Chromium Luminescence in Plasma Electrolytic Oxidation Coatings on Aluminum Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. PEO Setup
2.3. Measurements
3. Results
3.1. Structure and Morphology
3.2. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auzins, K.; Zolotarjovs, A.; Bite, I.; Laganovska, K.; Vitola, V.; Smits, K.; Millers, D. Production of Phosphorescent Coatings on 6082 Aluminum Using Sr0.95Eu0.02Dy0.03Al2O4−δ Powder and Plasma Electrolytic Oxidation. Coatings 2019, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Agureev, L.; Savushkina, S.; Ashmarin, A.; Borisov, A.; Apelfeld, A.; Anikin, K.; Tkachenko, N.; Gerasimov, M.; Shcherbakov, A.; Ignatenko, V.; et al. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites. Metals 2018, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Snizhko, L.O.; Yerokhin, A.L.; Pilkington, A.; Gurevina, N.L.; Misnyankin, D.O.; Leyland, A.; Matthews, A. Anodic Processes in Plasma Electrolytic Oxidation of Aluminium in Alkaline Solutions. Electrochim. Acta 2004, 49, 2085–2095. [Google Scholar] [CrossRef]
- White, L.; Koo, Y.; Neralla, S.; Sankar, J.; Yun, Y. Enhanced Mechanical Properties and Increased Corrosion Resistance of a Biodegradable Magnesium Alloy by Plasma Electrolytic Oxidation (PEO). Mater. Sci. Eng. B 2016, 208, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Marimuthu, K.; Karuppuswamy, P.; Rajeshkumar, L. Microstructure and Properties of YSZ-Al2O3 Functional Ceramic Thermal Barrier Coatings for Military Applications. Boletín Soc. Española Cerámica Vidr. 2021; in press. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C.; Störmer, M.; Dietzel, W. Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate Based Electrolytes. Electrochim. Acta 2009, 54, 3842–3850. [Google Scholar] [CrossRef]
- Shirai, T.; Watanabe, H.; Fuji, M.; Takahashi, M. Structural Properties and Surface Characteristics on Aluminum Oxide Powders. Ceram. Res. Lab. 2009, 9, 23–31. [Google Scholar]
- da Costa Cunha, G.; Romão, L.P.C.; Macedo, Z.S. Production of Alpha-Alumina Nanoparticles Using Aquatic Humic Substances. Powder Technol. 2014, 254, 344–351. [Google Scholar] [CrossRef]
- Serdechnova, M.; Karpushenkov, S.; Karpushenkava, L.; Starykevich, M.; Ferreira, M.; Hack, T.; Iuzviuk, M.; Zobkalo, I.; Blawert, C.; Zheludkevich, M. The Influence of PSA Pre-Anodization of AA2024 on PEO Coating Formation: Composition, Microstructure, Corrosion, and Wear Behaviors. Materials 2018, 11, 2428. [Google Scholar] [CrossRef] [Green Version]
- Bouali, A.C.; Straumal, E.A.; Serdechnova, M.; Wieland, D.C.F.; Starykevich, M.; Blawert, C.; Hammel, J.U.; Lermontov, S.A.; Ferreira, M.G.S.; Zheludkevich, M.L. Layered Double Hydroxide Based Active Corrosion Protective Sealing of Plasma Electrolytic Oxidation/Sol-Gel Composite Coating on AA2024. Appl. Surf. Sci. 2019, 494, 829–840. [Google Scholar] [CrossRef]
- Grigorjeva, L.; Millers, D.; Smits, K.; Zolotarjovs, A. Gas Sensitive Luminescence of ZnO Coatings Obtained by Plazma Electrolytic Oxidation. Sens. Actuators A Phys. 2015, 234, 290–293. [Google Scholar] [CrossRef]
- Zolotarjovs, A.; Smits, K.; Laganovska, K.; Bite, I.; Grigorjeva, L.; Auzins, K.; Millers, D.; Skuja, L. Thermostimulated Luminescence of Plasma Electrolytic Oxidation Coatings on 6082 Aluminium Surface. Radiat. Meas. 2019, 124, 29–34. [Google Scholar] [CrossRef]
- Zolotarjovs, A.; Smits, K.; Krumina, A.; Millers, D.; Grigorjeva, L. Luminescent PEO Coatings on Aluminum. ECS J. Solid State Sci. Technol. 2016, 5, R150–R153. [Google Scholar] [CrossRef]
