishikawa, K.; Miyamoto, Y.; Tsuchiya, A.; Hayashi, K.; Tsuru, K.; Ohe, G. Physical and histological comparison of hydroxyapatite, carbonate apatite, and β-tricalcium phosphate bone substitutes. Materials 2018, 11, 1993. [Google Scholar] [CrossRef]
- Traykova, T.; Aparicio, C.; Ginebra, M.P.; Planell, J.A. Bioceramics as nanomaterials. Nanomedicine 2006, 1, 91–106. [Google Scholar] [CrossRef]
- Kalita, S.J.; Bhardwaj, A.; Bhatt, H.A. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C 2007, 27, 441–449. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Nanometric calcium orthophosphates (CaPO4): Preparation, properties and biomedical applications. Adv. Nano-Bio. Mater. Dev. 2019, 3, 422–513. [Google Scholar]
- Šupová, M. Isolation and preparation of nanoscale bioapatites from natural sources: A review. J. Nanosci. Nanotechnol. 2014, 14, 546–563. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Sun, W.B.; Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 5, 40. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Synthetic amorphous calcium phosphates (ACPs): Preparation, structure, properties, and biomedical applications. Biomater. Sci. 2021, 9, 7748–7798. [Google Scholar] [CrossRef]
- Venkatesan, J.; Kim, S.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering–A review. J. Biomed. Nanotechnol. 2014, 10, 3124–3140. [Google Scholar] [CrossRef]
- Holzmeister, I.; Schamel, M.; Groll, J.; Gbureck, U.; Vorndran, E. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomater. 2018, 74, 17–35. [Google Scholar] [CrossRef]
- Wu, Y.; Hench, L.L.; Du, J.; Choy, K.L.; Guo, J. Preparation of hydroxyapatite fibers by electrospinning technique. J. Am. Ceram. Soc. 2004, 87, 1988–1991. [Google Scholar] [CrossRef]
- Ramanan, S.R.; Venkatesh, R. A study of hydroxyapatite fibers prepared via sol-gel route. Mater. Lett. 2004, 58, 3320–3323. [Google Scholar] [CrossRef]
- Aizawa, M.; Porter, A.E.; Best, S.M.; Bonfield, W. Ultrastructural observation of single-crystal apatite fibres. Biomaterials 2005, 26, 3427–3433. [Google Scholar] [CrossRef]
- Park, Y.M.; Ryu, S.C.; Yoon, S.Y.; Stevens, R.; Park, H.C. Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite. Mater. Chem. Phys. 2008, 109, 440–447. [Google Scholar] [CrossRef]
- Aizawa, M.; Ueno, H.; Itatani, K.; Okada, I. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. J. Eur. Ceram. Soc. 2006, 26, 501–507. [Google Scholar] [CrossRef]
- Seo, D.S.; Lee, J.K. Synthesis of hydroxyapatite whiskers through dissolution-reprecipitation process using EDTA. J. Cryst. Growth 2008, 310, 2162–2167. [Google Scholar] [CrossRef]
- Tas, A.C. Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions at 90°C. J. Am. Ceram. Soc. 2007, 90, 2358–2362. [Google Scholar] [CrossRef]
- Neira, I.S.; Guitián, F.; Taniguchi, T.; Watanabe, T.; Yoshimura, M. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology. J. Mater. Sci. 2008, 43, 2171–2178. [Google Scholar] [CrossRef]
- Yang, H.Y.; Yang, S.F.; Chi, X.P.; Evans, J.R.G.; Thompson, I.; Cook, R.J.; Robinson, P. Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds. J. Eur. Ceram. Soc. 2008, 28, 159–167. [Google Scholar] [CrossRef]
- Junginger, M.; Kübel, C.; Schacher, F.H.; Müller, A.H.E.; Taubert, A. Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers. RSC Adv. 2013, 3, 11301–11308. [Google Scholar] [CrossRef]
- Cui, Y.S.; Yan, T.T.; Wu, X.P.; Chen, Q.H. Preparation and characterization of hydroxyapatite whiskers. Appl. Mech. Mater. 2013, 389, 21–24. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.J. Hydroxyapatite nanofibers fabricated through electrospinning and sol-gel process. Ceram. Int. 2014, 40, 3361–3369. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Q. Synthesis of nanospherical and ultralong fibrous hydroxyapatite and reinforcement of biodegradable chitosan/hydroxyapatite composite. Modern Phys. Lett. B 2009, 23, 3967–3976. [Google Scholar] [CrossRef]
- Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Premalal, E.V.A.; Herath, H.M.T.U.; Mahalingam, S.; Edirisinghe, M.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Mater. Sci. Eng. C 2014, 42, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Wang, M.; Cheung, W.L.; Guo, B.C.; Jia, D.M. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 2008, 19, 103–110. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, J.H.; Park, E.K.; Kim, H.J.; Park, I.K.; Shin, H.Y.; Shin, H.I. Fully interconnected globular porous biphasic calcium phosphate ceramic scaffold facilitates osteogenic repair. Key Eng. Mater, 2008; 361–363, 119–122. [Google Scholar]
- Kawai, T.; Sekikawa, H.; Unuma, H. Preparation of hollow hydroxyapatite microspheres utilizing poly(divinylbenzene) as a template. J. Ceram. Soc. Jpn. 2009, 117, 340–343. [Google Scholar] [CrossRef]
- Cho, J.S.; Ko, Y.N.; Koo, H.Y.; Kang, Y.C. Synthesis of nano-sized biphasic calcium phosphate ceramics with spherical shape by flame spray pyrolysis. J. Mater. Sci. Mater. Med. 2010, 21, 1143–1149. [Google Scholar] [CrossRef]
- Ye, F.; Guo, H.; Zhang, H.; He, X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 2010, 6, 2212–2218. [Google Scholar] [CrossRef]
- Itatani, K.; Tsugawa, T.; Umeda, T.; Musha, Y.; Davies, I.J.; Koda, S. Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique. J. Ceram. Soc. Jpn. 2010, 118, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Fu, H.; Rahaman, M.N.; Liu, Y.; Bal, B.S. Hollow hydroxyapatite microspheres: A novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration. Acta Biomater. 2013, 9, 8374–8383. [Google Scholar] [CrossRef]
- Rahaman, M.N.; Fu, H.; Xiao, W.; Liu, Y. Bioactive ceramic implants composed of hollow hydroxyapatite microspheres for bone regeneration. Ceram. Eng. Sci. Proc. 2014, 34, 67–76. [Google Scholar]
- Ito, N.; Kamitakahara, M.; Ioku, K. Preparation and evaluation of spherical porous granules of octacalcium phosphate/hydroxyapatite as drug carriers in bone cancer treatment. Mater. Lett. 2014, 120, 94–96. [Google Scholar] [CrossRef]
- Li, Z.; Wen, T.; Su, Y.; Wei, X.; He, C.; Wang, D. Hollow hydroxyapatite spheres fabrication with three-dimensional hydrogel template. CrystEngComm 2014, 16, 4202–4209. [Google Scholar] [CrossRef]
- Kovach, I.; Kosmella, S.; Prietzel, C.; Bagdahn, C.; Koetz, J. Nano-porous calcium phosphate balls. Colloid Surf. B 2015, 132, 246–252. [Google Scholar] [CrossRef]
- He, F.; Tian, Y.; Fang, X.; Xu, Y.; Ye, J. Porous calcium phosphate composite bioceramic beads. Ceram. Int. 2018, 44, 13430–13433. [Google Scholar] [CrossRef]
- Hettich, G.; Schierjott, R.A.; Epple, M.; Gbureck, U.; Heinemann, S.; Mozaffari-Jovein, H.; Grupp, T.M. Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity. Materials 2019, 12, 3471. [Google Scholar] [CrossRef]
