Advancements in Electrospark Deposition (ESD) Technique: A Short Review
Abstract
:1. Introduction
2. Electrospark Deposition (ESD) Technique
2.1. Background of ESD Technique
2.2. Principle and Apparatus of ESD
2.3. ESD Parameters
2.4. Materials: Base Material and Electrode Materials
2.5. Mechanism of Building Deposited Layer in ESD: Material Transfer between Deposit and Substrate
2.6. Microstructure Morphology of Electrospark Coatings
2.7. ESD for Coating Purposes
2.7.1. Nanocrystalline Deposits
Analysis of Defectiveness of Deposits
Substrate/Coating Interface Behavior
2.7.2. Amorphous Deposits
2.7.3. Mechanical and Tribological Properties of the Deposits
2.7.4. Innovations in Electrospark Deposition
2.8. ESD for Component Repair
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paydas, H.; Mertens, A.; Carrus, R.; Lecomte-Beckers, J.; Tchuindjang, T. Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness. Mater. Des. 2015, 85, 497–510. [Google Scholar] [CrossRef]
- Felix, L.M.; Kwan, C.C.; Zhou, N.Y. The E ect of Pulse Energy on the Defects and Microstructure of Electro-Spark-Deposited Inconel 718. Metall. Mater. Trans. A 2019, 50, 4223–4231. [Google Scholar] [CrossRef]
- Brandt, M. Laser Additive Manufacturing: Materials, Design, Technologies, and Applications; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Verbitchi, V.; Ciuca, C.; Cojocaru, R. Electro-Spark Coating with Special Materials. Nonconv. Technol. Rev. 2011, 1, 57–62. [Google Scholar]
- Vuoristo, P.; Tuominen, J.; Nurminen, J. Laser coating and thermal spraying-process basics and coating properies. In Proceedings of the International Thermal Spray Conference, Basel, Swizerland, 2–4 May 2005. [Google Scholar]
- Onjukka, R. Welding vs. Riveting—Which Has Fatigue Life Airplanes. Weld. J. 1996, 75, 29–33. [Google Scholar]
- Davis, J.R. ASM Specialty Handbook: Aluminum and Aluminum Alloy; ASM International: Almere, The Netherlands, 1993. [Google Scholar]
- Kou, S. Welding Metallurgy and Weldability of High Strength Aluminum Alloys; Welding Research Council Bulletin: Madison, WI, USA, 1986. [Google Scholar]
- Nogi, K.; Aoki, Y. Behavior of bubbles in welding for repairs in space. Mater. Des. 1997, 18, 275–278. [Google Scholar] [CrossRef]
- Norman, A.F.; Drazhner, V.; Prangnell, P.B. Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn alloy. Mater. Sci. Eng. A 1999, 259, 53–64. [Google Scholar] [CrossRef]
- Oates, W.R. Materials and Applications, 8th ed.; AWS: Miami, FL, USA, 1972; pp. 1–28. [Google Scholar]
- Zhao, H.; White, D.R.; DebRoy, T. Current issues and problems in laser welding of automotive aluminium alloys. Int. Mater. Rev. 1999, 44, 238–266. [Google Scholar] [CrossRef]
- Cao, X.; Wallace, W.; Immarigeon, J.P.; Poon, C. Research and Progress in Laser Welding of Wrought Aluminum Alloys. II. Metallurgical Microstructures, Defects, and Mechanical Properties. Mater. Manuf. Process. 2003, 18, 23–49. [Google Scholar] [CrossRef]
- Feldshteina, E.E.; Kardapolova, M.K.; Gaida, R.; Khorodyski, B.; Kaval’chuk, O.V. Tribological Properties of Electrospark Deposited and Further Laser Hardened Coatings. J. Frict. Wear 2013, 34, 137–141. [Google Scholar] [CrossRef]
- Renna, G.; Leo, P.; Cerri, E.; Zanon, G.P. Thermal shock behaviour of CoCrAlTaY coatings on a Ni-base superalloy. Metall. Ital. 2015, 7–8, 33–41. [Google Scholar]
