Effect of Oxidation Time on the Structure and Corrosion Resistance of Micro-Arc Oxidation Coating of AZ91D Magnesium Alloy in (NH4)2ZrF6 Electrolyte System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Pretreatment and Coating Preparation
2.2. Experiment Process
2.3. Characterization Method
3. Results and Discussion
3.1. Surface and Cross-Sectional Morphology of MAO Coatings
3.2. Composition Analysis of MAO Coatings
3.3. Phase Analysis of MAO Coatings
3.4. Electrochemical Corrosion Test
4. Conclusions
- The coating with the 10 min oxidation time had the lowest porosity, the fewest defects, and the best compactness.
- The MAO coatings of the AZ91D magnesium alloy formed in the (NH4)2ZrF6 electrolyte were mainly composed of MgO, ZrO2, MgF2, Zr3O2F8, and amorphous magnesium phosphate.
- The 10 min MAO coating had the best corrosion resistance. The corrosion current density of the 10 min MAO coating was 4.864 × 10−8 A/cm2, which was three orders of magnitude lower than that of the uncoated magnesium alloy. The polarization resistance of the 10 min MAO coating was 4.710 × 105 kΩ·cm2, which was two orders of magnitude higher than that of the uncoated magnesium alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.F.; Chen, J.; Xiong, X.M.; Peng, X.D.; Chen, D.L.; Pan, F.S. Research advances of magnesium and magnesium alloys worldwide in 2021. J. Magnes. Alloys 2022, 10, 863–898. [Google Scholar] [CrossRef]
- Bai, L.J.; Dong, B.X.; Chen, G.T.; Xin, T.; Wu, J.N.; Sun, X.D. Effect of positive pulse voltage on color value and corrosion property of magnesium alloy black micro-arc oxidation ceramic coating. Surf. Coat. Technol. 2019, 374, 402–408. [Google Scholar] [CrossRef]
- Echeverry-Rendon, M.; Duque, V.; Quintero, D.; Harmsen, M.C.; Echeverria, F. Novel coatings obtained by plasma electrolytic oxidation to improve the corrosion resistance of magnesium-based biodegradable implants. Surf. Coat. Technol. 2018, 354, 28–37. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Wu, L.; Jiang, F.; Fu, D.; Teng, J.; Zhang, H. Effect of Heat Treatments on the Corrosion Resistance of a High Strength Mg-Gd-Y-Zn-Zr Alloy. Materials 2022, 15, 2813. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, S.; Jaroszynska-Wolinska, J.; Herbert, T. Theoretical predictions of anti-corrosive properties of THAM and its derivatives. J. Molec. Model. 2018, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, S.; Wrobel, M.; Woszuk, A. Quantum Chemical Analysis of the Corrosion Inhibition Potential by Aliphatic Amines. Materials 2021, 14, 6197. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.F.; Liu, H.T.; Wu, J.H.; Tang, S.Q.; Yang, Y.S.; Wang, X.T.; Zhou, J.X. Improved corrosion resistance of Mg alloy by a green phosphating: Insights into pre-activation, temperature, and growth mechanism. J. Mater. Sci. 2020, 56, 828–843. [Google Scholar] [CrossRef]
- Carrillo, D.F.; Bermudez, A.; Gomez, M.A.; Zuleta, A.A.; Castano, J.C.; Mischler, S. Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process. Surf. Inter. 2020, 21, 100733. [Google Scholar] [CrossRef]
- Singh, C.; Tiwari, S.K.; Singh, R. Exploring environment friendly nickel electrodeposition on AZ91 magnesium alloy: Effect of prior surface treatments and temperature of the bath on corrosion behaviour. Corros. Sci. 2019, 151, 1–19. [Google Scholar] [CrossRef]
- Liu, S.Q.; Li, G.H.; Qi, Y.M.; Peng, Z.J.; Ye, Y.P.; Liang, J. Corrosion and tribocorrosion resistance of MAO-based composite coating on AZ31 magnesium alloy. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Yang, D.; Sun, C.J.; Du, L.T.; Zhang, X.; An, Z.G. The Corrosion Resistance of Al Film on AZ31 Magnesium Alloys by Magnetron Sputtering. Metals 2021, 11, 1522. [Google Scholar] [CrossRef]