- Chandanshive, B.; Dyondi, D.; Ajgaonkar, V.R.; Banerjee, R.; Khushalani, D. Biocompatible calcium phosphate based tubes. J. Mater. Chem. 2010, 20, 6923–6928. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Takahashi, H.; Ioku, K. Tubular hydroxyapatite formation through a hydrothermal process from α-tricalcium phosphate with anatase. J. Mater. Sci. 2012, 47, 4194–4199. [Google Scholar] [CrossRef]
- Ustundag, C.B.; Kaya, F.; Kamitakahara, M.; Kaya, C.; Ioku, K. Production of tubular porous hydroxyapatite using electrophoretic deposition. J. Ceram. Soc. Jpn. 2012, 120, 569–573. [Google Scholar] [CrossRef]
- Li, C.; Ge, X.; Li, G.; Lu, H.; Ding, R. In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect. Mater. Sci. Eng. C 2014, 45, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Zhu, Y.J.; Chen, F.; Sun, T.W. Biocompatible, ultralight, strong hydroxyapatite networks based on hydroxyapatite microtubes with excellent permeability and ultralow thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 7918–7928. [Google Scholar]
- Zhang, Y.G.; Zhu, Y.J.; Xiong, Z.C.; Wu, J.; Chen, F. Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil-water separation. ACS Appl. Mater. Interfaces 2018, 10, 13019–13027. [Google Scholar] [CrossRef]
- Dadhich, P.; Dhara, S. Calcium phosphate flowers: A bone filler substitute. Mater. Today 2017, 20, 657–658. [Google Scholar] [CrossRef]
- Nonoyama, T.; Kinoshita, T.; Higuchi, M.; Nagata, K.; Tanaka, M.; Kamada, M.; Sato, K.; Kato, K. Arrangement techniques of proteins and cells using amorphous calcium phosphate nanofiber scaffolds. Appl. Surf. Sci. 2012, 262, 8–12. [Google Scholar] [CrossRef]
- Galea, L.G.; Bohner, M.; Lemaître, J.; Kohler, T.; Müller, R. Bone substitute: Transforming β-tricalcium phosphate porous scaffolds into monetite. Biomaterials 2008, 29, 3400–3407. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, F.; Torres, J.; Gbureck, U.; Lopez-Cabarcos, E.; Bassett, D.C.; Alkhraisat, M.H.; Barralet, J.E. Craniofacial vertical bone augmentation: A comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit. Biomaterials 2009, 30, 6318–6326. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Z.; Drager, J.; Zhang, Y.L.; Abdallah, M.N.; Tamimi, F.; Barralet, J. Controlling bone graft substitute microstructure to improve bone augmentation. Adv. Healthc. Mater. 2016, 5, 1646–1655. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Bigham-Sadegh, A. Dicalcium phosphate anhydrous: An appropriate bioceramic in regeneration of critical-sized radial bone defects in rats. Calcif. Tissue Int. 2017, 101, 530–544. [Google Scholar] [CrossRef]
- Sugiura, Y.; Ishikawa, K. Fabrication of pure octacalcium phosphate blocks from dicalcium hydrogen phosphate dihydrate blocks via a dissolution–precipitation reaction in a basic solution. Mater. Lett. 2019, 239, 143–146. [Google Scholar] [CrossRef]
- Kim, J.S.; Jang, T.S.; Kim, S.Y.; Lee, W.P. Octacalcium phosphate bone substitute (Bontree®): From basic research to clinical case study. Appl. Sci. 2021, 11, 7921. [Google Scholar] [CrossRef]
- Sohier, J.; Daculsi, G.; Sourice, S.; de Groot, K.; Layrolle, P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J. Biomed. Mater. Res. A 2010, 92A, 1105–1114. [Google Scholar] [CrossRef]
- Stähli, C.; Bohner, M.; Bashoor-Zadeh, M.; Doebelin, N.; Baroud, G. Aqueous impregnation of porous β-tricalcium phosphate scaffolds. Acta Biomater. 2010, 6, 2760–2772. [Google Scholar] [CrossRef]
- Lin, K.; Chen, L.; Qu, H.; Lu, J.; Chang, J. Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures. Ceram. Int. 2011, 37, 2397–2403. [Google Scholar] [CrossRef]
- Wójtowicz, J.; Leszczyńska, J.; Chróścicka, A.; Ślósarczyk, A.; Paszkiewicz, Z.; Zima, A.; Rozniatowski, K.; Jeleń, P.; Lewandowska-Szumieł, M. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering. Bio-Med. Mater. Eng. 2014, 24, 1609–1623. [Google Scholar] [CrossRef]
- Simon, J.L.; Michna, S.; Lewis, J.A.; Rekow, E.D.; Thompson, V.P.; Smay, J.E.; Yampolsky, A.; Parsons, J.R.; Ricci, J.L. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. A 2007, 83A, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Myoui, A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs 2005, 8, 131–136. [Google Scholar] [CrossRef]
- Min, S.H.; Jin, H.H.; Park, H.Y.; Park, I.M.; Park, H.C.; Yoon, S.Y. Preparation of porous hydroxyapatite scaffolds for bone tissue engineering. Mater. Sci. Forum, 2006; 510–511, 754–757. [Google Scholar]
- Deville, S.; Saiz, E.; Nalla, R.K.; Tomsia, A.P. Strong biomimetic hydroxyapatite scaffolds. Adv. Sci. Technol. 2006, 49, 148–152. [Google Scholar]
- Buckley, C.T.; O’Kelly, K.U. Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93B, 459–467. [Google Scholar] [CrossRef]
- Ramay, H.R.R.; Zhang, M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 2004, 25, 5171–5180. [Google Scholar] [CrossRef]
- Chen, G.; Li, W.; Zhao, B.; Sun, K. A novel biphasic bone scaffold: β-calcium phosphate and amorphous calcium polyphosphate. J. Am. Ceram. Soc. 2009, 92, 945–948. [Google Scholar] [CrossRef]
- Guo, D.; Xu, K.; Han, Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J. Biomed. Mater. Res. A 2009, 88A, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Sarin, P.; Lee, S.J.; Apostolov, Z.D.; Kriven, W.M. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. J. Am. Ceram. Soc. 2011, 94, 2362–2370. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, K.L.; Chun, H.H.; Kim, T.W.; Park, H.C.; Yoon, S.Y. In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceram. Int. 2014, 40, 8293–8300. [Google Scholar] [CrossRef]
- Marques, C.F.; Perera, F.H.; Marote, A.; Ferreira, S.; Vieira, S.I.; Olhero, S.; Miranda, P.; Ferreira, J.M.F. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. J. Eur. Ceram. Soc. 2017, 37, 359–368. [Google Scholar] [CrossRef]
- Furuichi, K.; Oaki, Y.; Ichimiya, H.; Komotori, J.; Imai, H. Preparation of hierarchically organized calcium phosphate-organic polymer composites by calcification of hydrogel. Sci. Technol. Adv. Mater. 2006, 7, 219–225. [Google Scholar] [CrossRef]
- Wei, J.; Jia, J.; Wu, F.; Wei, S.; Zhou, H.; Zhang, H.; Shin, J.W.; Liu, C. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials 2010, 31, 1260–1269. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, C.; Xiao, Z.; Fan, Y.; Zhu, X.; Sun, Y.; Zhang, X. Fabrication and characterization of porous 3D whisker-covered calcium phosphate scaffolds. Mater. Lett. 2014, 128, 179–182. [Google Scholar] [CrossRef]
- Zhao, R.; Shang, T.; Yuan, B.; Yang, X.; Zhu, X.; Zhang, X. Osteoporotic bone recovery by a bamboo-structured bioceramic with controlled release of hydroxyapatite nanoparticles. Bioact. Mater. 2022, 17, 379–393. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Lu, B.Q. Deformable biomaterials based on ultralong hydroxyapatite nanowires. ACS Biomater. Sci. Eng. 2019, 5, 4951–4961. [Google Scholar] [CrossRef]
- Huang, G.J.; Yu, H.P.; Wang, X.L.; Ning, B.B.; Gao, J.; Shi, Y.Q.; Zhu, Y.J.; Duan, J.L. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. J. Mater. Chem. B 2021, 9, 1277–1287, Erratum J. Mater. Chem. B 2021, 9, 7566. [Google Scholar] [CrossRef]