- Mao, Y.; Li, Z.; Feng, K.; Guo, X.; Zhou, Z.; Wu, Y. Corrosion behavior of carbon film coated magnesium alloy with electroless plating nickel interlayer. J. Mater. Process. Technol. 2015, 219, 42–47. [Google Scholar] [CrossRef]
- Ermakova, E.N.; Sysoev, S.V.; Nikulina, L.D.; Tsyrendorzhieva, I.P.; Rakhlin, V.I.; Kosinova, M.L. Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes. Thermochim. Acta 2015, 622, 2–8. [Google Scholar] [CrossRef]
- Xiang, H.; Ke, F.; Tan, Y.F.; Wang, X.L.; Hua, T. Effects of process parameters on microstructure and wear resistance of TiN coatings deposited on TC11 titanium alloy by electrospark deposition. Trans. Nonferrous Met. Soc. China 2017, 27, 1767–1776. [Google Scholar]
- Tang, S.K. The Process Fundamentals and Parameters of Electro-spark Deposition; Master’s Thesis, University of Waterloo: Waterloo, ON, Canada, 2009; ISBN1 0494562331. ISBN2 9780494562338. [Google Scholar]
- Leo, P.; Renna, G.; Casalino, G. Study of the Direct Metal Deposition of AA2024 by ElectroSpark for Coating and Reparation Scopes. Appl. Sci. 2017, 7, 945. [Google Scholar]
- Renna, G.; Leo, P.; Casalino, G.; Cerri, E. Repairing 2024 Aluminum Alloy via Electrospark Deposition Process: A Feasibility Study. Adv. Mater. Sci. Eng. 2018, 2018, 8563054. [Google Scholar] [CrossRef]
- Xie, Y.J.; Wang, M.C.; Huang, D.W. Comparative study of microstructural characteristics of electrospark and Nd: YAG laser epitaxially growing coatings. Appl. Surf. Sci. 2007, 253, 6149–6156. [Google Scholar] [CrossRef]
- Wang, P.Z.; Pan, G.S.; Zhou, Y.; Qu, J.X.; Shao, H.S. Accelerated Electrospark Deposition and the Wear Behavior of Coatings. J. Mater. Eng. Perform. 1997, 6, 780–784. [Google Scholar] [CrossRef]
- Xie, Y.J.; Wang, M.C. Microstructural morphology of electrospark deposition layer of a high gamma prime superalloy. Surf. Coat. Technol. 2006, 201, 691–698. [Google Scholar] [CrossRef]
- Chen, C.J.; Wang, M.C.; Wang, D.S.; Liu, Y.M. Study on corrosion characteristic of high-energy micro-arc alloying of Al-Y electrode on AZ31 magnesium alloy. Trans. Mater. Heat Treat. 2007, 28, 106–110. [Google Scholar]
- Frangini, S.; Masci, A. A study on the effect of a dynamic contact force control for improving electrospark coating properties. Surf. Coat. Technol. 2010, 204, 2613–2623. [Google Scholar] [CrossRef]
- Frangini, S.; Masci, A.; di Bartolomeo, A. Cr7C3-based cermet coating deposited on stainless steel by electrospark process: Structural characteristics and corrosion behavior. Surf. Coat. Technol. 2002, 149, 279–286. [Google Scholar] [CrossRef]
- Tang, S.K.; Nguyen, T.C.; Zhou, Y. Materials transfer in electro-spark deposition of TiCp/Ni metal-matrix composite coating on Cu substrate. Weld. Res. 2010, 89, 172–180. [Google Scholar]
- Johnson, R.N. Robust coatings for corrosion and wear: The electrospark deposition process. In Proceedings of the Tri-Service Conference on Corrosion, Battelle, Columbus, OH, USA; 1999; pp. 341–410. [Google Scholar]
- Brochu, M.; Heard, D.W.; Milligan, J.; Cadney, S. Bulk nanostructure and amorphous metallic components using the electrospark welding process. Assem. Autom. 2010, 30, 248–256. [Google Scholar] [CrossRef]
- Champagne, V.; Pepi, M.; Edwards, B. Electrospark Deposition for the Repair of Army Main Battle Tank Components; Army Research Laboratory: Adelphi, MD, USA, 2006. [Google Scholar]