- Pou-Alvarez, P.; Riveiro, A.; Novoa, X.R.; Fernandez-Arias, M.; Del Val, J.; Comesana, R.; Boutinguiza, M.; Lusquinos, F.; Pou, J. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length. Surf. Coat. Technol. 2021, 427, 127802. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties, and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Dehnavi, V.; Luan, B.L.; Shoesmith, D.W.; Liu, X.Y.; Rohani, S. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf. Coat. Technol. 2013, 226, 100–107. [Google Scholar] [CrossRef]
- Al Bosta, M.M.S.; Ma, K.J.; Chien, H.H. The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminum 6061 alloy. Inf. Phys. Technol. 2013, 60, 323–334. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Pan, Q.L.; Yan, J.K.; Ye, J.; Liu, Y. Direct current micro-arc oxidation coatings on Al-Zn-Mg-Mn-Zr extruded alloy with tunable structures and properties templated by discharge stages. Vacuum 2018, 150, 155–165. [Google Scholar] [CrossRef]
- Einkhah, F.; Lee, K.M.; Sani, M.A.F.; Yoo, B.; Shin, D.H. Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation. Surf. Coat. Technol. 2014, 238, 75–79. [Google Scholar] [CrossRef]
- Tang, M.Q.; Shao, Y.F.; Feng, Z.Q.; Wang, W.; Li, G.; Yan, Z.W.; Zhang, R.Z. Self-sealing Microarc Oxidation Coating Mainly Containing ZrO2 and Nano Mg2Zr5O12 on AZ91D Mg Alloy. Int. J. Electrochem. Sci. 2020, 15, 12447–12461. [Google Scholar] [CrossRef]
- Selvi, E.; Muhaffel, F.; Yurekturk, Y.; Vanli, A.S.; Baydogan, M. Influence of Electrolyte Compositions and Electrical Parameters on Thermal Properties of Micro-Arc Oxidized AZ91 Alloy. J. Mater. Eng. Perform. 2021, 31, 1667–1678. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Shin, S.H.; Hussain, I.; Koo, B.H. Investigation of hybrid PEO coatings on AZ31B magnesium alloy in alkaline K2ZrF6-Na2SiO3 electrolyte solution. Prot. Met. Phys. Chem. Surf. 2017, 53, 495–502. [Google Scholar] [CrossRef]
- Yong, J.H.; Li, H.Z.; Li, Z.X.; Chen, Y.N.; Wang, Y.F.; Geng, J.J. Effect of (NH4)2ZrF6, Voltage and Treating Time on Corrosion Resistance of Micro-Arc Oxidation Coatings Applied on ZK61M Magnesium Alloys. Materials 2021, 14, 7410. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Tian, L.; Liu, W.; Duan, X. Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment. Corros. Sci. 2013, 72, 118–124. [Google Scholar] [CrossRef]
- Guo, H.; An, M.; Xu, S.; Huo, H. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin Solid Films 2005, 485, 53–58. [Google Scholar] [CrossRef]
- Cui, X.J.; Liu, C.H.; Yang, R.S.; Li, M.T.; Lin, X.Z. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surf. Coat. Technol. 2015, 269, 228–237. [Google Scholar] [CrossRef]
- Xu, L.; Wu, C.; Lei, X.; Zhang, K.; Liu, C.; Ding, J.; Shi, X. Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment. Surf. Coat. Technol. 2018, 342, 12–22. [Google Scholar] [CrossRef]
- Lu, J.P.; Cao, G.P.; Quan, G.F.; Wang, C.; Zhuang, J.J.; Song, R.G. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy. J. Mater. Eng. Perform. 2018, 27, 147–154. [Google Scholar] [CrossRef]
- Guan, Y.J.; Xia, Y.; Li, G. Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO. Surf. Coat. Technol. 2008, 202, 4602–4612. [Google Scholar] [CrossRef]
- Chen, H.; Lv, G.H.; Zhang, G.L.; Pang, H.; Wang, X.Q.; Lee, H.J.; Yang, S.Z. Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives. Surf. Coat. Technol. 2010, 205, S32–S35. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Yan, Z.C.; Wang, H.L.; Peng, J.Z. Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. J. Alloys Compd. 2009, 480, 469–474. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.Z.; Zhang, J. Effect of ZrO2 particle on the performance of micro-arc oxidation coatings on Ti6Al4V. Appl. Surf. Sci. 2015, 342, 183–190. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009, 51, 2483–2492. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Shan, D.Y.; Song, Y.W.; Han, E.H.; Ke, W. Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation. Corros. Sci. 2011, 53, 3845–3852. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Chang, W.H.; Zhang, S.F.; Song, Y.W.; Huang, H.D.; Zhao, R.F.; Li, G.Q.; Zhang, R.F.; Zhang, Y.J. Investigation on Corrosion Resistance and Formation Mechanism of a P–F–Zr Contained Micro-Arc Oxidation Coating on AZ31B Magnesium Alloy Using an Orthogonal Method. Coatings 2019, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wen, T.; Liu, K.; Jiang, D.; Jiang, Z.; Wang, Y. Controllable Syntheses, Crystal Structure Evolution, and Photoluminescence of Polymorphic Zirconium Oxyfluorides. Inorg. Chem. 2021, 60, 14382–14389. [Google Scholar] [CrossRef]
- Cui, X.J.; Liu, C.H.; Yang, R.S.; Fu, Q.S.; Lin, X.Z.; Gong, M. Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism. Corros. Sci. 2013, 76, 474–485. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.P.; Vizureanu, P.; Sandu, A.V.; Bejinariu, C. Phosphate Surface Treatment for Improving the Corrosion Resistance of the C45 Carbon Steel Used in Carabiners Manufacturing. Materials 2020, 13, 3410. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, X.J.; Zhang, T.; Wu, K.; Wang, F.H. Role of β Phase during Microarc Oxidation of Mg Alloy AZ91D and Corrosion Resistance of the Oxidation Coating. J. Mater. Sci. Technol. 2013, 29, 1129–1133. [Google Scholar] [CrossRef]
- Gu, Y.; Bandopadhyay, S.; Chen, C.F.; Guo, Y.; Ning, C. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. J. Alloys Compd. 2012, 543, 109–117. [Google Scholar] [CrossRef]
Element | Mg | Al | Zn | Mn | Si | Fe | Cu | Ni |
---|---|---|---|---|---|---|---|---|
Content (wt.%) | Balance | 9.01 | 0.65 | 0.21 | 0.013 | 0.0028 | 0.0018 | 0.00082 |
Sample No. | O (wt.%) | F (wt.%) | Mg (wt.%) | Zr (wt.%) | P (wt.%) |
---|---|---|---|---|---|
5 min | 49.17 | 13.63 | 23.70 | 6.44 | 7.06 |
10 min | 47.78 | 12.89 | 24.75 | 7.66 | 6.92 |
15 min | 45.63 | 15.68 | 27.26 | 5.91 | 5.52 |
20 min | 44.68 | 20.78 | 26.19 | 3.69 | 4.67 |
Sample No. | Ecorr (V) | Icorr (A/cm2) | βa (mV/dec) | |βc| (mV/dec) | Rp (kΩ·cm2) | Vcorr (µm/year) |
---|---|---|---|---|---|---|
AZ91D | −1.479 | 2.829 × 10−5 | 144.27 | 129.03 | 1.045 × 103 | 645.96 |
5 min | −1.407 | 5.821 × 10−7 | 26.95 | 144.02 | 1.693 × 104 | 13.29 |
10 min | −1.485 | 4.864 × 10−8 | 110.9 | 100.62 | 4.710 × 105 | 1.11 |
15 min | −1.480 | 1.581 × 10−7 | 71.15 | 104.82 | 1.164 × 105 | 3.61 |
20 min | −1.582 | 2.345 × 10−7 | 174.12 | 153.35 | 1.510 × 105 | 5.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Li, H.; Li, Z.; Wang, Y.; Chen, Y.; Geng, J. Effect of Oxidation Time on the Structure and Corrosion Resistance of Micro-Arc Oxidation Coating of AZ91D Magnesium Alloy in (NH4)2ZrF6 Electrolyte System. Coatings 2022, 12, 1538. https://doi.org/10.3390/coatings12101538
Zhu J, Li H, Li Z, Wang Y, Chen Y, Geng J. Effect of Oxidation Time on the Structure and Corrosion Resistance of Micro-Arc Oxidation Coating of AZ91D Magnesium Alloy in (NH4)2ZrF6 Electrolyte System. Coatings. 2022; 12(10):1538. https://doi.org/10.3390/coatings12101538
Chicago/Turabian StyleZhu, Jincheng, Hongzhan Li, Zhengxian Li, Yifei Wang, Yongnan Chen, and Juanjuan Geng. 2022. "Effect of Oxidation Time on the Structure and Corrosion Resistance of Micro-Arc Oxidation Coating of AZ91D Magnesium Alloy in (NH4)2ZrF6 Electrolyte System" Coatings 12, no. 10: 1538. https://doi.org/10.3390/coatings12101538
APA StyleZhu, J., Li, H., Li, Z., Wang, Y., Chen, Y., & Geng, J. (2022). Effect of Oxidation Time on the Structure and Corrosion Resistance of Micro-Arc Oxidation Coating of AZ91D Magnesium Alloy in (NH4)2ZrF6 Electrolyte System. Coatings, 12(10), 1538. https://doi.org/10.3390/coatings12101538