- Gbureck, U.; Grolms, O.; Barralet, J.E.; Grover, L.M.; Thull, R. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 2003, 24, 4123–4131. [Google Scholar] [CrossRef]
- Gbureck, U.; Barralet, J.E.; Hofmann, M.; Thull, R. Mechanical activation of tetracalcium phosphate. J. Am. Ceram. Soc. 2004, 87, 311–313. [Google Scholar] [CrossRef]
- Bohner, M.; Luginbühl, R.; Reber, C.; Doebelin, N.; Baroud, G.; Conforto, E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater. 2009, 5, 3524–3535. [Google Scholar] [CrossRef]
- Hagio, T.; Tanase, T.; Akiyama, J.; Iwai, K.; Asai, S. Formation and biological affinity evaluation of crystallographically aligned hydroxyapatite. J. Ceram. Soc. Jpn. 2008, 116, 79–82. [Google Scholar] [CrossRef]
- Blawas, A.S.; Reichert, W.M. Protein patterning. Biomaterials 1998, 19, 595–609. [Google Scholar] [CrossRef]
- Kasai, T.; Sato, K.; Kanematsu, Y.; Shikimori, M.; Kanematsu, N.; Doi, Y. Bone tissue engineering using porous carbonate apatite and bone marrow cells. J. Craniofac. Surg. 2010, 21, 473–478. [Google Scholar] [CrossRef]
- Wang, L.; Fan, H.; Zhang, Z.Y.; Lou, A.J.; Pei, G.X.; Jiang, S.; Mu, T.W.; Qin, J.J.; Chen, S.Y.; Jin, D. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 2010, 31, 9452–9461. [Google Scholar] [CrossRef]
- Wijnhoven, I.B.; Vallejos, R.; Santibanez, J.F.; Millán, C.; Vivanco, J.F. Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics. Sci. Rep. 2020, 10, 16493. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, S.; Izquierdo-Barba, I.; Arcos, D.; Vallet-Regí, M. In vitro evaluation of potential calcium phosphate scaffolds for tissue engineering. Tissue Eng. 2006, 12, 279–290. [Google Scholar] [CrossRef]
- Meganck, J.A.; Baumann, M.J.; Case, E.D.; McCabe, L.R.; Allar, J.N. Biaxial flexure testing of calcium phosphate bioceramics for use in tissue engineering. J. Biomed. Mater. Res. A 2005, 72A, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Case, E.D.; Smith, I.O.; Baumann, M.J. Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater. Sci. Eng. A 2005, 390, 246–254. [Google Scholar] [CrossRef]
- Tripathi, G.; Basu, B. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceram. Int. 2012, 38, 341–349. [Google Scholar] [CrossRef]
- Sibilla, P.; Sereni, A.; Aguiari, G.; Banzi, M.; Manzati, E.; Mischiati, C.; Trombelli, L.; del Senno, L. Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J. Dent. Res. 2006, 85, 354–358. [Google Scholar] [CrossRef]
- Verron, E.; Bouler, J.M. Calcium phosphate ceramics as bone drug-combined devices. Key Eng. Mater. 2010, 441, 181–201. [Google Scholar] [CrossRef]
- Kolmas, J.; Krukowski, S.; Laskus, A.; Jurkitewicz, M. Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 2016, 42, 2472–2487. [Google Scholar] [CrossRef]
- Parent, M.; Baradari, H.; Champion, E.; Damia, C.; Viana-Trecant, M. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance. J. Control. Release 2017, 252, 1–17. [Google Scholar] [CrossRef]
- Mondal, S.; Pal, U. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. J. Drug Deliv. Sci. Tec. 2019, 53, 101131. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, D.; Sun, R.; Shang, S.; Wang, H.; Yang, Y.; Wang, L.; Liu, X.; Sun, T.; Chen, K. Adsorption behavior of drugs on hydroxyapatite with different morphologies: A combined experimental and molecular dynamics simulation study. Ceram. Int. 2019, 45, 19522–19527, Correction Ceram. Int. 2020, 46, 27909. [Google Scholar] [CrossRef]
- Rapoport, A.; Borovikova, D.; Kokina, A.; Patmalnieks, A.; Polyak, N.; Pavlovska, I.; Mezinskis, G.; Dekhtyar, Y. Immobilisation of yeast cells on the surface of hydroxyapatite ceramics. Process. Biochem. 2011, 46, 665–670. [Google Scholar] [CrossRef]
- Ghiasi, B.; Sefidbakht, Y.; Mozaffari-Jovin, S.; Gharehcheloo, B.; Mehrarya, M.; Khodadadi, A.; Rezaei, M.; Siadat, S.O.R.; Uskoković, V. Hydroxyapatite as a biomaterial–a gift that keeps on giving. Drug Dev. Ind. Pharm. 2020, 46, 1035–1062. [Google Scholar] [CrossRef]
- Mastrogiacomo, M.; Muraglia, A.; Komlev, V.; Peyrin, F.; Rustichelli, F.; Crovace, A.; Cancedda, R. Tissue engineering of bone: Search for a better scaffold. Orthod. Craniofac. Res. 2005, 8, 277–284. [Google Scholar] [CrossRef]
- Quarto, R.; Mastrogiacomo, M.; Cancedda, R.; Kutepov, S.M.; Mukhachev, V.; Lavroukov, A.; Kon, E.; Marcacci, M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 2001, 344, 385–386. [Google Scholar] [CrossRef]
- Vacanti, C.A.; Bonassar, L.J.; Vacanti, M.P.; Shufflebarger, J. Replacement of an avulsed phalanx with tissue-engineered bone. N. Engl. J. Med. 2001, 344, 1511–1514. [Google Scholar] [CrossRef]
- Morishita, T.; Honoki, K.; Ohgushi, H.; Kotobuki, N.; Matsushima, A.; Takakura, Y. Tissue engineering approach to the treatment of bone tumors: Three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif. Organs 2006, 30, 115–118. [Google Scholar] [CrossRef]
- Eniwumide, J.O.; Yuan, H.; Cartmell, S.H.; Meijer, G.J.; de Bruijn, J.D. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded) allograft. Eur. Cell Mater. 2007, 14, 30–39. [Google Scholar] [CrossRef]
- Zuolin, J.; Hong, Q.; Jiali, T. Dental follicle cells combined with beta-tricalcium phosphate ceramic: A novel available therapeutic strategy to restore periodontal defects. Med. Hypotheses 2010, 75, 669–670. [Google Scholar] [CrossRef]
- Ge, S.; Zhao, N.; Wang, L.; Yu, M.; Liu, H.; Song, A.; Huang, J.; Wang, G.; Yang, P. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold. Int. J. Nanomed. 2012, 7, 5405–5414. [Google Scholar] [CrossRef]
- Farré-Guasch, E.; Bravenboer, N.; Helder, M.N.; Schulten, E.A.J.M.; Ten Bruggenkate, C.M.; Klein-Nulend, J. Blood vessel formation and bone regeneration potential of the stromal vascular fraction seeded on a calcium phosphate scaffold in the human maxillary sinus floor elevation model. Materials 2018, 11, 161. [Google Scholar] [CrossRef]
- Tanaka, T.; Komaki, H.; Chazono, M.; Kitasato, S.; Kakuta, A.; Akiyama, S.; Marumo, K. Basic research and clinical application of beta-tricalcium phosphate (β-TCP).|Recherche fondamentale et application clinique du bêta-tricalcium phosphate (β-TCP). Morphologie 2017, 101, 164–172. [Google Scholar] [CrossRef]
- Franch, J.; Díaz-Bertrana, C.; Lafuente, P.; Fontecha, P.; Durall, I. Beta-tricalcium phosphate as a synthetic cancellous bone graft in veterinary orthopaedics: A retrospective study of 13 clinical cases. Vet. Comp. Orthop. Traumatol. 2006, 19, 196–204. [Google Scholar]
- Vertenten, G.; Gasthuys, F.; Cornelissen, M.; Schacht, E.; Vlaminck, L. Enhancing bone healing and regeneration: Present and future perspectives in veterinary orthopaedics. Vet. Comp. Orthop. Traumatol. 2010, 23, 153–162. [Google Scholar]
- Freidlin, L.K.; Sharf, V.Z. Two paths for the dehydration of 1,4-butandiol to divinyl with a tricalcium phosphate catalyst. Bull. Acad. Sci. USSR Div. Chem. Sci. 1960, 9, 1577–1579. [Google Scholar] [CrossRef]