- Reynold, J.L.; Holdren, R.L.; Brown, L.E. Electro-Spark Deposition. Adv. Mater. Process. 2003, 161, 35–37. [Google Scholar]
- Wang, W.F.; Wang, M.C.; Sun, F.J.; Zheng, Y.G.; Jiao, J.M. Microstructure and cavitation erosion characteristics of Al–Si alloy coating prepared by electrospark deposition. Surf. Coat. Technol. 2008, 202, 5116–5121. [Google Scholar] [CrossRef]
- Farhat, R. Repair of Damaged MCrAlY Coatings Targeting Petroleum Industry Applications; McGill University: Montreal, QC, Canada, 2012. [Google Scholar]
- Padgurskas, J.; Kreivaitis, R.; Rukuiža, R.; Mihailov, V.; Agafii, V.; Kriukiene, R.; Baltušnikas, A. Tribological properties of coatings obtained by electro-spark alloying C45 steel surfaces. Surf. Coat. Technol. 2017, 311, 90–97. [Google Scholar] [CrossRef]
- Brochu, M.; Portillo, J.G.; Milligan, J.; Head, D.W. Development of Metastable Solidification Structures Using the Electrospark Deposition Process. Open Surf. Sci. J. 2011, 3, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, E.; Khan, A.K.; Ojo, O.A. Analysis of Microstructure in Electro-Spark Deposited IN718 Superalloy. Mater. Charact. 2016, 119, 233–240. [Google Scholar] [CrossRef]
- Enrique, P.D.; Jiao, Z.; Zhou, N.Y. Effect of Direct Aging on Heat-Affected Zone and Tensile Properties of Electrospark-Deposited Alloy 718. Met. Mater. Trans. A 2019, 50, 285–294. [Google Scholar] [CrossRef]
- Thamer, A.D.; Hafiz, M.H.; Mahdi, B.S. Mechanism of Building-Up Deposited Layer during Electro-Spark Deposition. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 258–263. [Google Scholar] [CrossRef]
- Liu, D.Y.; Gao, W.; Li, Z.W.; Zhang, H.F.; Hu, Z.Q. Electro-spark Deposition of Fe-based Amorphous Alloy Coatings. Mater. Lett. 2007, 61, 165–167. [Google Scholar] [CrossRef]
- Cadney, S.; Brochu, M. Formation of amorphous Zr41.2Ti13.8Ni10Cu12.5Be22.5 coatings via the electrospark deposition process. Intermetallics 2008, 16, 518–523. [Google Scholar] [CrossRef]
- Cadney, S.; Goodall, G.; Kim, G.; Moran, A.; Brochu, M. The transformation of an Al-based crystalline electrode material to an amorphous deposit via the electrospark welding process. J. Alloys Compd. 2009, 476, 147–151. [Google Scholar] [CrossRef]
- Hasanabadi, F.M.; Ghaini, M.F.; Ebrahimnia, M.; Shahverdi, H.R. Production of amorphous and nanocrystalline iron based coatings by electro-spark deposition process. Surf. Coat. Technol. 2015, 270, 95–101. [Google Scholar] [CrossRef]
- Sheveyko, A.N.; Manakova, O.S.; Zamulaeva, E.I.; Kudryashov, A.E.; Potanin, A.Y.; Sukhorukova, I.V.; Zhitnyak, I.Y.; Gloushankova, N.A.; Levashov, E.A.; Shtansky, D.V. Structural transformations in TiC-CaO-Ti3PO(x)-(Ag2Ca) electrodes and biocompatible TiCaPCO(N)-(Ag) coatings during pulsed electrospark deposition. Surf. Coat. Technol. 2016, 302, 327–335. [Google Scholar] [CrossRef]
- Petrică, V.; Manuela, C.; Perju, D.-C.A.; Carmen, N. Advanced Electro-Spark Deposition Process on Metallic Alloys; IntechOpen: London, UK, 2018; Chapter 3. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, K.; Ribalko, A.V. Effect of pulse shape and energy on the surface roughness and mass transfer in the electrospark coating process. Kovove Mater. 2011, 49, 265–270. [Google Scholar] [CrossRef]
- Changjun, C.; Maocai, W.; Yiming, L.; Dongsheng, W.; Ren, J. Mass transfer trends and the formation of a single deposition spot during high-energy micro-arc alloying of AZ31Mg alloy. J. Mater. Process. Technol. 2008, 198, 275–280. [Google Scholar] [CrossRef]