- Bite, I.; Krieke, G.; Zolotarjovs, A.; Laganovska, K.; Liepina, V.; Smits, K.; Auzins, K.; Grigorjeva, L.; Millers, D.; Skuja, L. Novel Method of Phosphorescent Strontium Aluminate Coating Preparation on Aluminum. Mater. Des. 2018, 160, 794–802. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R. Formation and Photoluminescence of Eu3+ Doped Zirconia Coatings Formed by Plasma Electrolytic Oxidation. J. Lumin. 2016, 176, 25–31. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Enhanced Corrosion Resistance and In-Vitro Biodegradation of Plasma Electrolytic Oxidation Coatings Prepared on AZ91 Mg Alloy Using ZnO Nanoparticles-Incorporated Electrolyte. Surf. Coat. Technol. 2019, 360, 153–171. [Google Scholar] [CrossRef]
- Smits, K.; Millers, D.; Zolotarjovs, A.; Drunka, R.; Vanks, M. Luminescence of Eu Ion in Alumina Prepared by Plasma Electrolytic Oxidation. Appl. Surf. Sci. 2015, 337, 166–171. [Google Scholar] [CrossRef]
- Einbergs, E.; Zolotarjovs, A.; Bite, I.; Laganovska, K.; Auzins, K.; Smits, K.; Trinkler, L. Usability of Cr-Doped Alumina in Dosimetry. Ceramics 2019, 2, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Lapraz, D.; Iacconi, P.; Daviller, D.; Guilhot, B. Thermostimulated Luminescence and Fluorescence of α-Al2O3:Cr3+Samples (Ruby). Influence of the Cr3+ Concentration. Phys. Status Solidi (A) 1991, 126, 521–531. [Google Scholar] [CrossRef]
- Yunusov, M.S.; Tsoi, A.N.; Muminkhodzhaev, K.M.; Khaimov-Mal’kov, V.Y. Using Thermoluminescence of Ruby for the Dosimetry of γ-Radiation. Sov. At. Energy 1974, 36, 396–398. [Google Scholar] [CrossRef]
- Grigorjeva, L.; Zolotarjovs, A.; Millers, D.; Smits, K.; Krug, P.; Stollenwerk, J.; Osman, A.; Tenostendarp, T. Magnetron Sputtering Fabrication of α-Al2O3:Cr Powders and Their Thermoluminescence Properties. Radiat. Meas. 2018, 119, 140–143. [Google Scholar] [CrossRef]
- García-Mayorga, J.C.; Urbano-Reyes, G.; Veloz-Rodríguez, M.A.; Reyes-Cruz, V.E.; Cobos-Murcia, J.A.; Hernández-Ávila, J.; Pérez-Labra, M. Electrochemical Preparation of Precursor Phases for Obtaining Alpha-Alumina from Aluminium Scrap. Ceram. Int. 2018, 44, 7435–7441. [Google Scholar] [CrossRef]
- Pham, T.D.; Kobayashi, M.; Adachi, Y. Interfacial Characterization of α-Alumina with Small Surface Area by Streaming Potential and Chromatography. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 148–157. [Google Scholar] [CrossRef]
- Patra, A.; Tallman, R.E.; Weinstein, B.A. Effect of Crystal Structure and Dopant Concentration on the Luminescence of Cr3+ in Al2O3 Nanocrystals. Opt. Mater. 2005, 27, 1396–1401. [Google Scholar] [CrossRef]
- Curran, J.A.; Clyne, T.W. Porosity in Plasma Electrolytic Oxide Coatings. Acta Mater. 2006, 54, 1985–1993. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wang, M.; Zhou, M.; Li, B.J.; Amoako, G.; Jiang, Z.H. Microstructure Characterisation of Alumina Coating on Steel by PEO. Surf. Eng. 2013, 29, 271–275. [Google Scholar] [CrossRef]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Luo, Z.; Qi, S.; Sun, X. Structure and Antiwear Behavior of Micro-Arc Oxidized Coatings on Aluminum Alloy. Surf. Coat. Technol. 2002, 154, 1–7. [Google Scholar] [CrossRef]
- Yerokhin, A.; Snizhko, L.; Gurevina, N.; Leyland, A.; Pilkington, A.; Matthews, A. Matthews Discharge Characterization in Plasma Electrolytic Oxidation of Aluminium. J. Phys. D Appl. Phys. 2003, 36, 2110. [Google Scholar] [CrossRef]
- Huang, G.S.; Wu, X.L.; Yang, L.W.; Shao, X.F.; Siu, G.G.; Chu, P.K. Dependence of Blue-Emitting Property on Nanopore Geometrical Structure in Al-Based Porous Anodic Alumina Membranes. Appl. Phys. A 2005, 81, 1345–1349. [Google Scholar] [CrossRef]
- Li, S.-Y.; Wang, J.; Li, Y. Photoluminescence Properties of Anodic Aluminum Oxide Formed in a Mixture of Ammonium Fluoride and Oxalic Acid. Opt. Eng. 2017, 56, 067107. [Google Scholar] [CrossRef]