- Bett, J.A.S.; Christner, L.G.; Hall, W.K. Studies of the hydrogen held by solids. XII. Hydroxyapatite catalysts. J. Am. Chem. Soc. 1967, 89, 5535–5541. [Google Scholar] [CrossRef]
- Monma, H. Catalytic behavior of calcium phosphates for decompositions of 2-propanol and ethanol. J. Catal. 1982, 75, 200–203. [Google Scholar] [CrossRef]
- Tsuchida, T.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind. Eng. Chem. Res. 2008, 47, 1443–1452. [Google Scholar] [CrossRef]
- Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 2008, 259, 183–189. [Google Scholar] [CrossRef]
- Xu, J.; White, T.; Li, P.; He, C.; Han, Y.F. Hydroxyapatite foam as a catalyst for formaldehyde combustion at room temperature. J. Am. Chem. Soc. 2010, 132, 13172–13173. [Google Scholar] [CrossRef] [PubMed]
- Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Which is the actual catalyst: Chiral phosphoric acid or chiral calcium phosphate? Angew. Chem. Int. Ed. Engl. 2010, 49, 3823–3826. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, H.; Zhao, X.; Liu, Y.; Chen, H.; Li, X. Application of hydroxyapatite as catalyst and catalyst carrier. Prog. Chem. 2011, 23, 687–694. [Google Scholar]
- Gruselle, M.; Kanger, T.; Thouvenot, R.; Flambard, A.; Kriis, K.; Mikli, V.; Traksmaa, R.; Maaten, B.; Tõnsuaadu, K. Calcium hydroxyapatites as efficient catalysts for the Michael C–C bond formation. ACS Catal. 2011, 1, 1729–1733. [Google Scholar] [CrossRef]
- Stošić, D.; Bennici, S.; Sirotin, S.; Calais, C.; Couturier, J.L.; Dubois, J.L.; Travert, A.; Auroux, A. Glycerol dehydration over calcium phosphate catalysts: Effect of acidic-basic features on catalytic performance. Appl. Catal. A 2012, 447–448, 124–134. [Google Scholar] [CrossRef]
- Ghantani, V.C.; Lomate, S.T.; Dongare, M.K.; Umbarkar, S.B. Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts. Green Chem. 2013, 15, 1211–1217. [Google Scholar] [CrossRef]
- Chen, G.; Shan, R.; Shi, J.; Liu, C.; Yan, B. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energ. Convers. Manage. 2015, 98, 463–469. [Google Scholar] [CrossRef]
- Gruselle, M. Apatites: A new family of catalysts in organic synthesis. J. Organomet. Chem. 2015, 793, 93–101. [Google Scholar] [CrossRef]
- Urist, M.R.; Huo, Y.K.; Brownell, A.G.; Hohl, W.M.; Buyske, J.; Lietze, A.; Tempst, P.; Hunkapiller, M.; de Lange, R.J. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc. Natl. Acad. Sci. USA 1984, 81, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, T. Hydroxyapatite as a liquid chromatographic packing. J. Chromatogr. 1991, 544, 147–184. [Google Scholar] [CrossRef]
- Kuiper, M.; Sanches, R.M.; Walford, J.A.; Slater, N.K.H. Purification of a functional gene therapy vector derived from moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol. Bioeng. 2002, 80, 445–453. [Google Scholar] [CrossRef]
- Jungbauer, A.; Hahn, R.; Deinhofer, K.; Luo, P. Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography. Biotechnol. Bioeng. 2004, 87, 364–375. [Google Scholar] [CrossRef]
- Wensel, D.L.; Kelley, B.D.; Coffman, J.L. High-throughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol. Bioeng. 2008, 100, 839–854. [Google Scholar] [CrossRef]
- Hilbrig, F.; Freitag, R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol. J. 2012, 7, 90–102. [Google Scholar] [CrossRef]
- Cummings, L.J.; Frost, R.G.; Snyder, M.A. Monoclonal antibody purification by ceramic hydroxyapatite chromatography. Method Mol. Biol. 2014, 1131, 241–251. [Google Scholar]
- Nagai, M.; Nishino, T.; Saeki, T. A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sens. Actuator 1988, 15, 145–151. [Google Scholar] [CrossRef]
- Petrucelli, G.C.; Kawachi, E.Y.; Kubota, L.T.; Bertran, C.A. Hydroxyapatite-based electrode: A new sensor for phosphate. Anal. Commun. 1996, 33, 227–229. [Google Scholar] [CrossRef]
- Tagaya, M.; Ikoma, T.; Hanagata, N.; Chakarov, D.; Kasemo, B.; Tanaka, J. Reusable hydroxyapatite nanocrystal sensors for protein adsorption. Sci. Technol. Adv. Mater. 2010, 11, 045002. [Google Scholar] [CrossRef]
- Khairnar, R.S.; Mene, R.U.; Munde, S.G.; Mahabole, M.P. Nano-hydroxyapatite thick film gas sensors. AIP Conf. Proc. 2011, 1415, 189–192. [Google Scholar]
- López, M.S.P.; Redondo-Gómez, E.; López-Ruiz, B. Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples. Talanta 2017, 175, 209–216. [Google Scholar] [CrossRef]
- Nijhawan, A.; Butler, E.C.; Sabatini, D.A. Hydroxyapatite ceramic adsorbents: Effect of pore size, regeneration, and selectivity for fluoride. J. Environ. Eng. 2018, 144, 04018117. [Google Scholar] [CrossRef]
- Ibrahim, M.; Labaki, M.; Giraudon, J.M.; Lamonier, J.F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J. Hazard. Mater. 2020, 383, 121139. [Google Scholar] [CrossRef]
- Hench, L.L.; Wilson, J. Surface-active biomaterials. Science 1984, 226, 630–636. [Google Scholar] [CrossRef]
- Bongio, M.; van den Beucken, J.J.J.P.; Leeuwenburgh, S.C.G.; Jansen, J.A. Development of bone substitute materials: From ‘biocompatible’ to ‘instructive’. J. Mater. Chem. 2010, 20, 8747–8759. [Google Scholar] [CrossRef]
- Navarro, M.; Michiardi, A.; Castano, O.; Planell, J.A. Biomaterials in orthopaedics. J. R. Soc. Interface 2008, 5, 1137–1158. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M. The future of biomedical materials. J. Mater. Sci. Mater. Med. 2006, 17, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Zadpoor, A.A. Meta-biomaterials. Biomater. Sci. 2020, 8, 18–38. [Google Scholar] [CrossRef]
- Sanchez-Sálcedo, S.; Arcos, D.; Vallet-Regí, M. Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng. Mater. 2008, 377, 19–42. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L. Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc. 2009, 29, 1245–1255. [Google Scholar] [CrossRef]
- Salgado, P.C.; Sathler, P.C.; Castro, H.C.; Alves, G.G.; de Oliveira, A.M.; de Oliveira, R.C.; Maia, M.D.C.; Rodrigues, C.R.; Coelh, P.G.; Fuly, A.; et al. Bone remodeling, biomaterials and technological applications: Revisiting basic concepts. J. Biomater. Nanobiotechnol. 2011, 2, 318–328. [Google Scholar] [CrossRef]
- Vallet-Regí, M. Evolution of bioceramics within the field of biomaterials. C. R. Chimie 2010, 13, 174–185. [Google Scholar] [CrossRef]
- Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684–1688. [Google Scholar] [CrossRef]
- Malhotra, A.; Habibovic, P. Calcium phosphates and angiogenesis: Implications and advances for bone regeneration. Trends Biotechnol. 2016, 34, 983–992. [Google Scholar] [CrossRef]
- Kim, J. Multilayered injection of calcium hydroxylapatite filler on ischial soft tissue to rejuvenate the previous phase of chronic sitting pressure sore. Clin. Cosmet. Investig. Dermatol. 2019, 12, 771–784. [Google Scholar] [CrossRef]