- Galinov, I.V.; Luban, R.B. Mass transfer trends during electrospark alloying. Surf. Coat. Technol. 1996, 79, 9–18. [Google Scholar] [CrossRef]
- Cao, G.J.; Wang, Y.Y.; Tang, G.Z. Properties of NiCrAlY coatings fabricated on superalloy GH4169 by electrospark deposition. Int. J. Adv. Manuf. Technol. 2018, 96, 1787–1793. [Google Scholar] [CrossRef]
- Leo, P.; Renna, G. Rivestimenti Via Electrospark Deposition in Lega A357: Microstruttura e Difettosità; La Metallurgia Italiana: Milano, Italy, 2019. [Google Scholar]
- Gilda, R.; Paola, L.; Caterina, C. Effect of ElectroSpark Process Parameters on the WE43 Magnesium Alloy Deposition Quality. Appl. Sci. 2019, 9, 4383. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.N.; Sheldon, G.L. Advances in the electrospark deposition coating process. J. Vac. Sci. Technol. A 1986, 4, 2740–2746. [Google Scholar] [CrossRef]
- Rawdon, H.S. Electrospark Deposition for Depot- and Fild-Level Component Repair and Replaced of Heard Chromium Plating; Final Report; ESTCP: Alexandria, VA, USA, 2006. [Google Scholar]
- Welsh, N.C. Frictional Heating and its Influence on the Wear of Steel. J. Appl. Phys. 1957, 28, 960. [Google Scholar] [CrossRef]
- Welsh, N.C. Surface Hardening of Non-ferrous Metals by Spark Discharge. Nature 1958, 181, 1004. [Google Scholar] [CrossRef]
- Welsh, N.C.; Watts, P.E. The wear resistance of spark-hardened surfaces. Wear 1962, 5, 289–307. [Google Scholar] [CrossRef]
- Lazarenko, B.R.; Lazarenko, N.I. Electric Erosion of Materials; Gasenergoizdat: Moscow/Leningrad, Russia, 1944. [Google Scholar]
- Polyachenko, A.U. New Methods of Electrical Working of Materials; Mashgiz: Moscow, Russia, 1955; p. 352. [Google Scholar]
- Bunshah, R.F. Handbook of Deposition Technologies for Films and Coatings, 2nd ed.; Noyes Publications: Park Ridge, NJ, USA, 1994; pp. 131–163. [Google Scholar]
- ASM International. ASM Handbook—Powder Metal Technologies and Applications, 10th ed.; ASM Int’l: Materials Park, OH, USA, 1993; p. 978. [Google Scholar]
- Sartwell, B.D.; Legg, K.O.; Price, N.; Aylor, D.; Champagne, V.; Pollard, T. Electrospark Deposition for Depot- and Field-Level Component Repair and Replacement of Hard Chromium Plating; Final reptort; Naval Research Lab: Washington, DC, USA, 2006. [Google Scholar]
- Phillips, A.L. Welding Handbook, 6th ed.; Chapter 3; American Welding Society Publisher: Miami, FL, USA, 1968; pp. 20–21. [Google Scholar]
- Germer, L.H. Electrical Breakdown between Close Electrodes in Air. J. Appl. Phys. 1959, 30, 46. [Google Scholar] [CrossRef]
- Belik, V.D.; Litvin, R.V.; Koval’chenko, M.S. Effect of pulse duration and size of interelectrode interval on electric-spark spraying. I. Effect of pulse duration and size of interelectrode interval on rate of electric-spark transfer. Powder Metall. Met. Ceram. 2006, 45, 593. [Google Scholar] [CrossRef]
- Bailey, J.A.; Johnson, R.N.; Munley, J.T. Method and apparatus for electrospark deposition. U.S. Patent No. 6,835,908, 28 December 2004. [Google Scholar]
- Goto, A.; Akiyoshi, M.; Ochiai, H.; Watanabe, M. Development Of Micro Spark Coating. In Proceedings of the 24th International Congress of The Aeronautical Sciences, Yokohama, Japan, 29 August–3 September 2004. [Google Scholar]