- Palanza, V.; Galli, A.; Lorenzi, R.; Moretti, F.; Mozzati, M.C.; Paleari, A.; Spinolo, G. Luminescence Study of Transition Metal Ions in Natural Magmatic and Metamorphic Yellow Sapphires. IOP Conf. Ser. Mater. Sci. Eng. 2010, 15, 012086. [Google Scholar] [CrossRef] [Green Version]
- Brewer, J.D.; Jeffries, B.T.; Summers, G.P. Low-Temperature Fluorescence in Sapphire. Phys. Rev. B 1980, 22, 4900–4906. [Google Scholar] [CrossRef]
- de Azevedo, W.M.; de Oliveira, G.B.; da Silva, E.F.; Khoury, H.J.; Oliveira de Jesus, E.F. Highly Sensitive Thermoluminescent Carbon Doped Nanoporous Aluminium Oxide Detectors. Radiat. Prot. Dosim. 2006, 119, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Baronskiy, M.; Rastorguev, A.; Zhuzhgov, A.; Kostyukov, A.; Krivoruchko, O.; Snytnikov, V. Photoluminescence and Raman Spectroscopy Studies of Low-Temperature γ-Al2O3 Phases Synthesized from Different Precursors. Opt. Mater. 2016, 53, 87–93. [Google Scholar] [CrossRef]
- Gorbunov, S.V.; Cholakh, S.O.; Pustovarov, V.A.; Yakovlev, V.Y.; Zatsepin, A.F.; Kucharenko, A.I. Electronic Excitations and Intrinsic Defects in Nanostructural Al2O3. Phys. Status Solidi (C) 2005, 2, 351–354. [Google Scholar] [CrossRef]
- Rodriguez, M.G.; Denis, G.; Akselrod, M.S.; Underwood, T.H.; Yukihara, E.G. Thermoluminescence, Optically Stimulated Luminescence and Radioluminescence Properties of Al2O3:C,Mg. Radiat. Meas. 2011, 46, 1469–1473. [Google Scholar] [CrossRef]
- Kostyukov, A.; Baronskiy, M.; Rastorguev, A.; Snytnikov, V.; Snytnikov, V.; Zhuzhgov, A.; Ishchenko, A. Photoluminescence of Cr3+ in Nanostructured Al2O3 Synthesized by Evaporation Using a Continuous Wave CO2 Laser. RSC Adv. 2016, 6, 2072–2078. [Google Scholar] [CrossRef]
- Ivakin, Y.; Danchevskaya, M.; Muravieva, G.P.; Ovchinnikova, O.G. Physicochemical properties of corundum doped in supercritical water. In Proceedings of the Joint 19th AIRAPT and 41st EHPRG International Conference on High Pressure Science and Technology, Bordeaux, France, 7–11 July 2003. [Google Scholar]
- Randall, J.T.; Wilkins, M.H.F. The Phosphorescence of Various Solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1945, 184, 347–364. [Google Scholar] [CrossRef]
- Randall, J.T.; Wilkins, M.H.F. Phosphorescence and Electron Traps—I. The Study of Trap Distributions. Proc. R. Soc. Lond. A Math. Phys. Sci. 1945, 184, 365–389. [Google Scholar] [CrossRef]
- Randall, J.T.; Wilkins, M.H.F. Phosphorescence and Electron Traps II. The Interpretation of Long-Period Phosphorescence. Proc. R. Soc. Lond. A Math. Phys. Sci. 1945, 184, 390–407. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotarjovs, A.; Piksens, R.; Smits, K.; Vitola, V.; Tunens, G.; Einbergs, E.; Zarins, A.; Kizane, G. Chromium Luminescence in Plasma Electrolytic Oxidation Coatings on Aluminum Surface. Coatings 2022, 12, 1733. https://doi.org/10.3390/coatings12111733
Zolotarjovs A, Piksens R, Smits K, Vitola V, Tunens G, Einbergs E, Zarins A, Kizane G. Chromium Luminescence in Plasma Electrolytic Oxidation Coatings on Aluminum Surface. Coatings. 2022; 12(11):1733. https://doi.org/10.3390/coatings12111733
Chicago/Turabian StyleZolotarjovs, Aleksejs, Rudolfs Piksens, Krisjanis Smits, Virginija Vitola, Gatis Tunens, Ernests Einbergs, Arturs Zarins, and Gunta Kizane. 2022. "Chromium Luminescence in Plasma Electrolytic Oxidation Coatings on Aluminum Surface" Coatings 12, no. 11: 1733. https://doi.org/10.3390/coatings12111733
APA StyleZolotarjovs, A., Piksens, R., Smits, K., Vitola, V., Tunens, G., Einbergs, E., Zarins, A., & Kizane, G. (2022). Chromium Luminescence in Plasma Electrolytic Oxidation Coatings on Aluminum Surface. Coatings, 12(11), 1733. https://doi.org/10.3390/coatings12111733