- Kargozar, S.; Singh, R.K.; Kim, H.W.; Baino, F. “Hard” ceramics for “soft” tissue engineering: Paradox or opportunity? Acta Biomater. 2020, 115, 1–28. [Google Scholar] [CrossRef]
- Jansen, D.A.; Graivier, M.H. Evaluation of a calcium hydroxylapatite-based implant (Radiesse) for facial soft-tissue augmentation. Plast. Reconstr. Surg. 2006, 118 (Suppl. 3), 22S–30S. [Google Scholar] [CrossRef]
- Wasylkowski, V.C. Body vectoring technique with Radiesse® for tightening of the abdomen, thighs, and brachial zone. Clin. Cosmet. Invest. Dermatol. 2015, 8, 267–273. [Google Scholar] [CrossRef]
- Shi, X.H.; Zhou, X.; Zhang, Y.M.; Lei, Z.Y.; Liu, T.; Fan, D.L. Complications from nasolabial fold injection of calcium hydroxylapatite for facial soft-tissue augmentation: A systematic review and meta-analysis. Aesthet. Surg. J. 2016, 36, 712–717. [Google Scholar] [CrossRef]
- Qi, C.; Lin, J.; Fu, L.H.; Huang, P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem. Soc. Rev. 2018, 47, 357–403. [Google Scholar] [CrossRef]
- Chyzhma, R.; Piddubnyi, A.; Danilchenko, S.; Kravtsova, O.; Moskalenko, R. Potential role of hydroxyapatite nanocrystalline for early diagnostics of ovarian cancer. Diagnostics 2021, 11, 1741. [Google Scholar] [CrossRef]
- Du, M.; Chen, J.; Liu, K.; Xing, H.; Song, C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites B 2021, 215, 108790. [Google Scholar] [CrossRef]
- Yu, W.; Jiang, Y.Y.; Sun, T.W.; Qi, C.; Zhao, H.; Chen, F.; Shi, Z.; Zhu, Y.J.; Chen, D.; He, Y. Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing. RSC Adv. 2016, 106, 104375–104387. [Google Scholar] [CrossRef]
- Carella, F.; Esposti, L.D.; Adamiano, A.; Iafisco, M. The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef]
- Masson, J.D.; Thibaudon, M.; Belec, L.; Crepeaux, G. Calcium phosphate: A substitute for aluminum adjuvants? Expert Rev. Vaccines 2017, 16, 289–299. [Google Scholar] [CrossRef]
- Wang, X.; Xue, J.; Ma, B.; Wu, J.; Chang, J.; Gelinsky, M.; Wu, C. Black bioceramics: Combining regeneration with therapy. Adv. Mater. 2020, 32, 2005140. [Google Scholar] [CrossRef]
- Safronova, T.; Kiselev, A.; Selezneva, I.; Shatalova, T.; Lukina, Y.; Filippov, Y.; Toshev, O.; Tikhonova, S.; Antonova, O.; Knotko, A. Bioceramics based on β-calcium pyrophosphate. Materials 2022, 15, 3105. [Google Scholar] [CrossRef]
- Germaini, M.M.; Belhabib, S.; Guessasma, S.; Deterre, R.; Corre, P.; Weiss, P. Additive manufacturing of biomaterials for bone tissue engineering–A critical review of the state of the art and new concepts. Prog. Mater. Sci. 2022, 130, 100963. [Google Scholar] [CrossRef]
- Galván-Chacón, V.P.; Vasilevich, A.; Yuan, H.; Groen, N.; de Boer, J.; Habibovic, P.; Vermeulen, S. A bioinformatics approach to study the role of calcium phosphate properties in bone regeneration. Eur. J. Mater. 2022. [Google Scholar] [CrossRef]
- Mohd, N.; Razali, M.; Ghazali, M.J.; Kasim, N.H.A. 3D-printed hydroxyapatite and tricalcium phosphates-based scaffolds for alveolar bone regeneration in animal models: A scoping review. Materials 2022, 15, 2621. [Google Scholar] [CrossRef]
- Ginebra, M.P.; Espanol, M.; Maazouz, Y.; Bergez, V.; Pastorino, D. Bioceramics and bone healing. EFORT Open Rev. 2018, 3, 173–183. [Google Scholar] [CrossRef]
- Albulescu, R.; Popa, A.C.; Enciu, A.M.; Albulescu, L.; Dudau, M.; Popescu, I.D.; Mihai, S.; Codrici, E.; Pop, S.; Lupu, A.R.; et al. Comprehensive in vitro testing of calcium phosphate-based bioceramics with orthopedic and dentistry applications. Materials 2019, 12, 3704. [Google Scholar] [CrossRef] [Green Version]
Ca/P Molar Ratio | Compounds and Their Typical Abbreviations | Chemical Formula | Solubility at 25 °C, -log(Ks) | Solubility at 25 °C, g/L | pH Stability Range in Aqueous Solutions at 25 °C |
---|---|---|---|---|---|
0.5 | Monocalcium phosphate monohydrate (MCPM) | Ca(H2PO4)2·H2O | 1.14 | ~18 | 0.0–2.0 |
0.5 | Monocalcium phosphate anhydrous (MCPA or MCP) | Ca(H2PO4)2 | 1.14 | ~17 | [c] |
1.0 | Dicalcium phosphate dihydrate (DCPD), mineral brushite | CaHPO4·2H2O | 6.59 | ~0.088 | 2.0–6.0 |
1.0 | Dicalcium phosphate anhydrous (DCPA or DCP), mineral monetite | CaHPO4 | 6.90 | ~0.048 | [c] |
1.33 | Octacalcium phosphate (OCP) | Ca8(HPO4)2(PO4)4·5H2O | 96.6 | ~0.0081 | 5.5–7.0 |
1.5 | α-Tricalcium phosphate (α-TCP) | α-Ca3(PO4)2 | 25.5 | ~0.0025 | [a] |
1.5 | β-Tricalcium phosphate (β-TCP) | β-Ca3(PO4)2 | 28.9 | ~0.0005 | [a] |
1.2–2.2 | Amorphous calcium phosphates (ACP) | CaxHy(PO4)z·nH2O, n = 3–4.5; 15%–20% H2O | [b] | [b] | ~5–12 [d] |
1.5–1.67 | Calcium-deficient hydroxyapatite (CDHA or Ca-def HA) [e] | Ca10-x(HPO4)x(PO4)6−x(OH)2−x (0 < x < 1) | ~85 | ~0.0094 | 6.5–9.5 |
1.67 | Hydroxyapatite (HA, HAp, or OHAp) | Ca10(PO4)6(OH)2 | 116.8 | ~0.0003 | 9.5–12 |
1.67 | Fluorapatite (FA or FAp) | Ca10(PO4)6F2 | 120.0 | ~0.0002 | 7–12 |
1.67 | Oxyapatite (OA, OAp, or OXA) [f], mineral voelckerite | Ca10(PO4)6O | ~69 | ~0.087 | [a] |
2.0 | Tetracalcium phosphate (TTCP or TetCP), mineral hilgenstockite | Ca4(PO4)2O | 38–44 | ~0.0007 | [a] |
Year | Location | Process | Apatite from: | Sintering | Compressive Strength | Pore Size | Porosity | Method of Porosity Control |
---|---|---|---|---|---|---|---|---|
2006 | Deville et al., Berkeley, CA | HA + ammonium methacrylate in polytetrafluoroethylene mold, freeze dried and sintered. | HA #30 | Yes: 1300 °C | 16 MPa 65 MPa 145 MPa | Open unidirectional 50–150 μm. | >60% 56% 47% | Porosity control: slurry conc. Structure controlled by physics of ice front formation. |
2006 | Saiz et al., Berkeley, CA | Polymer foams coated, compressed after infiltration, then calcined. | HA powder | Yes: 700–1300 °C | – | 100–200 μm. | – | Porosity control: extent of compression, HA loading. |
2006 | Murugan et al., Singapore + USA | Bovine bone cleaned, calcined. | bovine bone | Yes: 500 °C | – | Retention of nanosized pores. | – | Porosity control: native porosity of bovine bone. |
2006 | Xu et al., Gaithersburg, MD | Directly injectable CaPO4 cement, self-hardens, mannitol as porogen. | nanocrystalline HA | No | 2.2–4.2 MPa (flexural) | 0%–50% macroporous. | 65%–82% | Porosity control: mannitol mass fraction in mixture. |
2004 | Landi et al., Italy + Indonesia | Sponge impregnation, isotactic pressing, sintering of HA in simulated body fluid. | CaO + H3PO4 | Yes: 1250 °C for 1 h | 23 ± 3.8 MPa | Closed 6%, open 60%. | 66% | Porosity control: possibly by controlling HA particle size. Not suggested by authors. |
2003 | Charriere et al., EPFL, Switzerland | Thermoplastic negative porosity by Inkjet printing, slip casting process for HA. | DCPA + calcite | No: 90 °C for 1 day. | 12.5 ± 4.6 MPa | – | 44% | Porosity control: negative printing. |
2003 | Almirall et al., Barcelona, Spain | α-TCP foamed with hydrogen peroxide at different conc., liq. Ratios, poured in polytetrafluoroethylene molds. | A-TCP + (10% and 20% H2O2) | No: 60 °C for 2 h. | 1.41 ± 0.27 MPa 2.69 ± 0.91 MPa | 35.7% macro. 29.7% micro. 26.8% macro. 33.8% micro. | 65.5% 60.7% | Porosity control: different concentration, α-TCP particle sizes. |