- Johnson, R.N. ElectroSpark Deposition: Principles and Applications. In Proceedings of the 45th Annual Technical Conference Proceedings, Society of Vacuum Coaters, Madison, MI, USA, 13–18 April 2002; pp. 87–92. [Google Scholar]
- Manuela-Cristina, P.E.R.J.U.; Vizureanu, P.; Nejneru, C. The study of energy transfer on thin layers archieved by electro-spark deposition with TiC electrode. In Proceedings of the International Conference of Scientific Paper, AFASES 2014, Brasov, Romania, 22–24 May 2014. [Google Scholar]
- Chan, K.R.; Scotchmer, N.; Zhao, J.; Zhou, Y. Weldability Improvement Using Coated Electrodes for RSW of HDG Steel; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Liu, J.; Wang, R.; Qian, Y. Formation of a single-pulse electrospark deposition spot. Surf. Coat. Technol. 2005, 200, 2433–2437. [Google Scholar] [CrossRef]
- Lesnjajk, A.; Tusek, J. Processes and properties of deposits in electrospark deposition. Sci. Technol. Weld. Join. 2002, 7, 391–396. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D.J. Fundamentals of Solidification, 4th ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Casellas, D.; Beltran, A.; Prado, J.M.; Larson, A.; Romero, A. Microstructural effects on the dry wear resistance of powder metallurgy Al-Si alloys. Wear 2004, 257, 730–739. [Google Scholar] [CrossRef]
- Slattery, B.E.; Perry, T.; Edrisy, A. Microstructural evolution of a eutectic Al-Si engine subjected to severe running conditions. Mater. Sci. Eng. A 2009, 512, 76–81. [Google Scholar] [CrossRef]
- Shabel, B.S.; Granger, D.A.; Truckner, W.G. Friction and Wear of Aluminum-Silicon Alloys. In ASM Handbook Friction, Lubrication, and Wear Technology; ASM International: Materials Park, OH, USA, 1992; pp. 785–794. [Google Scholar]
- Heard, D.W.; Brochu, M. Development of a nanostructure microstructure in the Al–Ni system using the electrospark deposition process. J. Mater. Process. Technol. 2010, 210, 892–898. [Google Scholar] [CrossRef]
- Zhang, Z.; Akiyama, E.; Watanabe, Y.; Katada, Y.; Tsuzaki, K. Effect of (alpha)-Al/Al3Ni microstructure on the corrosion behaviour of Al-5.4 wt% Ni alloy fabricated by equal-channel angular pressing. Corros. Sci. 2007, 49, 2962–2972. [Google Scholar] [CrossRef]
- Wang, M.C.; Wang, W.F.; Xie, Y.J.; Zhang, J. Electro-spark epitaxial deposition of NiCoCrAlYTa alloy on directionally solidified nickel-based superalloy. Trans. Nonferrous Met. Soc. China 2010, 20, 795–802. [Google Scholar] [CrossRef]
- Staia, M.H.; Fragiel, A.; Cruz, M.; Carrasquero, E.; Campillo, B.; Perez, R.; Constantino, M.; Sudarshan, T.S. Characterization and wear behavior of pulsed electrode surfacing coatings. Wear 2001, 251, 1051–1060. [Google Scholar] [CrossRef]
- Tušek, J.; Kosec, L.; Lešnjak, A.; Muhič, T. Electrospark Deposition for Die Repair. Metalurgija 2012, 51, 17–20. [Google Scholar]
- Xie, Y.-J.; Wang, M.-C. Epitaxial MCrAlY coating on a Ni-base superalloy produced by electrospark deposition. Surf. Coat. Technol. 2006, 201, 3564–3570. [Google Scholar] [CrossRef]
- Porter David, A.; Easterling, K.E. Phase Transformations in Metals and Alloys; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Messler, W., Jr. Principles of Welding; John Wiley & Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Ghaini, F.M.; Sheikhi, M.; Torkamany, M.J.; Sabbaghzadeh, J. The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy. Mater. Sci. Eng. A 2009, 519, 167–171. [Google Scholar] [CrossRef]