2003 | Ramay et al., Seattle, WA | Slurries of HA prepared: gel-casting + polymer sponge technique, sintered. | HA powder | Yes: 600 °C for 1 h 1350 °C for 2 h. | 0.5–5 MPa | 200–400 μm. | 70%–77% | Porosity control: replicate of polymer sponge template. |
2003 | Miao et al., Singapore | TTCP to CaPO4 cement. Slurry cast on polymer foam, sintered. | TTCP | Yes: 1200 °C for 2 h. | – | 1 mm macro. 5 μm micro. | ~70% | Porosity control: Recoating time, polyurethane foam. |
2003 | Uemura et al., China + Japan | Slurry of HA with polyoxyethylene lauryl ether (cross-linked) and sintered. | HA powders | Yes: 1200 °C for 3 h. | 2.25 MPa (0 wk) 4.92 MPa (12 wk) 11.2 MPa (24 wx) | 500 μm. 200 μm interconnects. | ~77% | Porosity control: polymer interconnects cross-linking. |
2003 | Ma et al., Singapore + USA | Electrophoretic deposition of HA, sintering. | HA powders | Yes: 1200 °C for 2 h. | 860 MPa | 0.5 μm. 130 μm. | ~20% | Porosity control: electrophoresis field. |
2002 | Barralet et al., Birmingham, London, UK | CaPO4 cement + sodium phosphate ice, evaporated. | CaCO3 + DCPD | 1st step: 1400 °C for 1 day. | 0.6 ± 0.27 MPa | 2 μm. | 62% ± 9% | Porosity control: porogen shape. |
Calcium Orthophosphate | Trade Name and Producer (When Available) |
---|---|
CDHA | Calcibon (Zimmer Biomet, IN, USA) |
Cementek (Teknimed, France) | |
CHT Ceramic Hydroxyapatite (Bio-Rad, CA, USA) | |
nanoXIM (Fluidinova, Portugal) | |
OsteoGen (Impladent, NY, USA) | |
without trade name (Himed, NY, USA) | |
HA | Actifuse (ApaTech, UK) |
Alveograf (Cooke-Waite Laboratories, USA) | |
Apaceram (HOYA Technosurgical, Japan) | |
Apafill-G (Habana, Cuba) | |
ApaPore (ApaTech, UK) | |
BABI-HAP (Berkeley Advanced Biomaterials, CA, USA) | |
Bio-Eye (Integrated Orbital Implants, CA, USA) | |
BIOGAP (Connectbiopharm, Russia) | |
BioGraft (IFGL BIO CERAMICS, India) | |
Bioroc (Depuy Bioland, France) | |
Blue Bone (Regener Biomateriais, Brazil) | |
Boneceram (Sumitomo Osaka Cement, Japan) | |
Bonefil (Pentax, Japan) | |
BoneSource (Stryker Orthopaedics, NJ, USA) | |
Bonetite (Pentax, Japan) | |
Bonfil (Mitsubishi Materials, Japan) | |
Bongros-HA (Daewoong Pharmaceutical, Korea) | |
CAFOS DT (Chemische Fabrik Budenheim, Germany) | |
Calcitite (Sulzer Calcitek, CA, USA) | |
CAMCERAM HA (CAM Implants, Netherlands) | |
CAPTAL (Plasma Biotal, UK) | |
CELLYARD (HOYA Technosurgical, Japan) | |
Cerapatite (Ceraver, France) | |
Ceros HA (Mathys, Switzerland) | |
CHT Ceramic Hydroxyapatite (Bio-Rad, CA, USA) | |
Durapatite (unknown producer) | |
ENGIpore (JRI Orthopaedics, UK) | |
G-Bone (Surgiwear, India) | |
GranuMas (GranuLab, Malaysia) | |
HA BIOCER (CHEMA – ELEKTROMET, Poland) | |
HAnano Surface (Promimic, Sweden) | |
HAP-91 (JHS Biomateriais, Brazil) | |
HAP-99 (Polystom, Russia) | |
HAP–Bionnovation (Bionnovation, Brazil) | |
IngeniOs HA (Zimmer Dental, CA, USA) | |
Micro Crystalline Hydroxyapatite Complex (MCHC) (Clarion Pharmaceutical, India) | |
nanoXIM (Fluidinova, Portugal) | |
Neobone (Covalent Materials, Japan) | |
Osbone (Curasan, Germany) | |
OsproLife HA (Lincotek Medical, Italy) | |
Ossein Hydroxyapatite (Clarion Pharmaceutical, India) | |
OssaBase-HA (Lasak, Czech Republic) | |
Ostegraf (Ceramed, CO, USA) | |
Ostim (Heraeus Kulzer, Germany) | |
Ovis Bone HA (DENTIS, Korea) | |
Periograf (Cooke-Waite Laboratories, USA) | |
PermaOS (Mathys, Switzerland) | |
PRINT3D Hydroxyapatite (Prodways, France) | |
Pro Osteon (Zimmer Biomet, IN, USA) | |
PurAtite (PremierBiomaterials, Ireland) | |
REGENOS (Kuraray, Japan) | |
SHAp (SofSera, Japan) | |
Synatite (SBM, France) | |
Synthacer (KARL STORZ Recon, Germany) | |
Theriridge (Therics, OH, USA) | |
without trade name (Cam Bioceramics, Netherlands) | |
without trade name (CaP Biomaterials, WI, USA) | |
without trade name (DinganTec, China) | |
without trade name (Ensail Beijing, China) | |
without trade name (Himed, NY, USA) | |
without trade name (MedicalGroup, France) | |
without trade name (SANGI, Japan) | |
without trade name (Shanghai Rebone Biomaterials, China) | |
without trade name (SigmaGraft, CA, USA) | |
without trade name (SkySpring Nanomaterials, TX, USA) | |
without trade name (SofSera, Japan) | |
without trade name (Taihei Chemical Industrial, Japan) | |
without trade name (Xpand Biotechnology, Netherlands) | |
Mg-HA | SINTlife (JRI Orthopaedics, UK) |
HA powder suspended in water | Ostibone (FH Orthopedics, France) |
NANOSTIM (Medtronic Sofamor Danek, TN, USA) | |
n-IBS (Bioceramed, Portugal) | |
Skelifil (Osteotec, UK) | |
HA embedded or suspended in a gel | Bio-Gel HT hydroxyapatite (Bio-Rad, CA, USA) |
Coaptite (Boston Scientific, MA, USA) | |
Facetem (Daewoong, Korea) | |
NanoBone (Artoss, Germany) | |
Nanogel (Teknimed, France) | |
Radiesse (Merz Aesthetics, Germany) | |
Renú Calcium Hydroxylapatite Implant (Cytophil, WI, USA) | |
HA/collagen, CDHA/collagen and/or carbonate apatite/collagen | AUGMATRIX (Wright Medical Technology, TN, USA) |
Bioimplant (Connectbiopharm, Russia) | |
Bio-Oss Collagen (Geitslich, Switzerland) | |
Boneject (Koken, Japan) | |
COL.HAP-91 (JHS Biomateriais, Brazil) | |
Collagraft (Zimmer and Collagen Corporation, USA) | |
CollaOss (SK Bioland, Korea) | |
CollapAn (Intermedapatite, Russia) | |
COLLAPAT (Symatese, France) | |
DualPor collagen (OssGen, Korea) | |
G-Graft (Surgiwear, India) | |
HAPCOL (Polystom, Russia) | |
Healos (DePuy Spine, USA) | |
LitAr (LitAr, Russia) | |
Ossbone Collagen (SK Bioland, Korea) | |
OssFill (Sewon Cellontech, Korea) | |
OssiMend (Collagen Matrix, NJ, USA) | |
Osteomatrix (Connectbiopharm, Russia) | |
OsteoTape (Impladent, NY, USA) | |
ReFit (HOYA Technosurgical, Japan | |
RegenOss (JRI Orthopaedics, UK) | |
RegenerOss Synthetic (Zimmer Dental, CA, USA) | |
Straumann XenoFlex (Straumann, Switzerland) | |
HA/sodium alginate | Bialgin (Biomed, Russia) |
HA/poly-L-lactic acid | Biosteon (Biocomposites, UK) |
ReOss (ReOss, Germany) | |
OSTEOTRANS MX (Teijin Medical Technologies, Japan) | |
SuperFIXSORB30 (Takiron, Japan) | |
HA/polyethylene | HAPEX (Gyrus, TN, USA) |
HA/CaSO4 | BioWrist Bone Void Filler (Skeletal Kinetics, CA, USA) |
Bond Apatite (Augma Biomaterials, NJ, USA) | |
Hapset (LifeCore, MN, USA) | |
PerOssal (aap Implantate, Germany) | |
HA/CaSO4 powders suspended in a liquid | CERAMENT (BONESUPPORT, Sweden) |
Coralline HA | Biocoral (Bio Coral Calcium Bone, France) |
BoneMedik-S (Meta Biomed, Korea) | |
Interpore (Interpore, CA, USA) | |
ProOsteon (Interpore, CA, USA) | |
Carbonate apatite | Cytrans (GC, Japan) |
Norian SRS (Norian, CA, USA) | |
Algae-derived HA | Algipore (AlgOss Biotechnologies, Austria) |
Algisorb (AlgOss Biotechnologies, Austria) | |
FRIOS Algipore (DENTSPLY Implants, Sweden) | |
SIC nature graft (AlgOss Biotechnologies, Austria) | |
HA/glass | Bonelike (unknwn producer) |
Bovine bone (unsintered) | Unilab Surgibone (Unilab, NJ, USA) |
Bovine bone (unsintered) + polymer | Alpha-Bio’s Graft (Alpha-Bio Tec, Israel) |
C-Graft Putty (unknwn producer) | |
Bovine bone apatite (unsintered) | Apatos (OsteoBiol, Italy) |
Bio-Oss (Geistlich Biomaterials, Switzerland) | |
Bonefill (Bionnovation, Brazil). | |
CANCELLO-PURE (Wright Medical Technology, TN, USA) | |
CenoBone (Tissue Regeneration Corporation, Iran) | |
CopiOs Cancellous Particulate Xenograft (Zimmer, IN, USA) | |
GenOs (OsteoBiol, Italy) | |
InterOss (SigmaGraft, CA, USA) | |
Laddec (Ost-Developpement, France) | |
Lubboc (Ost-Developpement, France) | |
MatrixCellect (Curasan, Germany) | |
Mega-Oss Bovine (Megagen Implant, Korea) | |
Orthoss (Geitslich, Switzerland) | |
OssiGuide (Collagen Matrix, NJ, USA) | |
Oxbone (Bioland biomateriaux, France) | |
Straumann XenoGraft (Straumann, Switzerland) | |
Surgibone (Surgibon, Ecuador) | |
Tutobone (Tutogen Medical, Germany) | |
Tutofix (Tutogen Medical, Germany) | |
Tutoplast (Tutogen Medical, Germany) | |
without trade name (MedicalGroup, France) | |
Porcine bone apatite (unsintered) | A-OSS (Osstem Implant, Korea) |
GEM Bone Graft (Lynch Biologics, USA) | |
Gen-Os (OsteoBiol, Italy) | |
MatrixOss (Collagen Matrix, NJ, USA) | |
OsteoBiol (OsteoBiol, Italy) | |
Symbios Xenograft (DENTSPLY Implants, Sweden) | |
THE Graft (Purgo Biologics, Korea) | |
Equine bone apatite (unsintered) | BIO-GEN (BioTECK, Italy) |
Sp-Block (OsteoBiol, Italy) | |
Bovine bone apatite (sintered) | 4Bone XBM (MIS Implants, Israel) |
BonAP (unknown producer) | |
Cerabone (aap Implantate, Germany and botiss, Germany) | |
Endobon (Merck, Germany) | |
GenoxInorgânico (Baumer, SP, Brazil) | |
Iceberg oss (Global Medical Implants, Spain) | |
Navigraft (Zimmer Dental, USA) | |
Osteograf (Ceramed, CO, USA) | |
OVIS XENO (DENTIS, Korea) | |
PepGen P-15 (DENTSPLY Implants, Sweden) | |
Pyrost (Osteo AG, Germany) | |
Sinbone (Purzer Pharmaceutical, Taiwan) | |
SynOss (Collagen Matrix, NJ, USA) | |
Straumann cerabone (Straumann, Switzerland) | |
Human bone allograft | ALLOPURE (Wright Medical Technology, TN, USA) |
Allosorb (Curasan, Germany) | |
CancellOss (Impladent, NY, USA) | |
CurOss (Impladent, NY, USA) | |
J Bone Block (Impladent, NY, USA) | |
maxgraft (botiss, Germany) | |
Mega-Oss (Megagen Implant, Korea) | |
NonDemin (Impladent, NY, USA) | |
Osnatal (aap Implantate, Germany) | |
OsteoDemin (Impladent, NY, USA) | |
OsteoWrap (Curasan, Germany) | |
OVIS ALLO (DENTIS, Korea) | |
PentOS OI (Citagenix, QC, Canada) | |
RAPTOS (Citagenix, QC, Canada) | |
Straumann AlloGraft (Straumann, Switzerland) | |
TenFUSE (Wright Medical Technology, TN, USA) | |
α-TCP | BioBase (Biovision, Germany) |
Tetrabone (unknown producer) | |
without trade name (Cam Bioceramics, Netherlands) | |
without trade name (DinganTec, China) | |
without trade name (Ensail Beijing, China) | |
without trade name (Himed, NY, USA) | |
without trade name (InnoTERE, Germany) | |
without trade name (PremierBiomaterials, Ireland) | |
without trade name (Taihei Chemical Industrial, Japan) | |
β-TCP | AdboneTCP (Medbone Medical Devices, Portugal) |
AFFINOS (Kuraray, Japan) | |
Allogran-R (Biocomposites, UK) | |
Antartik TCP (MedicalBiomat, France) | |
ArrowBone (Brain Base Corporation, Japan) | |
AttraX scaffold (NuVasive, CA, USA) | |
BABI-TCP (Berkeley Advanced Biomaterials, CA, USA) | |
Betabase (Biovision, Germany) | |
BioGraft (IFGL BIO CERAMICS, India) | |
Bioresorb (Sybron Implant Solutions, Germany) | |
Biosorb (SBM, France) | |
Bi-Ostetic (Berkeley Advanced Biomaterials, CA, USA) | |
Bonegraft (Bonegraft biomaterials, Turkey) | |
BoneSigma TCP (SigmaGraft, CA, USA) | |
C 13-09 (Chemische Fabrik Budenheim, Germany) | |
Calc-i-oss classic (Degradable Solutions, Switzerland) | |
Calciresorb (Ceraver, France) | |
CAMCERAM TCP (CAM Implants, Netherlands) | |
CAPTAL β-TCP (Plasma Biotal, UK) | |
CELLPLEX (Wright Medical Technology, TN, USA) | |
Cerasorb (Curasan, Germany) | |
Ceros TCP (Mathys, Switzerland) | |
ChronOS (Synthes, PA, USA) | |
Cidemarec (KERAMAT, Spain) | |
Conduit (DePuy Spine, USA) | |
cyclOS (Mathys, Switzerland) | |
ExcelOs (BioAlpha, Korea) | |
GenerOs (Berkeley Advanced Biomaterials, CA, USA) | |
HT BIOCER (CHEMA – ELEKTROMET, Poland) | |
Iceberg TCP (Global Medical Implants, Spain) | |
IngeniOs β-TCP (Zimmer Dental, CA, USA) | |
ISIOS+ (Kasios, France) | |
JAX (Smith and Nephew Orthopaedics, USA) | |
Keramedic (Keramat, Spain) | |
KeraOs (Keramat, Spain) | |
Mega-TCP (Megagen Implant, Korea) | |
microTCP (Conmed, USA) | |
nanoXIM (Fluidinova, Portugal) | |
Orthograft (DePuy Spine, USA) | |
Ossaplast (Ossacur, Germany) | |
Osferion (Olympus Terumo Biomaterials, Japan) | |
Osfill (Olympus Terumo Biomaterials, Japan) | |
OsproLife β-TCP (Lincotek Medical, Italy) | |
OsSatura TCP (Integra Orthobiologics, CA, USA) | |
Ossoconduct (SteinerBio, NV, USA) | |
Osteoblast (Galimplant, Spain) | |
Osteocera (Hannox, Taiwan) | |
Osteopore TCP (SpiteCraft, IL, USA) | |
OSTEOwelt (Biolot Medical, Turkey) | |
Periophil β-TCP (Cytophil, WI, USA) | |
Platon Pearl Bone (Platon, Japan) | |
PolyBone (Kyungwon Medical, Korea) | |
PORESORB-TCP (Lasak, Czech Republic) | |
Powerbone (Medical Expo Bonegraft Biomaterials, Spain) | |
PRINT3D Tricalcium Phosphate (Prodways, France) | |
Repros (JRI Orthopaedics, UK) | |
R.T.R. (Septodont, PA, USA) | |
SigmaOs TCP (SigmaGraft, CA, USA) | |
Socket Graft (SteinerBio, NV, USA) | |
Sorbone (Meta Biomed, Korea) | |
SUPERPORE (HOYA Technosurgical, Japan) | |
Suprabone TCP (BMT Group, Turkey) | |
Syncera (Oscotec, Korea) | |
SynthoGraft (Bicon, MA, USA) | |
Synthos (unknown producer) | |
Syntricer (KARL STORZ Recon, Germany) | |
TCP (Kasios, France) | |
Terufill (Olympus Terumo Biomaterials, Japan) | |
TKF-95 (Polystom, Russia) | |
TriCaFor (BioNova, Russia) | |
Triha+ (Teknimed, France) | |
TriOSS (Bioceramed, Portugal) | |
Vitomatrix (Orthovita, PA, USA) | |
Vitoss (Orthovita, PA, USA) | |
without trade name (CaP Biomaterials, WI, USA) | |
without trade name (Cam Bioceramics, Netherlands) | |
without trade name (DinganTec, China) | |
without trade name (Ensail Beijing, China) | |
without trade name (Himed, NY, USA) | |
without trade name (Shanghai Bio-lu Biomaterials, China) | |
without trade name (Shanghai Rebone Biomaterials, China) | |
without trade name (SigmaGraft, CA, USA) | |
without trade name (Taihei Chemical Industrial, Japan) | |
without trade name (Xpand Biotechnology, Netherlands) | |
β-TCP/CaSO4 | Fortoss vital (Biocomposites, UK) |
Genex (Biocomposites, UK) | |
β-TCP/poly-lactic acid | Bilok (Biocomposites, UK) |
Duosorb (SBM, France) | |
Matryx Interference Screws (Conmed, USA) | |
β-TCP/poly-lactic-co-glycolic acid | Evolvemer TCP30PLGA (Arctic Biomaterials, Finland) |
β-TCP/polymer | AttraX putty (NuVasive, CA, USA) |
Therigraft (Therics, OH, USA) | |