- Metinoz, I.; Cristofolini, I.; Pahl, W.; DeNicolo, A.; Molinari, A. Studio della Resistenza alla Fatica di Contatto di Acciai Sinterizzati Trattati Termicamente; La Metallurgia Italiana: Milano, Italy, 2014. [Google Scholar]
- Kou, S. Welding Metallurgy; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Inoue, A.; Takeuchi, A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng. A 2004, 375–377, 16–30. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.; Takeuchi, A. Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems, Mater. Sci. Eng. A 2006, 441, 18–25. [Google Scholar] [CrossRef]
- Salimon, A.I.; Ashby, M.F.; Bre’chet, Y.; Greer, A.L. Bulk metallic glasses: What are they good for? Mater Sci. Eng. 2004, 375, 385–388. [Google Scholar] [CrossRef]
- Ruijun, W.; Yiyu, Q.; Jun, L. Interface behavior study of WC92–Co8 coating produced by electrospark deposition. Appl. Surf. Sci. 2005, 240, 42–47. [Google Scholar] [CrossRef]
- Wang, J.-S.; Meng, H.-M.; Yu, H.-Y.; Fan, Z.-S.; Su, D.-B. Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition. Int. J. Miner. Metall. Mater. 2009, 16, 707–713. [Google Scholar]
- Wang, W.Q.; Du, M.; Zhang, X.; Luan, C.Q.; Tian, Y.T. Preparation and Properties of Mo Coating on H13 Steel by Electro Spark Deposition Process. Materials 2021, 14, 3700. [Google Scholar] [CrossRef]
- Wang, D.; Gao, J.H.; Zhang, R.; Deng, S.J.; Jiang, S.Y.; Cheng, D.H.; Liu, P.; Xiong, Z.Y.; Wang, W.Q. Effect of TaC particles on the microstructure and oxidation behavior of NiCoCrAlYTa coating prepared by electrospark deposition on single crystal superalloy. Surf. Coat. Technol. 2021, 408, 126851. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sheveyko, A.N.; Shvindina, N.V.; Levashov, E.A.; Shtansky, D.V. Comparative study of Ti-C-Ni-Al, Ti-C-Ni-Fe, and Ti-C-Ni-Al/Ti-C-Ni-Fe coatings produced by magnetron sputtering, electro-spark deposition, and a combined two-step process. Ceram. Int. 2018, 44, 7637–7646. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Gorshkov, V.A.; Loginov, P.A.; Sheveyko, A.N.; Nozhkina, A.V.; Levashov, E.A. Complex study of protective Cr3C2–NiAl coatings deposited by vacuum electro-spark alloying, pulsed cathodic arc evaporation, magnetron sputtering, and hybrid technology. Ceram. Int. 2022, 48, 10921–10931. [Google Scholar] [CrossRef]
- Kuptsov, K.A.; Sheveyko, A.N.; Sidorenko, D.A.; Shtansky, D.V. Electro-spark deposition in vacuum using graphite electrode at different electrode polarities: Peculiarities of microstructure, electrochemical and tribological properties. Appl. Surf. Sci. 2021, 566, 150722. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.P.; Deng, C.Y.; Huo, L.X.; Wang, L.J.; Fang, R. Novel method to fabricate Ti–Al intermetallic compound coatings on Ti–6Al–4V alloy by combined ultrasonic impact treatment and electrospark deposition. J. Alloys Compd. 2015, 628, 208–212. [Google Scholar] [CrossRef]
- Thompson, S. Handbook of Mold, Tool and Die Repair Welding; Woodhead Publishing: Sawston, UK, 1999. [Google Scholar]
- Vedani, M.; Previtali, B.; Vimercati, G.M.; Sanvito, A.; Somaschini, G. Problems in laser repair welding a surface treated tool steel. Surf. Coat. Technol. 2007, 201, 4518–4525. [Google Scholar] [CrossRef]