β-TCP/bone marrow aspirate | Induce (Skeletal Kinetics, CA, USA) |
β-TCP/collagen | Integra Mozaik (Integra Orthobiologics, CA, USA) |
β-TCP/growth-factor | GEM 21S (Lynch Biologics, USA) |
β-TCP/rhPDGF-BB solution | AUGMENT Bone Graft (Wright Medical Group, TN, USA) |
BCP (HA + β-TCP) | 4Bone BCH (MIS Implants, Israel) |
adboneBCP (Medbone Medical Devices, Portugal) | |
Antartik (MedicalBiomat, France) | |
ARCA BONE (ARCA-MEDICA, Switzerland) | |
Artosal (aap Implantate, Germany) | |
BABI-HATCP (Berkeley Advanced Biomaterials, CA, USA) | |
Bicera (Hannox, Taiwan) | |
BCP BiCalPhos (Medtronic, MN, USA) | |
BIO-C (Cowellmedi, Korea) | |
BioActys (Graftys, France) | |
BioGraft (IFGL BIO CERAMICS, India) | |
Biosel (Depuy Bioland, France) | |
BonaGraft (Biotech One, Taiwan) | |
Boncel-Os (BioAlpha, Korea) | |
Bone Plus BCP (Megagen Implant, Korea) | |
Bone Plus BCP Eagle Eye (Megagen Implant, Korea) | |
BoneMedik-DM (Meta Biomed, Korea) | |
BoneSave (Stryker Orthopaedics, NJ, USA) | |
BoneSigma BCP (SigmaGraft, CA, USA) | |
BONITmatrix (DOT, Germany) | |
Calcicoat (Zimmer, IN, USA) | |
Calciresorb (Ceraver, France) | |
Calc-i-oss crystal (Degradable Solutions, Switzerland) | |
CellCeram (Scaffdex, Finland) | |
Ceraform (Teknimed, France) | |
Ceratite (NGK Spark Plug, Japan) | |
Cross.Bone (Biotech Dental, France) | |
CuriOs (Progentix Orthobiology BV, Netherlands) | |
DM-Bone (Meta Biomed, Korea) | |
Eclipse (Citagenix, QC, Canada) | |
Eurocer (FH Orthopedics, France) | |
Frabone (Inobone, Korea) | |
Genesis-BCP (DIO, Korea) | |
GenPhos HA TCP (Baumer, Brazil) | |
Graftys BCP (Graftys, France) | |
Hatric (Arthrex, Naples, FL, USA) | |
Hydroxyapol (Polystom, Russia) | |
Kainos (Signus, Germany) | |
MagnetOs (Kuros Biosciences, Switzerland) | |
MasterGraft (Medtronic Sofamor Danek, TN, USA) | |
Maxresorb (botiss, Germany) | |
MBCP (Biomatlante, France) | |
MimetikOss (Mimetis Biomaterials, Spain) | |
Neobone (Bioceramed, Portugal) | |
New Bone (GENOSS, Korea) | |
NT-BCP (OssGen, Korea) | |
NT-Ceram (Meta Biomed, Korea) | |
OdonCer (Teknimed, France) | |
OpteMX (Exactech, FL, USA) | |
OrthoCer HA TCP (Baumer, Brazil) | |
OsproLife HA-βTCP (Lincotek Medical, Italy) | |
OsSatura BCP (Integra Orthobiologics, CA, USA) | |
ossceram nano (bredent medical, Germany) | |
OSSEOPLUS (JHS Biomateriais, Brazil) | |
Osspol (Genewel, Korea) | |
OsteoFlux (VIVOS-Dental, Switzerland) | |
Osteon (GENOSS, Korea) | |
Osteosynt (Einco, Brazil) | |
Ostilit (Stryker Orthopaedics, NJ, USA) | |
Ovis Bone BCP (DENTIS, Korea) | |
Periophil biphasic (Cytophil, WI, USA) | |
Q-OSS+ (Osstem Implant, Korea) | |
ReproBone (Ceramisys, UK) | |
R.T.R.+ (Septodont, PA, USA) | |
SBS (Expanscience, France) | |
Scaffdex (Scaffdex Oy, Finland) | |
SigmaOs BCP (SigmaGraft, CA, USA) | |
SinboneHT (Purzer Pharmaceutical, Taiwan) | |
SkeliGraft (Osteotec, UK) | |
Straumann BoneCeramic (Straumann, Switzerland) | |
SYMBIOS Biphasic Bone Graft Material (DENTSPLY Implants, Sweden) | |
SynMax (BioHorizons, Spain) | |
Synergy (unknown producer) | |
TCH (Kasios, France) | |
Topgen-S (Toplan, Korea) | |
Tribone (Stryker, Europe) | |
Triosite (Zimmer, IN, USA) | |
without trade name (AlgOss Biotechnologies, Austria) | |
without trade name (Cam Bioceramics, Netherlands) | |
without trade name (CaP Biomaterials, WI, USA) | |
without trade name (Himed, NY, USA) | |
without trade name (MedicalGroup, France) | |
without trade name (SigmaGraft, CA, USA) | |
without trade name (Xpand Biotechnology, Netherlands) | |
BCP (HA + α-TCP) | Skelite (Millennium Biologix, ON, Canada) |
BCP (HA + β-TCP)/collagen | Allograft (Zimmer, IN, USA) |
collacone max (botiss, Germany) | |
Collagraft (Zimmer, IN, USA) | |
Cross.Bone Matrix (Biotech Dental, France) | |
Indost (Polystom, Russia) | |
MasterGraft (Medtronic Sofamor Danek, TN, USA) | |
MATRI BONE (Biom’Up, France) | |
Osteon III collagen (GENOSS, Korea) | |
SynergOss (Nobil Bio Ricerche, Italy) | |
without trade name (MedicalGroup, France) | |
BCP (HA + β-TCP)/hydrogel | 4MATRIX+ (MIS Implants, Israel) |
Eclipse (Citagenix, QC, Canada) | |
BCP (HA + β-TCP)/polymer | In’Oss (Biomatlante, France) |
Hydros (Biomatlante, France) | |
Osteocaf (Texas Innovative Medical Devices, TX, USA) | |
Osteotwin (Biomatlante, France) | |
BCP (HA + TTCP) | OsproLife HA-TTCP (Lincotek Medical, Italy) |
BCP (HA + β-TCP)/chitosan | k-IBS (Bioceramed, Portugal) |
BCP (HA + β-TCP)/fibrin | TricOS (Baxter BioScience, France) |
BCP (HA + β-TCP)/silicon | FlexHA (Xomed, FL, USA) |
Bioglass + α-TCP + β-TCP + HA + polymers | OsteoFlo NanoPutty (SurGenTec, FL, USA) |
FA | without trade name (CaP Biomaterials, WI, USA) |
FA + BCP (HA + β-TCP) | FtAP (Polystom, Russia) |
DCPA | without trade name (Himed, NY, USA) |
without trade name (Shanghai Rebone Biomaterials, China) | |
DCPA + MgHPO4·3H2O + SiO2 + carboxymethyl cellulose | Novogro (OsteoNovus, OH, USA) |
DCPD | without trade name (Himed, NY, USA) |
DCPD/collagen | CopiOs Bone Void Filler (Zimmer, IN, USA) |
DCPD + β-TCP/CaSO4 | PRO-DENSE (Wright Medical Group, TN, USA) |
DCPD + β-TCP/CaSO4 + collagen | PRO-STIM (Wright Medical Group, TN, USA) |
ACP | CAPTAL ACP (Plasma Biotal, UK) |
without trade name (Himed, NY, USA) | |
OCP | Bontree (HudensBio, Korea) |
OctoFor (BioNova, Russia) | |
without trade name (Himed, NY, USA) | |
OCP/fibrin | FibroFor (BioNova, Russia) |
OCP/collagen | Bonarc (Toyobo, Japan) |
TTCP | without trade name (Ensail Beijing, China) |
without trade name (Himed, NY, USA) | |
without trade name (Shanghai Rebone Biomaterials, China) | |
without trade name (Taihei Chemical Industrial, Japan) | |
Undisclosed CaPO4 | Arex Bone (Osteotec, UK) |
Inno-CaP (Cowellmedi, Korea) | |
Undisclosed CaPO4 + biologics | i-FACTOR (Cerapedics, CO, USA) |
MCPM | Phosfeed MCP (OCP group, Morocco) |
MCPM + DCPD | Phosfeed MDCP (OCP group, Morocco) |
Pore Sizes of a 3D Scaffold | A Biochemical Effect or Function |
---|---|
<1 μm | Interaction with proteins |
Responsible for bioactivity | |
1–20 μm | Type of cells attracted |
Cellular development | |
Orientation and directionality of cellular ingrowth | |
100–1000 μm | Cellular growth |
Bone ingrowth | |
Predominant function in the mechanical strength | |
>1000 μm | Implant functionality |
Implant shape | |
Implant esthetics |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorozhkin, S.V. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings 2022, 12, 1380. https://doi.org/10.3390/coatings12101380
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings. 2022; 12(10):1380. https://doi.org/10.3390/coatings12101380
Chicago/Turabian StyleDorozhkin, Sergey V. 2022. "Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications" Coatings 12, no. 10: 1380. https://doi.org/10.3390/coatings12101380
APA StyleDorozhkin, S. V. (2022). Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings, 12(10), 1380. https://doi.org/10.3390/coatings12101380