- Cheng, J.W.; Song, G.; Zhang, X.S.; Liu, C.B.; Liu, L.M. Review of Techniques for Improvement of Softening Behavior of Age-Hardening Aluminum Alloy Welded Joints. Materials 2021, 14, 5804. [Google Scholar] [CrossRef]
- Johnson, R.N. Alternative Coatings for Wear and Corrosion: The Electrospark Deposition Process. In Proceedings, American Electroplaters and Surface Finishers Society; Pacific Northwest National Laboratory: Richland, WA, USA, 2002. [Google Scholar]
- Chen, C.J.; Wang, M.C.; Wang, D.S.; Liang, H.S.; Feng, P. Characterisations of electrospark deposition Stellite 6 alloy coating on 316L sealed valve used in nuclear power plant. Mater Sci. Technol. 2010, 26, 276–280. [Google Scholar] [CrossRef]
- Carofalo, A.; Dattoma, V.; Nobile, R.; Panella, F.W.; Alfeo, G.; Scialpi, A.; Zanon, G.P. Mechanical Characterization of a Nickel-based Superalloy Repaired using MicroPlasma and ESD Technology. Procedia Eng. 2015, 109, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Enriquea, P.D.; Jiaob, Z.; Zhoua, N.Y.; Toyserkani, E. Effect of Microstructure on Tensile Properties of Electrospark Deposition Repaired Ni-superalloy. Mater. Sci. Eng. A 2018, 729, 268–275. [Google Scholar] [CrossRef]
Substrate | Electrode | Electrical | Protective Environment | Other |
---|---|---|---|---|
Material | Material | Power input | Shielding gas type | System efficiency |
Surface | Geometry | Voltage | Flow rate | Number of passes |
Finish | Motion | Capacitance | Temperature | Overlap of passes |
Cleanliness | Speed | Spark rate | Flow geometry | Spark duration |
Temperature | Contact pressure | - | - | - |
Geometry | Orientation | - | - | - |
- | Application direction | - | - | - |
Material | Specimen Type | Ep (J) | Yield Strength | Var. % | Ultimate Strength | Var. % | Ref. |
---|---|---|---|---|---|---|---|
AA2024-T4 | Base material | 0.9 | 339 MPa | 485 MPa | [21] | ||
Repaired | 257 MPa | −24.2 | 402 MPa | −17 | |||
Repaired +PRHT_T135°C | 291MPa | −14.2 | 419 MPa | −13.6 | |||
Repaired +PRHT_T190°C | 329.3 MPa | 2.9 | 442.5 MPa | −8.8 | |||
AA2024-T6 | Base material | 0.9 | 482 MPa | 516 MPa | [21] | ||
Repaired | 372 MPa | −22.8 | 439 MPa | −14.9 | |||
Repaired +PRHT_T135°C | 411 MPa | −14. | 455 MPa | −11.8 | |||
Repaired +PRHT_T190°C | 418.8 MPa | −13 | 457.3 MPa | −11.4 | |||
Waspalloy | Base Material | - | 0.617 | 1000 | [104] | ||
Repaired | 0.606 | −1.73 | 0.909 | −9.08 | |||
Inconel 718 | Base material | 605 MPa | 853 MPa | [105] | |||
Repaired | 0.1 | 586 MPa | −3 | 777 MPa | −9 | ||
Repaired | 0.4 | 632 MPa | −5 | 791 MPa | −7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barile, C.; Casavola, C.; Pappalettera, G.; Renna, G. Advancements in Electrospark Deposition (ESD) Technique: A Short Review. Coatings 2022, 12, 1536. https://doi.org/10.3390/coatings12101536
Barile C, Casavola C, Pappalettera G, Renna G. Advancements in Electrospark Deposition (ESD) Technique: A Short Review. Coatings. 2022; 12(10):1536. https://doi.org/10.3390/coatings12101536
Chicago/Turabian StyleBarile, Claudia, Caterina Casavola, Giovanni Pappalettera, and Gilda Renna. 2022. "Advancements in Electrospark Deposition (ESD) Technique: A Short Review" Coatings 12, no. 10: 1536. https://doi.org/10.3390/coatings12101536
APA StyleBarile, C., Casavola, C., Pappalettera, G., & Renna, G. (2022). Advancements in Electrospark Deposition (ESD) Technique: A Short Review. Coatings, 12(10), 1536. https://doi.org/10.3390/coatings12101536